SĂLĂGEAN-TYPE HARMONIC MULTIVALENT FUNCTIONS

Jay M. Jahangiri, Bilal Şeker, Sevtap Sümer Eker

Abstract. We define and investigate a new class of Sǎlăgean-type harmonic multivalent functions. we obtain coefficient inequalities, extreme points and distortion bounds for the functions in this class.

2000 Mathematics Subject Classification: 30C45, 30C50, 31A05.
Keywords: Harmonic Multivalent Functions, Sǎlăgean Derivative, extreme points, distortion inequalities

1. Introduction

For fixed positive integer p, denote by $H(p)$ the set of all harmonic multivalent functions $f=h+\bar{g}$ which are sense-preserving in the open unit disk $\mathbb{U}=\{z:|z|<1\}$ where h and g are of the form

$$
\begin{equation*}
h(z)=z^{p}+\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}, \quad g(z)=\sum_{k=1}^{\infty} b_{k+p-1} z^{k+p-1}, \quad\left|b_{p}\right|<1 . \tag{1}
\end{equation*}
$$

The differential operator D^{m} was introduced by Sǎlǎgean [6]. For fixed positive integer m and for $f=h+\bar{g}$ given by (1) we define the modified Sǎlăgean operator $D^{m} f$ as

$$
\begin{equation*}
D^{m} f(z)=D^{m} h(z)+(-1)^{m} \overline{D^{m} g(z)} ; \quad p>m, \quad z \in \mathbb{U} \tag{2}
\end{equation*}
$$

where

$$
D^{m} h(z)=z^{p}+\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{m} a_{k+p-1} z^{k+p-1}
$$

and

$$
D^{m} g(z)=\sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{m} b_{k+p-1} z^{k+p-1}
$$

It is known that, (see [3]), the harmonic function $f=h+\bar{g}$ is sensepreserving in U if $\left|g^{\prime}\right|<\left|h^{\prime}\right|$ in \mathbb{U}. The class $H(p)$ was studied by Ahuja and Jahangiri [1] and the class $H(p)$ for $p=1$ was defined and studied by Jahangiri et al in [5].

For fixed positive integers m, n and p and for $0 \leq \alpha<1$ we let $H_{p}(m, n, \alpha, \beta)$ denote the class of multivalent harmonic functions of the form (1) that satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{m} f(z)}{D^{n} f(z)}\right\}>\beta\left|\frac{D^{m} f(z)}{D^{n} f(z)}-1\right|+\alpha \tag{3}
\end{equation*}
$$

The subclass $\overline{H_{p}}(m, n, \alpha, \beta)$ consists of function $f_{m}=h+\bar{g}_{m}$ in $H_{p}(m, n, \alpha, \beta)$ so that h and g are of the form

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}, \quad g_{m}(z)=(-1)^{m-1} \sum_{k=1}^{\infty} b_{k+p-1} z^{k+p-1},\left|b_{p}\right|<1 . \tag{4}
\end{equation*}
$$

The families $H_{p}(m, n, \alpha, \beta)$ and $\overline{H_{p}}(m, n, \alpha, \beta)$ include a variety of wellknown classes of harmonic functions as well as many new ones. For example $\overline{H_{1}}(1,0, \alpha, 0) \equiv H S(\alpha)$ is the class of sense-preserving, harmonic univalent functions f which are starlike of order α in $\mathbb{U}, \overline{H_{1}}(2,1, \alpha, 0) \equiv H K(\alpha)$ is the class of sense-preserving, harmonic univalent functions f which are convex of order α in \mathbb{U} and $\overline{H_{1}}(n+1, n, \alpha, 0) \equiv \bar{H}(n, \alpha)$ is the class of Sălăgean-type harmonic univalent functions.

For the harmonic functions f of the form (1) with $b_{1}=0$, Avcı and Zlotkiewicz [2] showed that if

$$
\sum_{k=2}^{\infty} k\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq 1
$$

then $f \in H S(0)$ and if

$$
\sum_{k=2}^{\infty} k^{2}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq 1
$$

then $f \in H K(0)$. Silverman [8] proved that the above two coefficient conditions are also necessary if $f=h+\bar{g}$ has negative coefficients. Later, Silverman
and Silvia [9] improved the results of [5] and [6] to the case b_{1} not necessarily zero.

