ON SPECIAL HYPERSURFACE OF A FINSLER SPACE WITH THE METRIC $\alpha+\frac{\beta^{n+1}}{\alpha^{n}}$

S.K. Narasimhamurthy, S.T. Aveesh, H.G. Nagaraja and Pradeep Kumar

Abstract. The purpose of the present paper is to investigate the various kinds of hypersurfaces of Finsler space with special (α, β) metric $\alpha+\frac{\beta^{n+1}}{\alpha^{n}}$ which is a generalization of the metric $\alpha+\frac{\beta^{2}}{\alpha}$ consider in [9].

2000 Mathematics Subject Classification: 53B40, 53C60.
Keywords and phrases: Special Finsler hypersurface, (α, β)-metric, Normal curvature vector, Second fundamental tensor, Hyperplane of $1^{\text {st }}$ kind, Hyperplane of $2^{\text {nd }}$ kind, Hyperplane of $3^{\text {rd }}$ kind.

1. Introduction

Let $F^{n}=\left(M^{n}, L\right)$ be an n-dimensional Finsler space, i.e., a pair consisting of an n-dimensional differential manifold M^{n} equipped with a fundamental function $L(x, y)$. The concept of the (α, β)-metric $L(\alpha, \beta)$ was introduced by M. Matsumoto [5] and has been studied by many authors ([1],[2],[8]). A Finsler metric $L(x, y)$ is called an (α, β)-metric $L(\alpha, \beta)$ if L is a positively homogeneous function of α and β of degree one, where $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M^{n}.

A hypersurface M^{n-1} of the M^{n} may be represented parametrically by the equation $x^{i}=x^{i}\left(u^{\alpha}\right), \alpha=1, \cdots, n-1$, where u^{α} are Gaussian coordinates on M^{n-1}. The following notations are also employed [3]: $B_{\alpha \beta}^{i}:=\partial^{2} x^{i} / \partial u^{\alpha} \partial u^{\beta}$, $B_{0 \beta}^{i}:=v^{\alpha} B_{\alpha \beta}^{i}, B_{\alpha \beta \ldots}^{i j \ldots}:=B_{\alpha}^{i} B_{\beta}^{j} \ldots$, If the supporting element y^{i} at a point $\left(u^{\alpha}\right)$ of M^{n-1} is assumed to be tangential to M^{n-1}, we may then write $y^{i}=B_{\alpha}^{i}(u) v_{\alpha}$, so that v^{α} is thought of as the supporting element of M^{n-1} at the point $\left(u^{\alpha}\right)$.

Since the function $\mathrm{L}(u, v):=L(x(u), y(u, v))$ gives rise to a Finsler metric of M^{n-1}, we get an ($\mathrm{n}-1$)-dimensional Finsler space $F^{n-1}=\left(M^{n-1}, \underline{\mathrm{~L}}(u, v)\right)$.

In the present paper, we consider an n-dimensional Finsler space $F^{n}=$ $\left(M^{n}, L\right)$ with (α, β)-metric $L(\alpha, \beta)=\alpha+\frac{\beta^{n+1}}{\alpha^{n}}$ and the hypersurface of F^{n} with $b_{i}(x)=\partial_{i} b$ being the gradient of a scalar function $b(x)$. We prove the conditions for this hypersurface to be a hyperplane of $1^{\text {st }}$ kind, $2^{\text {nd }}$ kind and $3^{r d}$ kind.

2. Preliminaries

Let $F^{n}=\left(M^{n}, L\right)$ be a special Finsler space with the metric

$$
\begin{equation*}
L(\alpha, \beta)=\alpha+\frac{\beta^{n+1}}{\alpha^{n}} \tag{1}
\end{equation*}
$$

The derivatives of the (1) with respect to α and β are given by

$$
\begin{aligned}
L_{\alpha} & =\frac{\alpha^{n+1}+\beta^{n+1}}{\alpha^{n}} \\
L_{\beta} & =\frac{(n+1) \beta^{n}}{\alpha^{n}} \\
L_{\alpha \alpha} & =\frac{n(n+1) \beta^{n+1}}{\alpha^{n+2}} \\
L_{\beta \beta} & =\frac{n(n+1) \beta^{n-1}}{\alpha^{n}} \\
L_{\alpha \beta} & =\frac{-n(n+1) \beta^{n}}{\alpha^{n+1}}
\end{aligned}
$$

where $L_{\alpha}=\partial L / \partial \alpha, L_{\beta}=\partial L / \partial \beta, L(\alpha, \beta)=\partial L_{\alpha} / \partial \beta, L_{\beta \beta}=\partial L_{\beta} / \partial \beta$ and $L_{\alpha \beta}=\partial L_{\alpha} / \partial \beta$.

