C_0 -SPACES AND C_1 -SPACES

Chawalit Boonpok

ABSTRACT. The aim of this paper is to introduce the concepts of C_0 -spaces and C_1 -spaces and study its basic properties in closure spaces.

2000 Mathematics Subject Classification: 54A05

Keywords and phrases: closure operator; closure space; C_0 -space; C_1 -space.

1. INTRODUCTION

Closure spaces were introduced by E. Čech [2] and then studied by many authors, see e.g. [3,4,5,6]. M. Caldas and S. Jafari [1] introduced the notions of $\wedge_{\delta} - R_0$ and $\wedge_{\delta} - R_1$ topological spaces as a modification of the known notions of R_0 and R_1 topological spaces. In this paper, we introduce the concepts of C_0 -spaces and C_1 -spaces and study its basic properties in closure spaces.

2. Preliminaries

A map $u : P(X) \to P(X)$ defined on the power set P(X) of a set X is called a *closure operator* on X and the pair (X, u) is called a *closure space* if the following axioms are satisfied :

- (N1) $u\emptyset = \emptyset$,
- (N2) $A \subseteq uA$ for every $A \subseteq X$,
- (N3) $A \subseteq B \Rightarrow uA \subseteq uB$ for all $A, B \subseteq X$.

A closure operator u on a set X is called *additive* (respectively, *idempotent*) if $A, B \subseteq X \Rightarrow u(A \cup B) = uA \cup uB$ (respectively, $A \subseteq X \Rightarrow uuA = uA$). A subset $A \subseteq X$ is *closed* in the closure space (X, u) if uA = A and it is *open* if its complement is closed. The empty set and the whole space are both open and closed.

A closure space (Y, v) is said to be a subspace of (X, u) if $Y \subseteq X$ and $vA = uA \cap Y$ for each subset $A \subseteq Y$. If Y is closed in (X, u), then the subspace (Y, v) of (X, u) is said to be closed too.

Let (X, u) and (Y, v) be closure spaces. A map $f: (X, u) \to (Y, v)$ is said to be *continuous* if $f(uA) \subseteq vf(A)$ for every subset $A \subseteq X$.

One can see that a map $f: (X, u) \to (Y, v)$ is continuous if and only if $uf^{-1}(B) \subseteq f^{-1}(vB)$ for every subset $B \subseteq Y$. Clearly, if $f: (X, u) \to (Y, v)$ is continuous, then $f^{-1}(F)$ is a closed subset of (X, u) for every closed subset F of (Y, v).

Let (X, u) and (Y, v) be closure spaces and let $f: (X, u) \to (Y, v)$ be a map. If f is continuous, then $f^{-1}(G)$ is an open subset of (X, u) for every open subset G of (Y, v).

Let (X, u) and (Y, v) be closure spaces. A map $f: (X, u) \to (Y, v)$ is said to be *closed* (resp. *open*) if f(F) is a closed (resp. open) subset of (Y, v)whenever F is a closed (resp. open) subset of (X, u).

The product of a family $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ of closure spaces, denoted by $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}), \text{ is the closure space } \left(\prod_{\alpha \in I} X_{\alpha}, u\right) \text{ where } \prod_{\alpha \in I} X_{\alpha} \text{ denotes the cartesian} \\ \text{product of sets } X_{\alpha}, \alpha \in I, \text{ and } u \text{ is the closure operator generated by the} \end{cases}$ projections π_{α} : $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}) \to (X_{\alpha}, u_{\alpha}), \ \alpha \in I$, i.e., is defined by $uA = \prod_{\alpha \in I} u_{\alpha} \pi_{\alpha}(A)$ for each $A \subseteq \prod_{\alpha \in I} X_{\alpha}$. The following statement is evident:

Proposition 1. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then the projection map $\pi_{\beta} : \prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}) \to (X_{\beta}, u_{\beta})$ is closed and continuous.

Proposition 2. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then F is a closed subset of (X_{β}, u_{β}) if and only if $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a

closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}).$

Proof. Let $\beta \in I$ and let F be a closed subset of (X_{β}, u_{β}) . Since π_{β} is continuous, $\pi_{\beta}^{-1}(F)$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. But $\pi_{\beta}^{-1}(F) = F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$, hence $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Conversely, let $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ be a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Since π_{β} is closed, $\pi_{\beta} \left(F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \right) = F$ is a closed subset of (X_{β}, u_{β}) .

Proposition 3. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then G is an open subset of (X_{β}, u_{β}) if and only if $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an

open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$.

Proof. Let $\beta \in I$ and let G be an open subset of (X_{β}, u_{β}) . Since π_{β} is continuous, $\pi_{\beta}^{-1}(G)$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. But $\pi_{\beta}^{-1}(G) = G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$, therefore $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Conversely, let $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ be an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Then $\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. But $\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ = $(X_{\beta} - G) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$, hence $(X_{\beta} - G) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a closed subset of (X_{β}, u_{α}) . Consequently, G is an open subset of (X_{β}, u_{β}) .

3. C_0 -Spaces and C_1 -Spaces

Definition 4. A closure space (X, u) is said to be a C_0 -space if, for every open subset G of $(X, u), x \in G$ implies $u\{x\} \subseteq G$.

Proposition 5. A closure space (X, u) is a C_0 - space if and only if, for every closed subset F of (X, u) such that $x \notin F$, $u\{x\} \cap F = \emptyset$.

Proof. Let F be a closed subset of (X, u) such that $x \notin F$. Then X - F is an open subset of (X, u) such that $x \in X - F$. Since (X, u) is a C_0 -space, $u\{x\} \subseteq X - F$. Consequently, $u\{x\} \cap F = \emptyset$.