For the harmonic functions f of the form (4) with $m=1$, Jahangiri [4] showed that $f \in H S(\alpha)$ if and only if

$$
\sum_{k=2}^{\infty}(k-\alpha)\left|a_{k}\right|+\sum_{k=1}^{\infty}(k+\alpha)\left|b_{k}\right| \leq 1-\alpha
$$

and $f \in \overline{H_{1}}(2,1, \alpha, 0)$ if and only of

$$
\sum_{k=2}^{\infty} k(k-\alpha)\left|a_{k}\right|+\sum_{k=1}^{\infty} k(k+\alpha)\left|b_{k}\right| \leq 1-\alpha
$$

In this paper, the coefficient conditions for the classes $H S(\alpha)$ and $H K(\alpha)$ are extended to the class $H_{p}(m, n, \alpha, \beta)$,of the forms (3) above. Furthermore, we determine extreme points and distortion theorem for the functions in $\overline{H_{p}}(m, n, \alpha, \beta)$.

2. Main Results

In our first theorem, we introduce a sufficient coefficient bound for harmonic functions in $H_{p}(m, n, \alpha, \beta)$.

Theorem 1. Let $f=h+\bar{g}$ be given by (1). Furthermore, let

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\{\Psi(m, n, p, \alpha, \beta)\left|a_{k+p-1}\right|+\Theta(m, n, p, \alpha, \beta)\left|b_{k+p-1}\right|\right\} \leq 2 \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Psi(m, n, p, \alpha, \beta)=\frac{\mathcal{K}_{k, p}^{m}(1+\beta)-(\beta+\alpha) \mathcal{K}_{k, p}^{n}}{1-\alpha} \\
& \Theta(m, n, p, \alpha, \beta)=\frac{\mathcal{K}_{k, p}^{m}(1+\beta)-(-1)^{m-n} \mathcal{K}_{k, p}^{n}(\beta+\alpha)}{1-\alpha}
\end{aligned}
$$

$\mathcal{K}_{k, p}=\frac{k+p-1}{p}, a_{p}=1, \alpha(0 \leq \alpha<1), \beta \geq 0, m \in \mathbb{N}, n \in \mathbb{N}_{0}$ and $m>n$. Then $f \in H_{p}(m, n, \alpha, \beta)$.

Proof. According to (2) and (3) we only need to show that

$$
\operatorname{Re}\left(\frac{D^{m} f(z)-\alpha D^{n} f(z)-\beta e^{i \theta}\left|D^{m} f(z)-D^{n} f(z)\right|}{D^{n} f(z)}\right) \geq 0
$$

The case $r=0$ is obvious. For $0<r<1$ it follows that

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{D^{m} f(z)-\alpha D^{n} f(z)-\beta e^{i \theta}\left|D^{m} f(z)-D^{n} f(z)\right|}{D^{n} f(z)}\right) \\
& =\operatorname{Re}\left\{\frac{(1-\alpha) z^{p}+\sum_{k=2}^{\infty}\left(\mathcal{K}_{k, p}^{m}-\alpha \mathcal{K}_{k, p}^{n}\right) a_{k+p-1} z^{k+p-1}}{z^{p}+\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} z^{k+p-1}+(-1)^{n} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} \bar{b}_{k+p-1} \bar{z}^{k+p-1}}\right.
\end{aligned}
$$

$$
+\frac{(-1)^{m} \sum_{k=1}^{\infty}\left(\mathcal{K}_{k, p}^{m}-(-1)^{m-n} \mathcal{K}_{k, p}^{n} \alpha\right) \bar{b}_{k+p-1} \bar{z}^{k+p-1}}{z^{p}+\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} z^{k+p-1}+(-1)^{n} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} \bar{b}_{k+p-1} \bar{z}^{k+p-1}}
$$

$$
\left.-\frac{\beta e^{i \theta} \mid \sum_{k=2}^{\infty}\left(\mathcal{K}_{k, p}^{m}-\mathcal{K}_{k, p}^{n}\right) a_{k+p-1} z^{k+p-1}+(-1)^{m} \sum_{k=1}^{\infty}\left(\mathcal{K}_{k, p}^{m}-(-1)^{m-n} \mathcal{K}_{k, p}^{n} \overline{b_{k+p-1}} \bar{z}^{k+p-1} \mid\right.}{z^{p}+\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} z^{k+p-1}+(-1)^{n} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} \bar{b}_{k+p-1} \bar{z}^{k+p-1}}\right\}
$$

