AN INTEGRAL OPERATOR ON ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

Mugur Acu¹, Sevtap Sumer Eker

ABSTRACT. In this paper we consider an integral operator on analytic functions and prove some preserving theorems regarding some subclasses of analytic functions with negative coefficients.

2000 Mathematics Subject Classification:30C45

Keywords and phrases: Function with negative coefficients, integral operators, Sălăgean operator

1. INTRODUCTION

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc $U, A = \{f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0\}, \mathcal{H}_u(U) = \{f \in \mathcal{H}(U) : f \text{ is univalent in } U\}$ and $S = \{f \in A : f \text{ is univalent in } U\}.$

We denote with T the subset of the functions $f \in S$, which have the form

$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j, \, a_j \ge 0, \, j \ge 2, \, z \in U$$
(1)

and with $T^* = T \bigcap S^*$, $T^*(\alpha) = T \bigcap S^*(\alpha)$, $T^c = T \bigcap S^c$ and $T^c(\alpha) = T \bigcap S^c(\alpha)$, where $0 \le \alpha < 1$.

Theorem 1.1 [5] For a function f having the form (1) the following assertions are equivalents:

(i)
$$\sum_{j=2}^{\infty} ja_j \leq 1$$
;
(ii) $f \in T$;

¹Supported by GAR 19/2008

179

(iii) $f \in T^*$.

Regarding the classes $T^*(\alpha)$ and $T^c(\alpha)$ with $0 \le \alpha < 1$, we recall here the following result:

Theorem 1.2 [5] A function f having the form (1) is in the class $T^*(\alpha)$ if and only if:

$$\sum_{j=2}^{\infty} \frac{j-\alpha}{1-\alpha} a_j \le 1,$$
(2)

and is in the class $T^{c}(\alpha)$ if and only if:

$$\sum_{j=2}^{\infty} \frac{j(j-\alpha)}{1-\alpha} a_j \le 1.$$
(3)

Definition 1.1 [2] Let $S^*(\alpha, \beta)$ denote the class of functions having the form (1) which are starlike and satisfy

$$\frac{\frac{zf'(z)}{f(z)} - 1}{\frac{zf'(z)}{f(z)} + (1 - 2\alpha)} \bigg| < \beta$$
(4)

for $0 \leq \alpha < 1$ and $0 < \beta \leq 1$. And let $C^*(\alpha, \beta)$ denote the class of functions such that zf'(z) is in the class $S^*(\alpha, \beta)$.

Theorem 1.3 [2] A function f having the form (1) is in the class $S^*(\alpha, \beta)$ if and only if:

$$\sum_{j=2}^{\infty} \left\{ (j-1) + \beta(j+1-2\alpha) \right\} a_j \le 2\beta(1-\alpha) \,, \tag{5}$$

and is in the class $C^*(\alpha, \beta)$ if and only if:

$$\sum_{j=2}^{\infty} j \left\{ (j-1) + \beta (j+1-2\alpha) \right\} a_j \le 2\beta (1-\alpha) \,. \tag{6}$$

Let D^n be the Sălăgean differential operator (see [3]) defined as:

$$D^n: A \to A , \quad n \in \mathbb{N} \text{ and } D^0 f(z) = f(z)$$
$$D^1 f(z) = Df(z) = zf'(z) , \quad D^n f(z) = D(D^{n-1}f(z)).$$

In [4] the author define the class $T_n(\alpha, \beta)$, from which by choosing different values for the parameters we obtain variously subclasses of analytic functions with negative coefficients (for example $T_n(\alpha, 1) = T_n(\alpha)$ which is the class of *n*-starlike of order α functions with negative coefficients and $T_0(\alpha, \beta) =$ $S^*(\alpha, \beta) \cap T$, where $S^*(\alpha, \beta)$ is the class defined by (4)).

Definition 1.2 [4] Let $\alpha \in [0, 1)$, $\beta \in (0, 1]$ and $n \in \mathbb{N}$. We define the class $S_n(\alpha, \beta)$ of the n-starlike of order α and type β through

$$S_n(\alpha,\beta) = \{ f \in A ; |J(f,n,\alpha;z)| < \beta \}$$

where $J(f, n, \alpha; z) = \frac{D^{n+1}f(z) - D^n f(z)}{D^{n+1}f(z) + (1 - 2\alpha)D^n f(z)}, z \in U$. Consequently $T_n(\alpha, \beta) = S_n(\alpha, \beta) \bigcap T$.