In the special Finsler space $F^{n}=\left(M^{n}, L\right)$ the normalized element of support $l_{i}=\dot{\partial} L$ and the angular metric tensor $h_{i j}$ are given by [7]:

$$
\begin{aligned}
l_{i} & =\alpha^{-1} L_{\alpha} Y_{i}+L_{\beta} b_{i}, \\
h_{i j} & =p a_{i j}+q_{0} b_{i} b_{j}+q_{1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+q_{2} Y_{i} Y_{j},
\end{aligned}
$$

where

$$
Y_{i}=a_{i j} y^{j}
$$

$$
\begin{align*}
p & =L L_{\alpha} \alpha^{-1}=\frac{\left(\alpha^{n+1}+\beta^{n+1}\right)\left(\alpha^{n+1}-n \beta^{n+1}\right)}{\alpha^{2(n+1)}} \\
q_{0} & =L L_{\beta \beta}=\frac{n(n+1)\left(\alpha^{n+1}+\beta^{n+1}\right) \beta^{n-1}}{\alpha^{2 n}} \tag{2}\\
q_{1} & =L L_{\alpha \beta} \alpha^{-1}=\frac{-n(n+1)\left(\alpha^{n+1}+\beta^{n+1}\right) \beta^{n}}{\alpha^{2(n+1)}} \\
q_{2} & =L \alpha^{-2}\left(L_{\alpha \alpha}-L_{\alpha} \alpha^{-1}\right) \\
& =\frac{\left(\alpha^{n+1}+\beta^{n+1}\right)\left(n(n+2) \beta^{n+1}-\alpha^{n+1}\right)}{\alpha^{2(n+2)}}
\end{align*}
$$

The fundamental tensor $g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}$ and it's reciprocal tensor $g_{i j}$ is given by [7]

$$
g_{i j}=p a_{i j}+p_{0} b_{i} b_{j}+p_{1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+p_{2} Y_{i} Y_{j}
$$

where

$$
\begin{align*}
p_{0}= & q_{0}+L_{\beta}^{2}=\frac{(n+1)\left[n \alpha^{n+1} \beta^{n-1}+(2 n+1) \beta^{2 n}\right]}{\alpha^{2 n}}, \\
p_{1}= & q_{1}+L^{-1} p L_{\beta}=\frac{(n+1) \beta^{n}}{\alpha^{2(n+1)}}\left[(1-n) \alpha^{n+1}-2 n \beta^{n+1}\right] \tag{3}\\
p_{2}= & q_{2}+p^{2} L^{-2}, \\
p_{2}= & \frac{\left(\alpha^{n+1}+\beta^{n+1}\right)\left(n(n+2) \beta^{n+1}-\alpha^{n+1}\right)+\left(\alpha^{n+1}-n \beta^{n+1}\right)^{2}}{\alpha^{2(n+1)}} . \\
& g^{i j}=p^{-1} a^{i j}+S_{0} b^{i} b^{j}+S_{1}\left(b^{i} y^{j}+b^{j} y^{i}\right)+S_{2} y^{i} y^{j}, \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
& b^{i}=a^{i j} b_{j}, \quad S_{0}=\left(p p_{0}+\left(p_{0} p_{2}-p_{1}^{2}\right) \alpha^{2}\right) / \zeta, \\
& S_{1}=\left(p p_{1}+\left(p_{0} p_{2}-p_{1}^{2}\right) \beta\right) / \zeta p, \tag{5}\\
& S_{2}=\left(p p_{2}+\left(p_{0} p_{2}-p_{1}^{2}\right) b^{2}\right) / \zeta p, \quad b^{2}=a_{i j} b^{i} b^{j}, \\
& \zeta=p\left(p+p_{0} b^{2}+p_{1} \beta\right)+\left(p_{0} p_{2}-p_{1}^{2}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)
\end{align*}
$$

The $h v$-torsion tensor $C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}$ is given by [7]

$$
2 p C_{i j k}=p_{1}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\gamma_{1} m_{i} m_{j} m_{k}
$$

where

$$
\begin{equation*}
\gamma_{1}=p \frac{\partial p_{0}}{\partial \beta}-3 p_{1} q_{0}, \quad m_{i}=b_{i}-\alpha^{-2} \beta Y_{i} \tag{6}
\end{equation*}
$$

Here m_{i} is a non-vanishing covariant vector orthogonal to the element of support y^{i}.

