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Abstract. A comprehensive class of complex-valued harmonic prestarlike
univalent functions is introduced . Necessary and sufficient coefficient bounds
are given for functions in this function class. Further distortion bounds and
extreme points are also obtained.

Keywords and Phrases : harmonic, univalent, prestarlike, starlike.

2000 Mathematics Subject Classification: 30C45; 30C50.

1. Introduction

A continuous functions f = u+ iv is a complex- valued harmonic function
in a complex domain G if both u and v are real and harmonic in G. In any
simply connected domain D ⊂ G we can write f = h + g where h and g are
analytic in D. We call h the analytic part and g the co-analytic part of f. A
necessary and sufficient condition for f to be locally univalent and orientation
preserving in D is that |h′(z)| > |g′(z)| in D (see [3]).Denote by H the family
of functions

f = h+ g (1)

that are harmonic univalent and orientation preserving in the open unit disc
U = {z : |z| < 1} for which f(0) = h(0) = 0 = fz(0)−1. Thus for f = h+g ∈ H
we may express the analytic functions for h and g as

f(z) = z +
∞∑
m=2

amz
m +

∞∑
m=1

bmzm, (|b1| < 1), (2)

where the analytic functions h and g are in the forms

h(z) = z +
∞∑
m=2

amz
m, g(z) = b1z +

∞∑
m=2

bmz
m (0 ≤ b1 < 1).
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Note that the family H of orientation preserving,normalized harmonic uni-
valent functions reduces to S the class of normalized analytic univalent func-
tions if the co-analytic part of f = h+g is identically zero that is g ≡ 0. Given

two functions φ(z) =
∞∑
m=1

φmz
m and ψ(z) =

∞∑
m=1

ψmz
m in S there Hadamard

product or convolution (φ ∗ ψ)(z) is defined by (φ ∗ ψ)(z) = φ(z) ∗ ψ(z) =
∞∑
m=1

φmψmz
m. Using the convolution ,Ruscheweyh [9] introduced and studied

the class of prestarlike function of order α

Sα(z) =
z

(1− z)2(1−α)
, (z ∈ ∆, 0 ≤ α < 1) (3)

We also note that Sα(z) can be written in the form

Sα(z) = z +
∞∑
m=2

|Cm(α)|zm, (4)

where

Cm(α) =

∏m
j=2(j − 2α)

(m− 1)!
(m ∈ N \ {1}, N := {1, 2, 3, · · ·}). (5)

We note that Cm(α) is decreasing in α and satisfies

lim
m→∞

Cm(α) =



∞ if α < 1
2

1 if α = 1
2

0 if α > 1
2

. (6)

For f = h+g given by (1) and 0 ≤ α < 1 we define the prestarlike harmonic
function f = h+ g in H by

Sα(z) ∗ f(z) = Sα(z) ∗ h(z) + Sα(z) ∗ g(z) (7)

where Sα is given by (4) and the operator ∗ stands for the hadamard product
or convolution product.

For 0 ≤ γ < 1, let PGH(α, γ) denote the subfamily of starlike harmonic
functions f ∈ H of the form (1) such that

Re
{

(1 + eiψ)
z(Sα(z) ∗ f(z))′

z′(Sα(z) ∗ f(z))
− eiψ

}
≥ γ, (8)
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where (Sα(z) ∗ f(z))′ = ∂
∂θ

(Sα(re
iθ) ∗ f(reiθ)), z′ = ∂

∂θ
(z = reiθ) and Sα(z) is

defined by (4).
We also let PVH(α, γ) = PGH(α, γ)

⋂VH where VH the class of harmonic
functions with varying arguments introduced by Jahangiri and Silverman [4],
consisting of functions f of the form(2) in H for which there exists a real
number φ such that

ηm + (m− 1)φ ≡ π (mod 2 π), δm + (m− 1)φ ≡ 0, m ≥ 2, (9)

where ηm = arg(am) and δm = arg(bm).
In this paper we obtain a sufficient coefficient condition for functions f

given by (2) to be in the class PGH(α, γ). It is shown that this coefficient
condition is necessary also for functions belonging to the class VGH(α, γ).
Further, distortion results and extreme points for functions in VGH(α, γ) are
also obtained.

2.The class PGH(α, γ).

We begin deriving a sufficient coefficient condition for the functions belonging
to the class PGH(α, γ). This result is contained in the following.