$$
=\operatorname{Re}\left\{\frac{(1-\alpha)+\sum_{k=2}^{\infty}\left(\mathcal{K}_{k, p}^{m}-\alpha \mathcal{K}_{k, p}^{n}\right) a_{k+p-1} z^{k-1}}{1+\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} z^{k-1}+(-1)^{n} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}+\right.
$$

$$
+\frac{(-1)^{m} \sum_{k=1}^{\infty}\left(\mathcal{K}_{k, p}^{m}-(-1)^{m-n} \mathcal{K}_{k, p}^{n} \alpha\right) \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}{1+\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} z^{k-1}+(-1)^{n} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}
$$

$\left.-\frac{\beta e^{i \theta} z^{-p}\left|\sum_{k=2}^{\infty}\left(\mathcal{K}_{k, p}^{m}-\mathcal{K}_{k, p}^{n}\right) a_{k+p-1} z^{k+p-1}+(-1)^{m} \sum_{k=1}^{\infty}\left(\mathcal{K}_{k, p}^{m}-(-1)^{m-n} \mathcal{K}_{k, p}^{n}\right) \bar{b}_{k+p-1} \bar{z}^{k+p-1}\right|}{1+\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} z^{k-1}+(-1)^{n} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}\right\}$
$=\operatorname{Re}\left[\frac{(1-\alpha)+A(z)}{1+B(z)}\right]$.

For $z=r e^{i \theta}$ we have
$A\left(r e^{i \theta}\right)=\sum_{k=2}^{\infty}\left(\mathcal{K}_{k, p}^{m}-\alpha \mathcal{K}_{k, p}^{n}\right) a_{k+p-1} r^{k-1} e^{(k-1) \theta i}$
$+(-1)^{m} \sum_{k=1}^{\infty}\left(\mathcal{K}_{k, p}^{m}-(-1)^{m-n} \mathcal{K}_{k, p}^{n} \alpha\right) \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i}-\beta e^{-(p-1) i \theta} T(m, n, p, \alpha)$
where

$$
\begin{aligned}
T(m, n, p, \alpha) & =\mid \sum_{k=2}^{\infty}\left(\mathcal{K}_{k, p}^{m}-\mathcal{K}_{k, p}^{n}\right) a_{k+p-1} r^{k-1} e^{-(k+p-1) i \theta}+ \\
& +(-1)^{m} \sum_{k=1}^{\infty}\left(\mathcal{K}_{k, p}^{m}-(-1)^{m-n} \mathcal{K}_{k, p}^{n}\right) \bar{b}_{k+p-1} r^{k-1} e^{-(k+p-1) i \theta} \mid
\end{aligned}
$$

and
$B\left(r e^{i \theta}\right)=\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} r^{k-1} e^{(k-1) \theta i}+(-1)^{n} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i}$.
Setting

$$
\frac{(1-\alpha)+A(z)}{1+B(z)}=(1-\alpha) \frac{1+w(z)}{1-w(z)}
$$

the proof will be complete if we can show that $|w(z)| \leq r<1$. This is the case since, by the condition (5), we can write

$$
\begin{aligned}
& |w(z)|=\left|\frac{A(z)-(1-\alpha) B(z)}{A(z)+(1-\alpha) B(z)+2(1-\alpha)}\right| \\
\leq & \frac{\sum_{k=1}^{\infty}\left[(1+\beta)\left(\mathcal{K}_{k, p}^{m}-\mathcal{K}_{k, p}^{n}\right)\left|a_{k+p-1}\right|+(1+\beta)\left(\mathcal{K}_{k, p}^{m}-(-1)^{m-n} \mathcal{K}_{k, p}^{n}\right)\left|b_{k+p-1}\right|\right] r^{k-1}}{4(1-\alpha)-\sum_{k=1}^{\infty}\left\{\left[\mathcal{K}_{k, p}^{m}(1+\beta)-\Lambda \mathcal{K}_{k, p}^{n}\right]\left|a_{k+p-1}\right|+\left[\mathcal{K}_{k, p}^{m}(1+\beta)-(-1)^{m-n} \Lambda \mathcal{K}_{k, p}^{n}\right]\left|b_{k+p-1}\right|\right\} r^{k-1}} \\
< & \frac{\sum_{k=1}^{\infty}(1+\beta)\left(\mathcal{K}_{k, p}^{m}-\mathcal{K}_{k, p}^{n}\right)\left|a_{k+p-1}\right|+\left(\mathcal{K}_{k, p}^{m}-(-1)^{m-n} \mathcal{K}_{k, p}^{n}\right)(1+\beta)\left|b_{k+p-1}\right|}{4(1-\alpha)-\left\{\sum_{k=1}^{\infty}\left[\mathcal{K}_{k, p}^{m}(1+\beta)-\Lambda \mathcal{K}_{k, p}^{n}\right]\left|a_{k+p-1}\right|+\left[\mathcal{K}_{k, p}^{m}(1+\beta)-(-1)^{m-n} \Lambda \mathcal{K}_{k, p}^{n}\right]\left|b_{k+p-1}\right|\right\}} \\
\leq & 1,
\end{aligned}
$$