Let $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ be the components of Christoffel symbols of the associated Riemannian space R^{n} and ∇_{k} be covariant differentiation with respect to x^{k} relative to this Christoffel symbols. We put

$$
\begin{equation*}
2 E_{i j}=b_{i j}+b_{j i}, \quad 2 F_{i j}=b_{i j}-b_{j i}, \tag{7}
\end{equation*}
$$

where $b_{i j}=\nabla_{j} b_{i}$.
Let $C \Gamma=\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, C_{j k}^{i}\right)$ be the Cartan connection of F^{n}. The difference tensor $D_{j k}^{i}=\Gamma_{j k}^{* i}-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ of the special Finsler space F^{n} is given by [4]

$$
\begin{align*}
D_{j k}^{i}= & B^{i} E_{j k}+F_{k}^{i} B_{j}+F_{j}^{i} B_{k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j} \\
& -b_{0 m} g^{i m} B_{j k}-C_{j m}^{i} A_{k}^{m}-C_{k m}^{i} A_{j}^{m}+C_{j k m} A_{s}^{m} g^{i s} \tag{8}\\
& +\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}+C_{k m}^{i} C_{s j}^{m}-C_{j k}^{m} C_{m s}^{i}\right),
\end{align*}
$$

where

$$
\begin{align*}
& B_{k}=p_{0} b_{k}+p_{1} Y_{k}, \quad B^{i}=g^{i j} B_{j}, \quad F_{i}^{k}=g^{k j} F_{j i} \\
& B_{i j}=\left\{p_{1}\left(a_{i j}-\alpha^{-2} Y_{i} Y_{j}\right)+\frac{\partial p_{0}}{\partial \beta} m_{i} m_{j}\right\} / 2, \\
& B_{i}^{k}=g^{k j} B_{j i}, \tag{9}\\
& A_{k}^{m}=b_{k}^{m} E_{00}+B^{m} E_{k 0}+B_{k} F_{0}^{m}+B_{0} F_{k}^{m}, \\
& \lambda^{m}=B^{m} E_{00}+2 B_{0} F_{0}^{m}, \quad B_{0}=B_{i} y^{i} .
\end{align*}
$$

where ' 0 ' denote contraction with y^{i} except for the quantities p_{0}, q_{0} and S_{0}.

3. Induced Cartan connection

Let F^{n-1} be a hypersurface of F^{n} given by the equations $x^{i}=x^{i}\left(u^{\alpha}\right)$. The element of support y^{i} of F^{n} is to be taken tangential to F^{n-1}, that is

$$
\begin{equation*}
y^{i}=B_{\alpha}^{i}(u) v^{\alpha} . \tag{10}
\end{equation*}
$$

The metric tensor $g_{\alpha \beta}$ and v-torsion tensor $C_{\alpha \beta \gamma}$ of F^{n-1} are given by

$$
g_{\alpha \beta}=g_{i j} B_{\alpha}^{i} B_{\beta}^{j}, \quad C_{\alpha \beta \gamma}=C_{i j k} B_{\alpha}^{i} B_{\beta}^{j} B_{\gamma}^{k} .
$$

At each point u^{α} of F^{n-1}, a unit normal vector $N^{i}(u, v)$ is defined by

$$
g_{i j}(x(u, v), y(u, v)) B_{\alpha}^{i} N^{j}=0, \quad g_{i j}(x(u, v), y(u, v)) N^{i} N^{j}=1 .
$$

As for the angular metric tensor $h_{i j}$, we have

$$
\begin{equation*}
h_{\alpha \beta}=h_{i j} B_{\alpha}^{i} B_{\beta}^{j}, \quad h_{i j} B_{\alpha}^{i} N^{j}=0 \quad h_{i j} N^{i} N^{j}=1 . \tag{11}
\end{equation*}
$$