Conversely, let G be an open subset of (X, u) and let $x \in G$. Then X - G is a closed subset of (X, u) such that $x \notin X - G$. Therefore, $u\{x\} \cap (X - G) = \emptyset$. Consequently, $u\{x\} \subseteq G$. Hence, (X, u) is a C_0 -space.

Definition 6. A closure space (X, u) is said to be a C_1 -space if, for each $x, y \in X$ such that $u\{x\} \neq u\{y\}$, there exists disjoint open subsets U and V of (X, u) such that $u\{x\} \subseteq U$ and $u\{y\} \subseteq V$.

Proposition 7. Let (X, u) be a closure space. If (X, u) is a C_1 -space, then (X, u) is a C_0 -space.

Proof. Let U be an open subset of (X, u) and let $x \in U$. If $y \notin U$, then $u\{x\} \neq u\{y\}$ because $x \notin u\{y\}$. Then there exists an open subset V_y of (X, u) such that $u\{y\} \subseteq V_y$ and $x \notin V_y$, which implies $y \notin u\{x\}$. Thus, $u\{x\} \subseteq U$. Hence, (X, u) is a C_0 -space.

The converse is not true as can be seen from the following example.

Example 8. Let $X = \{a, b, c\}$ and define a closure operator $u : P(X) \to P(X)$ on X by $u\emptyset = \emptyset$, $u\{a\} = \{a\}$, $u\{b\} = u\{c\} = \{b, c\}$ and $u\{a, b\} = u\{a, c\} = u\{b, c\} = uX = X$. Then (X, u) is a C₀-space but not a C₁-space.

Proposition 9. A closure space (X, u) is a C_1 -space if and only if, for every pair of points x, y of X such that $u\{x\} \neq u\{y\}$, there exists open subsets U and V of (X, u) such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Proof. Suppose that (X, u) is a C_1 -space. Let x, y be points of X such that $u\{x\} \neq u\{y\}$. There exists open subsets U and V of (X, u) such that $x \in u\{x\} \subseteq U$ and $y \in u\{y\} \subseteq V$.

Conversely, suppose that there exists open subsets U and V of (X, u) such that $x \in U, y \in V$ and $U \cap V = \emptyset$. Since every C_1 -space is C_0 -space, $u\{x\} \subseteq U$ and $u\{y\} \subseteq V$. This gives the statement. \Box

Proposition 10. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces. If $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$ is a C_0 -space, then (X_{α}, u_{α}) is a C_0 -space for each $\alpha \in I$.

Proof. Suppose that $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$ is a C_0 -space. Let $\beta \in I$ and let G be an open subset of (X_{β}, u_{β}) such that $x_{\beta} \in G$. Then $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$ such that $(x_{\alpha})_{\alpha \in I} \in G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$. Since $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$ is a C_0 -space, $\prod_{\alpha \in I} u_{\alpha} \pi_{\alpha}(\{(x_{\alpha})_{\alpha \in I}\}) \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$. Consequently, $u_{\beta}\{x_{\beta}\} \subseteq G$. Hence, (X_{β}, u_{β}) is a C_0 -space.

Proposition 11. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces. If (X_{α}, u_{α}) is a C_1 -space for each $\alpha \in I$, then $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$ is a C_1 -space.

Proof. Suppose that (X_{α}, u_{α}) is a C_1 -space for each $\alpha \in I$. Let $(x_{\alpha})_{\alpha \in I}$ and $(y_{\alpha})_{\alpha \in I}$ be points of $\prod_{\alpha \in I} X_{\alpha}$ such that $\prod_{\alpha \in I} u_{\alpha} \pi_{\alpha}(\{(x_{\alpha})_{\alpha \in I}\}) \neq \prod_{\alpha \in I} u_{\alpha} \pi_{\alpha}(\{(y_{\alpha})_{\alpha \in I}\})$. There exist $\beta \in I$ such that $u_{\beta}\{x_{\beta}\} \neq u_{\beta}\{y_{\beta}\}$. Since (X_{β}, u_{β}) is a C_1 -space, there exists open subsets U and V of (X_{β}, u_{β}) such that $u_{\beta}\{x_{\beta}\} \subseteq U$ and $u_{\beta}\{y_{\beta}\} \subseteq V$. Consequently,

$$\prod_{\alpha \in I} u_{\alpha} \pi_{\alpha}(\{(x_{\alpha})_{\alpha \in I}\}) \subseteq U \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}, \prod_{\alpha \in I} u_{\alpha} \pi_{\alpha}(\{(y_{\alpha})_{\alpha \in I}\}) \subseteq V \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$$

such that $U \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ and $V \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ are open subsets of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Hence, $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$ is a C_1 -space.

References

[1] M. Caldas and S. Jafari, On some low separation axioms in topological spaces, Hoston Journal of Math., 29, (2003), 93-104.

[2] E. Čech, *Topological Spaces*, Topological Papers of Eduard Čech, Academia, Prague (1968), 436-472.

[3] J. Chvalina, On homeomorphic topologies and equivalent set-systems, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII, (1976), 107-116.

[4] J. Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XVII, (1981), 81-86.

[5] L. Skula, Systeme von stetigen abbildungen, Czech. Math. J., 17, (92), (1967), 45-52.

[6] J. Šlapal, *Closure operations for digital topology*, Theoret. Comput. Sci., 305, (2003), 457-471.

Author:

Chawalit Boonpok Department of Mathematics Faculty of Science Mahasarakham University Mahasarakham 44150 Thailand email: chawalit_boonpok@hotmail.com