where $\Lambda=\beta+2 \alpha-1$. The harmonic univalent functions

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=2}^{\infty} \frac{1}{\Psi(m, n, p, \alpha, \beta)} x_{k} z^{k+p-1}+\sum_{k=1}^{\infty} \frac{1}{\Theta(m, n, p, \alpha, \beta)} \overline{y_{k} z^{k+p-1}} \tag{6}
\end{equation*}
$$

where $m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n 0 \leq \alpha<1, \beta \geq 0$ and $\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=1$, show that the coefficient bound given by (5) is sharp. The functions of the form (6) are in $H_{p}(m, n, \alpha, \beta)$ because
$\sum_{k=1}^{\infty}\left[\Psi(m, n, p, \alpha, \beta)\left|a_{k+p-1}\right|+\Theta(m, n, p, \alpha, \beta)\left|b_{k+p-1}\right|\right]=1+\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=2$.
In the following theorem it is shown that the condition (5) is also necessary for functions $f_{m}=h+\overline{g_{m}}$ where h and g_{m} are of the form (4).

Theorem 2.Let $f_{m}=h+\overline{g_{m}}$ be given by (4). Then $f_{m} \in \bar{H}_{p}(m, n, \alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left[\Psi(m, n, p, \alpha, \beta) a_{k+p-1}+\Theta(m, n, p, \alpha, \beta) b_{k+p-1}\right] \leq 2 \tag{7}
\end{equation*}
$$

where $a_{p}=1,0 \leq \alpha<1, m \in \mathbb{N}, n \in \mathbb{N}_{0}$ and $m>n$.
Proof. Since $\bar{H}_{p}(m, n, \alpha, \beta) \subset H_{p}(m, n, \alpha, \beta)$, we only need to prove the "only if" part of the theorem. For functions f_{m} of the form (4), we note that the condition

$$
\operatorname{Re}\left\{\frac{D^{m} f(z)}{D^{n} f(z)}\right\}>\beta\left|\frac{D^{m} f(z)}{D^{n} f(z)}-1\right|+\alpha
$$

is equivalent to

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{(1-\alpha) z^{p}-\sum_{k=2}^{\infty}\left(\mathcal{K}_{k, p}^{m}-\alpha \mathcal{K}_{k, p}^{n}\right) a_{k+p-1} z^{k+p-1}}{z^{p}-\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} z^{k+p-1}+(-1)^{m+n-1} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} b_{k+p-1} \bar{z}^{k+p-1}}\right. \\
& +\frac{(-1)^{2 m-1} \sum_{k=1}^{\infty}\left(\mathcal{K}_{k, p}^{m}-(-1)^{m-n} \mathcal{K}_{k, p}^{n} \alpha\right) b_{k+p-1} \bar{z}^{k+p-1}}{z^{p}-\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} z^{k+p-1}+(-1)^{m+n-1} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} b_{k+p-1} \bar{z}^{k+p-1}}
\end{aligned}
$$

$$
\left.-\frac{\beta e^{i \theta}\left|-\sum_{k=2}^{\infty}\left(\mathcal{K}_{k, p}^{m}-\mathcal{K}_{k, p}^{n}\right) a_{k+p-1} z^{k+p-1}+(-1)^{2 m-1} \sum_{k=1}^{\infty}\left(\mathcal{K}_{k, p}^{m}-(-1)^{m-n} \mathcal{K}_{k, p}^{n}\right) \bar{b}_{k+p-1} \bar{z}^{k+p-1}\right|}{z^{p}-\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} z^{k+p-1}+(-1)^{m+n-1} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} b_{k+p-1} \bar{z}^{k+p-1}}\right\}
$$