If $\left(B_{i}^{\alpha}, N_{i}\right)$ denote the inverse of $\left(B_{\alpha}^{i}, N^{i}\right)$, then we have

$$
\begin{aligned}
& B_{i}^{\alpha}=g^{\alpha \beta} g_{i j} B_{\beta}^{j}, \quad B_{\alpha}^{i} B_{i}^{\beta}=\delta_{\alpha}^{\beta}, \\
& B_{i}^{\alpha} N^{i}=0, \quad B_{\alpha}^{i} N_{i}=0, \quad N_{i}=g_{i j} N^{j}, \\
& B_{i}^{k}=g^{k j} B_{j i}, \\
& B_{\alpha}^{i} B_{j}^{\alpha}+N^{i} N_{j}=\delta_{j}^{i} .
\end{aligned}
$$

The induced connection $I C \Gamma=\left(\Gamma_{\beta \gamma}^{* \alpha}, G_{\beta}^{\alpha}, C_{\beta \gamma}^{\alpha}\right)$ of F^{n-1} induced from the Cartan's connection $\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, C_{j k}^{i}\right)$ is given by [6]

$$
\begin{aligned}
\Gamma_{\beta \gamma}^{* \alpha} & =B_{i}^{\alpha}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta}^{\alpha} H_{\gamma}, \\
G_{\beta}^{\alpha} & =B_{i}^{\alpha}\left(B_{0 \beta}^{i}+\Gamma_{0 j}^{* i} B_{\beta}^{j}\right), \\
C_{\beta \gamma}^{\alpha} & =B_{i}^{\alpha} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{\alpha},
\end{aligned}
$$

where

$$
\begin{align*}
M_{\beta \gamma} & =N_{i} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}, \quad M_{\beta}^{\alpha}=g^{\alpha \gamma} M_{\beta \gamma} \tag{12}\\
H_{\beta} & =N_{i}\left(B_{0 \beta}^{i}+\Gamma_{o j}^{* i} B_{\beta}^{j}\right),
\end{align*}
$$

and $B_{\beta \gamma}^{i}=\partial B_{\beta}^{i} / \partial U^{r}, B_{0 \beta}^{i}=B_{\alpha \beta}^{i} v^{\alpha}$. The quantities $M_{\beta \gamma}$ and H_{β} are called the second fundamental v-tensor and normal curvature vector respectively [6]. The second fundamental h-tensor $H_{\beta \gamma}$ is defined as [6]

$$
\begin{equation*}
H_{\beta \gamma}=N_{i}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta} H_{\gamma}, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\beta}=N_{i} C_{j k}^{i} B_{\beta}^{j} N^{k} . \tag{14}
\end{equation*}
$$

The relative h and v-covariant derivatives of projection factor B_{α}^{i} with respect to $I C \Gamma$ are given by

$$
\begin{equation*}
B_{\alpha \mid \beta}^{i}=H_{\alpha \beta} N^{i},\left.\quad B_{\alpha}^{i}\right|_{\beta}=M_{\alpha \beta} N^{i} . \tag{15}
\end{equation*}
$$

The equation (13) shows that $H_{\beta \gamma}$ is generally not symmetric and

$$
\begin{equation*}
H_{\beta \gamma}-H_{\gamma \beta}=M_{\beta} H_{\gamma}-M_{\gamma} H_{\beta} . \tag{16}
\end{equation*}
$$

The above equations yield

$$
\begin{equation*}
H_{0 \gamma}=H_{\gamma}, \quad H_{\gamma 0}=H_{\gamma}+M_{\gamma} H_{0} \tag{17}
\end{equation*}
$$

We use following lemmas which are due to Matsumoto [6]:
Lemma 1 The normal curvature $H_{0}=H_{\beta} v^{\beta}$ vanishes if and only if the normal curvature vector H_{β} vanishes.

Lemma $2 A$ hypersurface F^{n-1} is a hyperplane of the $1^{\text {st }}$ kind if and only if $H_{\alpha}=0$.

Lemma 3 A hypersurface F^{n-1} is a hyperplane of the $2^{\text {nd }}$ kind with respect to the connection $C \Gamma$ if and only if $H_{\alpha}=0$ and $H_{\alpha \beta}=0$.

Lemma $4 A$ hyperplane of the $3^{\text {rd }}$ kind is characterized by $H_{\alpha \beta}=0$ and $M_{\alpha \beta}=0$.

