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Abstract. In this paper we consider an integral operator on analytic
functions and prove some preserving theorems regarding some subclasses of
analytic functions with negative coefficients.
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1. Introduction

Let H(U) be the set of functions which are regular in the unit disc
U , A = {f ∈ H(U) : f(0) = f ′(0) − 1 = 0}, Hu(U) = {f ∈ H(U) :
f is univalent in U} and S = {f ∈ A : f is univalent in U}.

We denote with T the subset of the functions f ∈ S, which have the form

f(z) = z −
∞∑

j=2

ajz
j , aj ≥ 0 , j ≥ 2 , z ∈ U (1)

and with T ∗ = T
⋂

S∗, T ∗(α) = T
⋂

S∗(α), T c = T
⋂

Sc and T c(α) =
T

⋂
Sc(α), where 0 ≤ α < 1 .

Theorem 1.1 [5] For a function f having the form (1) the following
assertions are equivalents:

(i)
∞∑

j=2

jaj ≤ 1 ;

(ii) f ∈ T ;
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(iii) f ∈ T ∗ .

Regarding the classes T ∗(α) and T c(α) with 0 ≤ α < 1 , we recall here
the following result:

Theorem 1.2 [5] A function f having the form (1) is in the class T ∗(α)
if and only if:

∞∑
j=2

j − α

1− α
aj ≤ 1 , (2)

and is in the class T c(α) if and only if:

∞∑
j=2

j(j − α)

1− α
aj ≤ 1 . (3)

Definition 1.1 [2] Let S∗(α, β) denote the class of functions having the
form (1) which are starlike and satisfy∣∣∣∣∣

zf ′(z)
f(z)

− 1

zf ′(z)
f(z)

+ (1− 2α)

∣∣∣∣∣ < β (4)

for 0 ≤ α < 1 and 0 < β ≤ 1. And let C∗(α, β) denote the class of functions
such that zf ′(z) is in the class S∗(α, β).

Theorem 1.3 [2] A function f having the form (1) is in the class S∗(α, β)
if and only if:

∞∑
j=2

{(j − 1) + β(j + 1− 2α)} aj ≤ 2β(1− α) , (5)

and is in the class C∗(α, β) if and only if:

∞∑
j=2

j {(j − 1) + β(j + 1− 2α)} aj ≤ 2β(1− α) . (6)

Let Dn be the Sălăgean differential operator (see [3]) defined as:

Dn : A → A , n ∈ N and D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z) , Dnf(z) = D(Dn−1f(z)).
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In [4] the author define the class Tn(α, β), from which by choosing different
values for the parameters we obtain variously subclasses of analytic functions
with negative coefficients (for example Tn(α, 1) = Tn(α) which is the class
of n-starlike of order α functions with negative coefficients and T0(α, β) =
S∗(α, β)

⋂
T , where S∗(α, β) is the class defined by (4)).

Definition 1.2 [4] Let α ∈ [0, 1), β ∈ (0, 1] and n ∈ N . We define the
class Sn(α, β) of the n-starlike of order α and type β through

Sn(α, β) = {f ∈ A ; |J(f, n, α; z)| < β}

where J(f, n, α; z) =
Dn+1f(z)−Dnf(z)

Dn+1f(z) + (1− 2α)Dnf(z)
, z ∈ U . Consequently

Tn(α, β) = Sn(α, β)
⋂

T .

Theorem 1.4 [4] Let f be a function having the form (1). Then f ∈
Tn(α, β) if and only if

∞∑
j=2

jn [j − 1 + β(j + 1− 2α)] aj ≤ 2β(1− α) . (7)

2. Main results

Let consider the integral operator Iλ,γ : A → A, where 1 < λ < ∞ and
γ = 1, 2, . . . , defined by

f(z) = Iλ,γ(F (z)) = λ

1∫
0

uλ−γ−1F (uγz)du. (8)

Remark 2.1 For F (z) = z +
∞∑

j=2

ajz
j, from (8) we obtain

f(z) = Iλ,γ(F (z)) = z +
∞∑

j=2

λ

λ + (j − 1)γ
ajz

j.

Also, we notice that 0 <
λ

λ + (j − 1)γ
< 1, where 1 < λ < ∞, j ≥ 2,

γ = 1, 2, . . . .
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Remark 2.2 It is easy to prove, by using Theorem 1.1 and Remark 2.1,
that for F (z) ∈ T and f(z) = Iλ,γ(F (z)), we have f(z) ∈ T , where Iλ,γ is
the integral operator defined by (8).

By using the previously remark and the Theorem 1.2, we obtain the
following result:

Theorem 2.1 Let F (z) be in the class T ∗(α), α ∈ [0, 1), F (z) = z −
∞∑

j=2

ajz
j, aj ≥ 0, j ≥ 2. Then f(z) = Iλ,γ(F (z)) ∈ T ∗(α), where Iλ,γ is the

integral operator defined by (8).

Proof. From Remark 2.2 we obtain f(z) = Iλ,γ(F (z)) ∈ T .

From (2) we have
∞∑

j=2

j − α

1− α
aj ≤ 1 and f(z) = z −

∞∑
j=2

bjz
j, where

bj =
λ

λ + (j − 1)γ
aj . By using the fact that 0 <

λ

λ + (j − 1)γ
< 1, where

1 < λ < ∞, j ≥ 2, γ = 1, 2, . . . , we obtain
j − α

1− α
bj <

j − α

1− α
aj and thus

∞∑
j=2

j − α

1− α
bj ≤ 1. This mean (see Theorem 1.2) that f(z) = Iλ,γ(F (z)) ∈

T ∗(α).

Similarly (by using Remark 2.2 and the Theorems 1.3 and 1.4) we obtain:

Theorem 2.2 Let F (z) be in the class T c(α), α ∈ [0, 1), F (z) = z −
∞∑

j=2

ajz
j, aj ≥ 0, j ≥ 2. Then f(z) = Iλ,γ(F (z)) ∈ T c(α), where Iλ,γ is the

integral operator defined by (8).

Theorem 2.3 Let F (z) be in the class C∗(α, β), α ∈ [0, 1), β ∈ (0, 1],

F (z) = z −
∞∑

j=2

ajz
j, aj ≥ 0, j ≥ 2. Then f(z) = Iλ,γ(F (z)) ∈ C∗(α, β),

where Iλ,γ is the integral operator defined by (8).

Theorem 2.4 Let F (z) be in the class Tn(α, β), α ∈ [0, 1), β ∈ (0, 1], n ∈
N, F (z) = z −

∞∑
j=2

ajz
j, aj ≥ 0, j ≥ 2. Then f(z) = Iλ,γ(F (z)) ∈ Tn(α, β),

where Iγ,γ is the integral operator defined by (8).
Remark 2.3 By choosing β = 1, respectively n = 0, in the above theorem,

we obtain the similarly results for the classes Tn(α) and S∗(α, β).
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Remark 2.4 If we consider γ = 1 and λ = c + δ, where 0 < c < ∞ and
1 ≤ δ < ∞, we obtain the results from [1].
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