Theorem 1. Let f = h+ g be given by (2). If

∞∑
m=2

(
2m− 1− γ

1− γ
|am|+

2m+ 1 + γ

1− γ
|bm|

)
Cm(α) ≤ 1− 3 + γ

3− γ
b1 (10)

0 ≤ γ < 1, then f ∈ PGH(α, γ).

Proof. We first show that if the inequality (10) holds for the coefficients
of f = h + g, then the required condition (8) is satisfied. Using (7) and (8),
we can write

Re

{
(1 + eiψ)

[
(Sα(z) ∗ h(z))′ − (Sα(z) ∗ g(z))′

(Sα(z) ∗ h(z)) + (Sα(z) ∗ g(z))

]
− eiψ

}
= Re

A(z)

B(z)
,

where

A(z) = (1+eiψ)[Sα(z)∗h(z))′−z(Sα(z) ∗ g(z))′]−eiψ
[
(Sα(z) ∗ h(z)) + (Sα(z) ∗ g(z))

]
and

B(z) = (Sα(z) ∗ h(z)) + (Sα(z) ∗ g(z)).
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In view of the simple assertion that Re (w) ≥ γ if and only if |1 − γ + w| ≥
|1 + γ − w|, it is sufficient to show that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0. (11)

Substituting for A(z) and B(z) the appropriate expressions in (11), we get

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

≥ (2− γ)|z| −
∞∑
m=2

(2m− γ)Cm(α)|am| |z|m −
∞∑
m=1

(2m+ γ)Cm(α)|bm| | |z|m

−γ|z| −
∞∑
m=2

(2m− 2− γ)Cm(α)|am| |z|m −
∞∑
m=1

(2m+ 2 + γ)Cm(α)|bm| |z|m.

≥ 2(1− γ)|z|
{

1− 3 + γ

1− γ
b1 −

( ∞∑
m=2

[
2m− 1− γ

1− γ
Cm(α)|am|

+
2m+ 1 + γ

1− γ
Cm(α)|bm|

])}
≥ 0

by virtue of the inequality (10). This implies that f ∈ PGH(α, γ).
Now we obtain the necessary and sufficient condition for function f = h+g

be given with condition (9).

Theorem 2. Let f = h + g be given by (2). Then f ∈ VGH(α, γ) if and
only if

∞∑
m=2

{
2m− 1− γ

1− γ
|am|+

2m+ 1 + γ

1− γ
|bm|

}
Cm(α) ≤ 1− 3 + γ

1− γ
b1 (12)

0 ≤ γ < 1.

Proof. Since VGH(α, γ) ⊂ PGH(α, γ), we only need to prove the neces-
sary part of the theorem. Assume that f ∈ VGH(α, γ), then by virtue of (4)
to (8), we obtain

Re

{
(1 + eiψ)

[
z(Sα(z) ∗ h(z))′ − z(Sα(z) ∗ g(z))′

(Sα(z) ∗ h(z)) + (Sα(z) ∗ g(z))

]
− (eiψ + γ)

}
≥ 0.
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The above inequality is equivalent to

Re


z +

( ∞∑
m=2

[m(1 + eiψ)− γ − eiψ]Cm(α)|am|zm

z +
∞∑
m=2

Cm(α)|am|zm +
∞∑
m=1

Cm(α)|bm|zm

−

∞∑
m=1

[m(1 + eiψ) + γ + eiψ]Cm(α)|bm|zm
)

z +
∞∑
m=2

Cm(α)|am|zm +
∞∑
m=1

Cm(α)|bm|zm



= Re


(1− γ) +

∞∑
m=2

Cm(α)[m(1 + eiψ)− γ − eiψ]|am|zm−1

1 +
∞∑
m=2

Cm(α)|am|zm−1 + z
z

∞∑
m=1

Cm(α)|bm|zm−1



+Re


− z
z

∞∑
m=1

[m(1 + eiψ) + γ + eiψ]|bm|zm−1

1 +
∞∑
m=2

Cm(α)|am|zm−1 + z
z

∞∑
m=1

Cm(α)|bm|zm−1

 ≥ 0.

This condition must hold for all values of z, such that |z| = r < 1. Upon
choosing φ according to (9) and noting that Re(−eiψ) ≥ −|eiψ| = −1, the
above inequality reduces to

(b1 − γ)−
[ ∞∑
m=2

(2m− 1− γ)Cm(α)|am|rm−1 + (2m+ 1 + γ)Cm(α)|bm|rm−1

]
1−

∞∑
m=2

Cm(α)|am|rm−1 +
∞∑
m=1

Cm(α)|bm|rm−1
≥ 0.