4. Hypersurface $F^{n-1}(c)$ of the special Finsler space

Let us consider special Finsler metric $L=\alpha+\frac{\beta^{n+1}}{\alpha^{n}}$ with a gradient $b_{i}(x)=$ $\partial_{i} b$ for a scalar function $b(x)$ and a hypersurface $F^{n-1}(c)$ given by the equation $b(x)=c($ constant $)[9]$.
From parametric equations $x^{i}=x^{i}\left(u^{\alpha}\right)$ of $F^{n-1}(c)$, we get $\partial_{\alpha} b(x(u))=0=$ $b_{i} B_{\alpha}^{i}$, so that $b_{i}(x)$ are regarded as covariant components of a normal vector field of $F^{n-1}(c)$. Therefore, along the $F^{n-1}(c)$ we have

$$
\begin{equation*}
b_{i} B_{\alpha}^{i}=0 \quad \text { and } \quad b_{i} y^{i}=0 \tag{18}
\end{equation*}
$$

The induced metric $L(u, v)$ of $F^{n-1}(c)$ is given by

$$
\begin{equation*}
L(u, v)=a_{\alpha \beta} v^{\alpha} v^{\beta}, \quad a_{\alpha \beta}=a_{i j} B_{\alpha}^{i} B_{\beta}^{j} \tag{19}
\end{equation*}
$$

which is the Riemannian metric.
At a point of $F^{n-1}(c)$, from (2), (3) and (5), we have

$$
\begin{align*}
& p=1, \quad q_{0}=0, \quad q_{1}=0, \quad q_{2}=-\alpha^{-2}, \quad p_{0}=0, \quad p_{1}=0 \tag{20}\\
& p_{2}=0, \quad \zeta=1, \quad S_{0}=0, \quad S_{1}=0, \quad S_{2}=0 .
\end{align*}
$$

Therefore, from (4) we get

$$
\begin{equation*}
g^{i j}=a^{i j} . \tag{21}
\end{equation*}
$$

Thus along $F^{n-1}(c),(21)$ and (18) lead to $g^{i j} b_{i} b_{j}=b^{2}$.
Therefore, we get

$$
\begin{equation*}
b_{i}(x(u))=\sqrt{b^{2}} N_{i}, \quad b^{2}=a^{i j} b_{i} b_{j} . \tag{22}
\end{equation*}
$$

i.e., $b_{i}(x(u))=b N_{i}$, where b is the length of the vector b^{i}.

Again from (21) and (22) we get

$$
\begin{equation*}
b^{i}=b N_{i} . \tag{23}
\end{equation*}
$$

Thus we have
Theorem 1 In the special Finsler hypersurface $F^{n-1}(c)$, the induced metric is a Riemannian metric given by (19) and the scalar function $b(x)$ is given by (22) and (23).

The angular metric tensor and metric tensor of F^{n} are given by

$$
\begin{align*}
h_{i j} & =a_{i j}-\frac{Y_{i} Y_{j}}{\alpha^{2}}, \tag{24}\\
g_{i j} & =a_{i j} .
\end{align*}
$$

Form (18), (24) and (11) it follows that if $h_{\alpha \beta}^{(a)}$ denote the angular metric tensor of the Riemannian $a_{i j}(x)$, then along $F^{n-1}(c), h_{\alpha \beta}=h_{\alpha \beta}^{(a)}$. From (3), we get

$$
\frac{\partial p_{0}}{\partial \beta}=\frac{(n+1)\left[n(n-1) \alpha^{n+1} \beta^{n-2}+2 n(2 n+1) \beta^{2 n-1}\right]}{\alpha^{2 n}}
$$

Thus along $F^{n-1}(c), \frac{\partial p_{0}}{\partial \beta}=0$ and therefore (6) gives $\gamma_{1}=0, m_{i}=b_{i}$. Therefore the $h v$-torsion tensor becomes

$$
\begin{equation*}
C_{i j k}=0 \tag{25}
\end{equation*}
$$

in a special Finsler hypersurface $F^{n-1}(c)$.
Therefore, (12), (14) and (25) give

$$
\begin{equation*}
M_{\alpha \beta}=0 \text { and } M_{\alpha}=0 \tag{26}
\end{equation*}
$$

From (16) it follows that $H_{\alpha \beta}$ is symmetric. Thus we have
Theorem 2 The second fundamental v-tensor of special Finsler hypersurface $F^{n-1}(c)$ vanishes and the second fundamental h-tensor $H_{\alpha \beta}$ is symmetric.