Theorem 1.4 [4] Let f be a function having the form (1). Then $f \in T_n(\alpha, \beta)$ if and only if

$$\sum_{j=2}^{\infty} j^n \left[j - 1 + \beta (j + 1 - 2\alpha) \right] a_j \le 2\beta (1 - \alpha) \,. \tag{7}$$

2. Main results

Let consider the integral operator $I_{\lambda,\gamma} : A \to A$, where $1 < \lambda < \infty$ and $\gamma = 1, 2, \ldots$, defined by

$$f(z) = I_{\lambda,\gamma}(F(z)) = \lambda \int_{0}^{1} u^{\lambda - \gamma - 1} F(u^{\gamma} z) du.$$
(8)

Remark 2.1 For $F(z) = z + \sum_{j=2}^{\infty} a_j z^j$, from (8) we obtain

$$f(z) = I_{\lambda,\gamma}(F(z)) = z + \sum_{j=2}^{\infty} \frac{\lambda}{\lambda + (j-1)\gamma} a_j z^j.$$

Also, we notice that $0 < \frac{\lambda}{\lambda + (j-1)\gamma} < 1$, where $1 < \lambda < \infty$, $j \ge 2$, $\gamma = 1, 2, \ldots$

Remark 2.2 It is easy to prove, by using Theorem 1.1 and Remark 2.1, that for $F(z) \in T$ and $f(z) = I_{\lambda,\gamma}(F(z))$, we have $f(z) \in T$, where $I_{\lambda,\gamma}$ is the integral operator defined by (8).

By using the previously remark and the Theorem 1.2, we obtain the following result:

Theorem 2.1 Let F(z) be in the class $T^*(\alpha)$, $\alpha \in [0,1)$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$. Then $f(z) = I_{\lambda,\gamma}(F(z)) \in T^*(\alpha)$, where $I_{\lambda,\gamma}$ is the integral operator defined by (8).

Proof. From Remark 2.2 we obtain $f(z) = I_{\lambda,\gamma}(F(z)) \in T$. From (2) we have $\sum_{j=2}^{\infty} \frac{j-\alpha}{1-\alpha} a_j \leq 1$ and $f(z) = z - \sum_{j=2}^{\infty} b_j z^j$, where $b_j = \frac{\lambda}{\lambda + (j-1)\gamma} a_j$. By using the fact that $0 < \frac{\lambda}{\lambda + (j-1)\gamma} < 1$, where $1 < \lambda < \infty, \ j \geq 2, \ \gamma = 1, 2, \dots$, we obtain $\frac{j-\alpha}{1-\alpha} b_j < \frac{j-\alpha}{1-\alpha} a_j$ and thus $\sum_{j=2}^{\infty} \frac{j-\alpha}{1-\alpha} b_j \leq 1$. This mean (see Theorem 1.2) that $f(z) = I_{\lambda,\gamma}(F(z)) \in T^*(\alpha)$.

Similarly (by using Remark 2.2 and the Theorems 1.3 and 1.4) we obtain: **Theorem 2.2** Let F(z) be in the class $T^{c}(\alpha)$, $\alpha \in [0,1)$, $F(z) = z - \sum_{j=2}^{\infty} a_{j}z^{j}$, $a_{j} \geq 0$, $j \geq 2$. Then $f(z) = I_{\lambda,\gamma}(F(z)) \in T^{c}(\alpha)$, where $I_{\lambda,\gamma}$ is the integral operator defined by (8).

Theorem 2.3 Let F(z) be in the class $C^*(\alpha, \beta)$, $\alpha \in [0, 1)$, $\beta \in (0, 1]$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$. Then $f(z) = I_{\lambda,\gamma}(F(z)) \in C^*(\alpha, \beta)$, where $I_{\lambda,\gamma}$ is the integral operator defined by (8).

Theorem 2.4 Let F(z) be in the class $T_n(\alpha, \beta)$, $\alpha \in [0, 1)$, $\beta \in (0, 1]$, $n \in \mathbb{N}$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$. Then $f(z) = I_{\lambda,\gamma}(F(z)) \in T_n(\alpha, \beta)$, where $I_{\gamma,\gamma}$ is the integral operator defined by (8).

Remark 2.3 By choosing $\beta = 1$, respectively n = 0, in the above theorem, we obtain the similarly results for the classes $T_n(\alpha)$ and $S^*(\alpha, \beta)$.

Remark 2.4 If we consider $\gamma = 1$ and $\lambda = c + \delta$, where $0 < c < \infty$ and $1 \le \delta < \infty$, we obtain the results from [1].

References

[1] A.M. Acu and E. Constantinescu, Some preserving properties of a integral operator, General Mathematics, Vol. 15, No. 2-3(2007), 184-189.

[2] V.P. Gupta, P.K. Jain, *Certain classes of univalent functions with negative coefficients*, Bull. Austral. Math. Soc., 14(1976), 409-416.

[3] G.S. Sălăgean, *Subclasses of univalent functions*, Complex Analysis. Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.

[4] G.S. Sălăgean, Analytic functions with negative coefficients, Mathematica, 36(59), 2(1994), 219-224.

[5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

Authors:

Mugur Acu "Lucian Blaga" University Department of Mathematics Str. Dr. I. Ratiu 5-7 550012 Sibiu, Romania E-mail: acu_mugur@yahoo.com

Sevtap Sümer Eker Department of Mathematics Faculty of Science and Letters Dicle University 21280 - Diyarbakır, Turkey E-mail: sevtaps@dicle.edu.tr

183