(13)
If (12) does not hold, then the numerator in (13) is negative for r sufficiently
close to 1. Therefore, there exists a point z0 = r0 in (0,1) for which the quotient
in (13) is negative. This contradicts our assumption that f ∈ VGH(α, γ). We
thus conclude that it is both necessary and sufficient that the coefficient bound
inequality (12) holds true when f ∈ VGH(α, γ). This completes the proof of
Theorem 2.

If we put φ = 2π/k in (9), then Theorem 2, gives the following corollary.
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Corollary 3. A necessary and sufficient condition for f = h+ g satisfying
(12) to be starlike is that

arg(am) = π − 2(m− 1)π/k,

and
arg(bm) = 2π − 2(m− 1)π/k , (k = 1, 2, 3, . . .).

3.Distortion and Extreme Points

In this section we obtain the distortion bounds for the functions f ∈
VGH(α, γ) that lead to a covering result for the family VGH(α, γ).

Theorem 4. If f ∈ VGH(α, γ) then

|f(z)| ≤ (1 + |b1|)r +
1

C2(α1)

(
1− γ

3− γ
− 3 + γ

3− γ
|b1|

)
r2

and

|f(z)| ≥ (1− |b1|)r −
1

C2(α)

(
1− γ

3− γ
− 3 + γ

3− γ
|b1|

)
r2.

Proof. We will only prove the right- hand inequality of the above theo-
rem. The arguments for the left- hand inequality are similar and so we omit
it. Let f ∈ VGH(α, γ) taking the absolute value of f, we obtain

|f(z)| ≤ (1 + |b1|)r +
∞∑
m=2

(|am|+ |bm|)rm

≤ (1 + b1)r + r2
∞∑
m=2

(|am|+ |bm|).

This implies that

|f(z)| ≤ (1 + |b1|)r +
1

C2(α)

(
1− γ

3− γ

) ∞∑
m=2

[(
3− γ

1− γ

)
C2(α)|am|+

(
3− γ

1− γ

)
C2(α)|bm|

]
r2

≤ (1 + |b1|)r +
1

C2(α)

(
1− γ

3− γ

)[
1− 3 + γ

1− γ
|b1|

]
r2

≤ (1 + |b1|)r +
1

C2(α)

(
1− γ

3− γ
− 3 + γ

3− γ
|b1|

)
r2,
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which establishes the desired inequality.
As a consequence of the above theorem and Corollary 3, we state the fol-

lowing covering lemma.

Corollary 5. Let f = h+ g and of the form (2) be so that f ∈ VGH(α, γ).
Then {

w : |w| < 3Cm(α)− 1− [Cm(α)− 1]γ

(3− γ)Cm(α)
(1− b1)

}
⊂ f(U).

For a compact family, the maximum or minimum of the real part of any
continuous linear functional occurs at one of the extreme points of the closed
convex hull. Unlike many other classes, characterized by necessary and suffi-
cient coefficient conditions, the family VGH(α, γ) is not a convex family. Nev-
ertheless , we may still apply the coefficient characterization of the VGH(α, γ)
to determine the extreme points.

Theorem 6. The closed convex hull of VGH(α, γ) (denoted by clcoVGH(α, γ)
is {

f(z) = z +
∞∑
m=2

|am|zm +
∞∑
m=1

|bm|zm, :
∞∑
m=2

m[|am|+ |bm|] < 1− b1

}

By setting λm = (1−γ)
(2m−1−γ)Cm(α)

and µm = (1+γ)
(2m+1+γ)Cm(α)

, then for b1 fixed, the

extreme points for clco VGH(α, γ) are{
z + λmxz

m + b1z} ∪ {z + b1z + µmxzm
}

(14)

where m ≥ 2 and |x| = 1− |b1|.

Proof. Any function f in clcoVGH(α, γ) be expressed as

f(z) = z +
∞∑
m=2

|am|eiηmzm + b1z +
∞∑
m=2

|bm|eiδmzm,

where the coefficients satisfy the inequality (10). Set

h1(z) = z, g1(z) = b1z, hm(z) = z + λme
iηmzm, gm(z) = b1z + µme

iδmzm

for m = 2, 3, . . ..
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Writing Xm = |am|
λm

, Ym = |bm|
µm
, m = 2, 3, . . . and X1 = 1 −

∞∑
m=2

Xm; Y1 =

1−
∞∑
m=2

Ym, we get

f(z) =
∞∑
m=1

(Xmhm(z) + Ymgm(z)).