≥ 0
where $\mathcal{K}_{k, p}=\frac{k+p-1}{p}$.
The above required condition (8) must hold for all values of z in \mathbb{U}. Upon choosing the values of z on the positive real axis where $0 \leq z=r<1$, we must have

$$
\begin{align*}
& \frac{(1-\alpha)-\sum_{k=2}^{\infty}\left[\mathcal{K}_{k, p}^{m}(1+\beta)-(\beta+\alpha) \mathcal{K}_{k, p}^{n}\right] a_{k+p-1} r^{k-1}}{1-\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} r^{k-1}-(-1)^{m-n} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} b_{k+p-1} r^{k+p-1}} \\
& \quad+\frac{-\sum_{k=1}^{\infty}\left[\mathcal{K}_{k, p}^{m}(1+\beta)-(-1)^{m-n} \mathcal{K}_{k, p}^{n}(\beta+\alpha)\right] b_{k+p-1} r^{k-1}}{1-\sum_{k=2}^{\infty} \mathcal{K}_{k, p}^{n} a_{k+p-1} r^{k-1}-(-1)^{m-n} \sum_{k=1}^{\infty} \mathcal{K}_{k, p}^{n} b_{k+p-1} r^{k-1}} \geq 0 . \tag{9}
\end{align*}
$$

If the condition (8) does not hold, then the expression in (9) is negative for r sufficiently close to 1 . Hence there exist $z_{0}=r_{0}$ in $(0,1)$ for which the quotient in (9) is negative. This contradicts the required condition for $f_{m} \in \bar{H}_{p}(m, n, \alpha, \beta)$. And so the proof is complete.

Next we determine the extreme points of the closed convex hull of $\bar{H}_{p}(m, n, \alpha, \beta)$, denoted by $\operatorname{clco} \bar{H}_{p}(m, n, \alpha, \beta)$.

Theorem 3. Let f_{m} be given by (4). Then $f_{m} \in \bar{H}_{p}(m, n, \alpha, \beta)$ if and only if

$$
f_{m}(z)=\sum_{k=1}^{\infty}\left[x_{k+p-1} h_{k+p-1}(z)+y_{k+p-1} g_{m_{k+p-1}}(z)\right]
$$

where

$$
h_{p}(z)=z^{p}, \quad h_{k+p-1}(z)=z^{p}-\frac{1}{\Psi(m, n, p, \alpha, \beta)} z^{k+p-1} ; \quad(k=2,3, \ldots)
$$

and

$$
g_{m_{k+p-1}}(z)=z^{p}+(-1)^{m-1} \frac{1}{\Theta(m, n, p, \alpha, \beta)} \bar{z}^{k+p-1} ; \quad(k=1,2,3, \ldots)
$$

$x_{k+p-1} \geq 0, y_{k+p-1} \geq 0, x_{p}=1-\sum_{k=2}^{\infty} x_{k+p-1}-\sum_{k=1}^{\infty} y_{k+p-1}$. In particular, the extreme points of $\bar{H}_{p}(m, n, \alpha, \beta)$ are $\left\{h_{k+p-1}\right\}$ and $\left\{g_{k+p-1}\right\}$.

Proof. For functions f_{m} of the form (4)

$$
\begin{aligned}
f_{m}(z)= & \sum_{k=1}^{\infty}\left[x_{k+p-1} h_{k+p-1}(z)+y_{k+p-1} g_{m_{k+p-1}}(z)\right] \\
= & \sum_{k=1}^{\infty}\left(x_{k+p-1}+y_{k+p-1}\right) z^{p}-\sum_{k=2}^{\infty} \frac{1}{\Psi(m, n, p, \alpha, \beta)} x_{k+p-1} z^{k+p-1} \\
& +(-1)^{m-1} \sum_{k=1}^{\infty} \frac{1}{\Theta(m, n, p, \alpha, \beta)} y_{k+p-1} \bar{z}^{k+p-1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{k=2}^{\infty} \Psi(m, n, p, \alpha, \beta) & \left(\frac{1}{\Psi(m, n, p, \alpha, \beta)} x_{k+p-1}\right) \\
+ & \sum_{k=1}^{\infty} \Theta(m, n, p, \alpha, \beta)\left(\frac{1}{\Theta(m, n, p, \alpha, \beta)} y_{k+p-1}\right) \\
& =\sum_{k=2}^{\infty} x_{k+p-1}+\sum_{k=1}^{\infty} y_{k+p-1}=1-x_{p} \leq 1
\end{aligned}
$$