In particular, putting

f1(z) = z+b1z and fm(z) = z+λmxz
m+b1z+µmyzm, (m ≥ 2, |x|+|y| = 1−|b1|)

we see that extreme points of clcoVGH(α, γ) ⊂ {fm(z)}.
To see that f1(z) is not an extreme point, note that f1(z) may be written as

f1(z) =
1

2
{f1(z) + λ2(1− |b1|)z2}+

1

2
{f1(z)− λ2(1− |b1|)z2},

a convex linear combination of functions in clco VGH(α, γ).
To see that fm is not an extreme point if both |x| 6= 0 and |y| 6= 0, we

will show that it can then also be expressed as a convex linear combinations
of functions in clco VGH(α, γ). Without loss of generality, assume |x| ≥ |y|.
Choose ε > 0 small enough so that ε < |x|

|y| . Set A = 1 + ε and B = 1 − | εx
y
|.

We then see that both

t1(z) = z + λmAxz
m + b1z + µmyBzm

and
t2(z) = z + λm(2− A)xzm + b1z + µmy(2−B)zm

are in clco VGH(α, γ), and that fm(z) = 1
2
{t1(z) + t2(z)}.

The extremal coefficient bounds show that functions of the form (14) are
the extreme points for clco VGH(α, γ), and so the proof is complete.

4.Inclusion Relation

Following Avici and Zlotkiewicz [1] (see also Ruscheweyh [8]), we refer to
the the δ− neighborhood of the function f(z) defined by (2) to be the set of
functions F for which

Nδ(f) =

{
F (z) = z +

∞∑
m=2

Amzm +
∞∑
m=1

Bmzm,
∞∑
m=2

m(|am −Am|+ |bm −Bm|)
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+|b1 −B1| ≤ δ} . (15)

In our case, let us define the generalized δ−neighborhood of f to be

Nδ(f) =

{
F :

∞∑
m=2

Cm(α)[(2m− 1− γ)(|am −Am|+ (2m + 1 + γ)|bm −Bm|]

+(1− γ)|b1 −B1| ≤ (1− γ)δ} . (16)

Theorem 7. Let f be given by (2). If f satisfies the conditions

∞∑
m=2

m(2m− 1− γ)|am|Cm(α) +
∞∑
m=1

m(2m + 1 + γ)|bm|Cm(α) ≤ (1− γ), (17)

and
δ =

1− γ

3− γ

(
1− 3 + γ

1− γ
|b1|
)

, 0 ≤ γ < 1 (18)

then N(f) ⊂ PGH(α, γ).

Proof. Let f satisfy (17) and F(z) be given by F (z) = z+B1z+
∞∑
m=2

(
Amzm + Bmzm

)
which belongs to N(f). We obtain

(3 + γ)|B1|+
∞∑
m=2

((2m− 1− γ)|Am|+ (2m + 1 + γ)|Bm|) Cm(α)

≤ (3 + γ)|B1 − b1|+ (3 + γ)|b1|+
∞∑
m=2

Cm(α) [(2m− 1− γ)|Am − am|

+(2m + 1 + γ)|Bm − bm|] +
∞∑
m=2

Cm(α) [(2m− 1− γ)|am|+ (2m + 1 + γ)|bm|]

≤ (1− γ)δ +(3+ γ)|b1|+
1

3− γ

∞∑
m=2

mCm(α) ((2m− 1− γ)|am|+ (2m + 1 + γ)|bm|)

≤ (1− γ)δ + (3 + γ)|b1|+
1

3− γ
[(1− γ)− (3 + γ)|b1|] ≤ 1− γ.
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Hence for δ = 1−γ
3−γ

(
1− 3+γ

1−γ |b1|
)

, we infer that F (z) ∈ PGH(α, γ) which concludes
the proof of Theorem 5.

Concluding Remarks: The various results presented in this paper would pro-
vide interesting extensions and generalizations of those considered earlier for simpler
harmonic function classes(see [4,5,6] and [10]. The details involved in the deriva-
tions of such specializations of the results presented in this paper are fairly straight-
forward hence omitted.
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