and so $f_{m}(z) \in \operatorname{clco} \bar{H}_{p}(m, n, \alpha, \beta)$.
Conversely, suppose that $f_{m}(z) \in \operatorname{clco} \bar{H}_{p}(m, n, \alpha, \beta)$. Set

$$
\begin{gathered}
x_{k+p-1}=\Psi(m, n, p, \alpha, \beta) a_{k+p-1}, \quad(k=2,3, \ldots) \\
y_{k+p-1}=\Theta(m, n, p, \alpha, \beta) b_{k+p-1}, \quad(k=1,2,3, \ldots)
\end{gathered}
$$

and

$$
x_{p}=1-\sum_{k=2}^{\infty} x_{k+p-1}-\sum_{k=1}^{\infty} y_{k+p-1} .
$$

Then, as required, we obtain
$f_{m}(z)=z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}+(-1)^{m-1} \sum_{k=1}^{\infty} b_{k+p-1} \bar{z}^{k+p-1}$
$=z^{p}-\sum_{k=2}^{\infty} \frac{1}{\Psi(m, n, p, \alpha, \beta)} x_{k+p-1} z^{k+p-1}+(-1)^{m-1} \sum_{k=1}^{\infty} \frac{1}{\Theta(m, n, p, \alpha, \beta)} y_{k+p-1} \overline{z^{k+p-1}}$
$=z^{p}-\sum_{k=2}^{\infty}\left[z^{p}-h_{k+p-1}(z)\right] x_{k+p-1}-\sum_{k=1}^{\infty}\left[z^{p}-g_{m_{k+p-1}}(z)\right] y_{k+p-1}$
$=\left[1-\sum_{k=2}^{\infty} x_{k+p-1}-\sum_{k=1}^{\infty} y_{k+p-1}\right] z^{p}+\sum_{k=2}^{\infty} x_{k+p-1} h_{k+p-1}(z)+\sum_{k=1}^{\infty} y_{k+p-1} g_{m_{k+p-1}}(z)$
$=\sum_{k=1}^{\infty}\left[x_{k+p-1} h_{k+p-1}(z)+y_{k+p-1} g_{m_{k+p-1}}(z)\right]$.

The following theorem gives the distortion bounds for functions in $\bar{H}_{p}(m, n, \alpha, \beta)$ which yields a covering results for this class.

Theorem 4. Let $f_{m} \in \bar{H}_{p}(m, n, \alpha, \beta)$. Then for $|z|=r<1$ we have

$$
\left|f_{m}(z)\right| \leq\left(1+b_{p}\right) r^{p}+\left[\Phi(m, n, p, \alpha, \beta)-\Omega(m, n, p, \alpha, \beta) b_{p}\right] r^{n+p}
$$

and

$$
\left|f_{m}(z)\right| \geq\left(1-b_{p}\right) r^{p}-\left\{\Phi(m, n, p, \alpha, \beta)-\Omega(m, n, p, \alpha, \beta) b_{p}\right\} r^{n+p}
$$

where,

$$
\begin{aligned}
& \Phi(m, n, p, \alpha, \beta)=\frac{1-\alpha}{\left(\frac{p+1}{p}\right)^{m}(1+\beta)-\left(\frac{p+1}{p}\right)^{n}(\beta+\alpha)} \\
& \Omega(m, n, p, \alpha, \beta)=\frac{(1+\beta)-(-1)^{m-n}(\alpha+\beta)}{\left(\frac{p+1}{p}\right)^{m}(1+\beta)-\left(\frac{p+1}{p}\right)^{n}(\beta+\alpha)}
\end{aligned}
$$

Proof. We prove the right hand side inequality for $\left|f_{m}\right|$. The proof for $\underline{\text { the }}$ left hand inequality can be done using similar arguments. Let $f_{m} \in$ $\bar{H}_{p}(m, n, \alpha, \beta)$. Taking the absolute value of f_{m} then by Theorem 2 , we obtain:

$$
\left|f_{m}(z)\right|=\left|z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}+(-1)^{m-1} \sum_{k=1}^{\infty} b_{k+p-1} \bar{z}^{k+p-1}\right|
$$

$$
\begin{aligned}
& \leq r^{p}+\sum_{k=2}^{\infty} a_{k+p-1} r^{k+p-1}+\sum_{k=1}^{\infty} b_{k+p-1} r^{k+p-1} \\
& =r^{p}+b_{p} r^{p}+\sum_{k=2}^{\infty}\left(a_{k+p-1}+b_{k+p-1}\right) r^{k+p-1} \\
& \leq r^{p}+b_{p} r^{p}+\sum_{k=2}^{\infty}\left(a_{k+p-1}+b_{k+p-1}\right) r^{p+1} \\
& =\left(1+b_{p}\right) r^{p}+\Phi(m, n, p, \alpha, \beta) \sum_{k=2}^{\infty} \frac{1}{\Phi(m, n, p, \alpha, \beta)}\left(a_{k+p-1}+b_{k+p-1}\right) r^{p+1} \\
& \leq\left(1+b_{p}\right) r^{p}+\Phi(m, n, p, \alpha, \beta) r^{n+p}\left[\sum_{k=2}^{\infty} \Psi(m, n, p, \alpha, \beta) a_{k+p-1}+\Theta(m, n, p, \alpha, \beta) b_{k+p-1}\right] \\
& \leq\left(1+b_{p}\right) r^{p}+\left[\Phi(m, n, p, \alpha, \beta)-\Omega(m, n, p, \alpha, \beta) b_{p}\right] r^{n+p} .
\end{aligned}
$$

The following covering result follows from the left hand inequality in Theorem 4.

Corollary 1. Let $f_{m} \in \bar{H}_{p}(m, n, \alpha, \beta)$, then for $|z|=r<1$ we have

$$
\left\{w:|w|<1-b_{p}-\left[\Phi(m, n, p, \alpha, \beta)-\Omega(m, n, p, \alpha, \beta) b_{p}\right] \subset f_{m}(\mathbb{U})\right\}
$$

Remark 1. If we take $m=n+1, \beta=0$ and $p=1$, then the above covering result given in [5]. Furthermore, the results of this paper, for $p=1$ and $\beta=0$ coincide with the results in [10].

Remark 2. For $p=1$, we obtain the results given in [7].

References

[1] Ahuja O.P, Jahangiri J.M., Multivalent harmonic starlike functions, Ann. Univ. Marie Crie-Sklodowska Sect.A, LV 1(2001), 1-13.
[2] Avcı Y., Zlotkiewicz E., On harmonic Univalent mappings, Ann. Univ. Marie Crie-Sklodowska Sect.A, 44(1991), 1-7.
[3] Clunie J.,Sheil-Small T., Harmonic Univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math, 9(1984), 3-25.
[4] Jahangiri J.M., Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235(1999), 470-477.
[5] Jahangiri J.M., Murugusundaramoorthy G. and Vijaya K., Sălăgeantype harmonic univalent functions, South. J. Pure Appl.Math., 2(2002), 7782.
[6] Sălăgean G.S., Subclass of univalent functions, Complex analysis-Fifth Romanian Finish Seminar, Bucharest,1(1983), 362-372.
[7] Seker B., Sümer Eker S., On Sălăgean-Type Harmonic Univalent Functions (to appear)
[8] Silverman H., Harmonic univalent functions with negative coefficients, J. Math.Anal.Appl. 220(1998), 283-289.
[9] Silverman H. and Silvia E.M. Subclasses of harmonic univalent functions, New Zealand J. Math. 28(1999), 275-284.
[10] Yalçın S., A new class of Sălăgean-type harmonic univalent functions, Applied Mathematics Letters, Vol.18, 2(2005), 191-198.

Authors:

Jay M. Jahangiri
Department of Mathematical Sciences
Kent State University
Burton 44021-9500, OH, USA
email:jjahangi@kent.edu
Bilal Şeker
Department of Mathematics
Faculty of Science and Letters, Batman University, 72060, Batman/TURKEY
email: b.seker@batman.edu.tr
Sevtap Sümer Eker
Department of Mathematics
Faculty of Science and Letters,
Dicle University
21280, Diyarbakır/TURKEY
email : sevtaps@dicle.edu.tr