Next from (18), we get $b_{i \mid \beta} B_{\alpha}^{i}+b_{i} B_{\alpha \mid \beta}^{i}=0$. Therefore, from (15) and using $b_{i \mid \beta}=b_{i \mid j} B_{\beta}^{j}+\left.b_{i}\right|_{j} N^{j} H_{\beta}$, we get

$$
\begin{equation*}
b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}+\left.b_{i}\right|_{j} B_{\alpha}^{i} N^{j} H_{\beta}+b_{i} H_{\alpha \beta} N^{i}=0 . \tag{27}
\end{equation*}
$$

Since $\left.b_{i}\right|_{j}=-b_{h} C_{i j}^{h}$, we get

$$
\left.b_{i}\right|_{j} B_{\alpha}^{i} N^{j}=0
$$

Thus (27) gives

$$
\begin{equation*}
b H_{\alpha \beta}+b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}=0 . \tag{28}
\end{equation*}
$$

It is noted that $b_{i \mid j}$ is symmetric. Furthermore, contracting (28) with v^{β} and then with v^{α} and using (10), (17) and (26) we get

$$
\begin{array}{r}
b H_{\alpha}+b_{i \mid j} B_{\alpha}^{i} y^{j}=0 \\
b H_{0}+b_{i \mid j} y^{i} y^{j}=0 . \tag{30}
\end{array}
$$

In view of Lemmas (1) and (2), the hypersurface $F^{n-1}(c)$ is hyperplane of the first kind if and only if $H_{0}=0$. Thus from (30) it follows that $F^{n-1}(c)$ is a hyperplane of the first kind if and only if $b_{i \mid j} y^{i} y^{j}=0$. Here $b_{i \mid j}$ being the covariant derivative with respect to $C \Gamma$ of F^{n} depends on y^{i}.
Since b_{i} is a gradient vector, from (7) we have $E_{i j}=b_{i j}, F_{i j}=0$ and $F_{j}^{i}=0$. Thus (8) reduces to

$$
\begin{align*}
D_{j k}^{i}= & B^{i} b_{j k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j}-b_{0 m} g^{i m} B_{j k} \\
& -C_{j m}^{i} A_{k}^{m}-C_{k m}^{i} A_{j}^{m}+C_{j k m} A_{s}^{m} g^{i s} \tag{31}\\
& +\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}+C_{k m}^{i} C_{s j}^{m}-C_{j k}^{m} C_{m s}^{i}\right) .
\end{align*}
$$

In view of (20) and (21), the relations in (9) become to

$$
\begin{align*}
& B_{i}=0, \quad B^{i}=0, \quad B_{i j}=0 \tag{32}\\
& B_{j}^{i}=0, \quad A_{k}^{m}=0, \quad \lambda^{m}=0
\end{align*}
$$

By virtue of (32) we have $B_{0}^{i}=0, B_{i 0}=0$ which leads $A_{0}^{m}=0$.
Therefore we have

$$
\begin{aligned}
D_{j 0}^{i} & =0 \\
D_{00}^{i} & =0 .
\end{aligned}
$$

Thus from the relation (18), we get

$$
\begin{align*}
b_{i} D_{j 0}^{i} & =0 \tag{33}\\
b_{i} D_{00}^{i} & =0 \tag{34}
\end{align*}
$$

From (25) it follows that

$$
b^{m} b_{i} C_{j m}^{i} B_{\alpha}^{j}=b^{2} M_{\alpha}=0 .
$$

Therefore, the relation $b_{i \mid j}=b_{i j}-b_{r} D_{i j}^{r}$ and equations (33), (34) give

$$
b_{i \mid j} y^{i} y^{j}=b_{00} .
$$

Consequently, (29) and (30) may be written as

$$
\begin{aligned}
& b H_{\alpha}+b_{i \mid 0} B_{\alpha}^{i}=0, \\
& b H_{0}+b_{00}=0 .
\end{aligned}
$$

Thus the condition $H_{0}=0$ is equivalent to $b_{00}=0$, where $b_{i j}$ does not depend on y^{i}. Since y^{i} is to satisfy (18), the condition is written as $b_{i j} y^{i} y^{j}=$ $\left(b_{i} y^{i}\right)\left(c_{j} y^{j}\right)$ for some $c_{j}(x)$, so that we have

$$
\begin{equation*}
2 b_{i j}=b_{i} c_{j}+b_{j} c_{i} . \tag{35}
\end{equation*}
$$

Thus we have
Theorem 3 The special Finsler hypersurface $F^{n-1}(c)$ is hyperplane of $1^{\text {st }}$ kind if and only if (35) holds.

Using (25), (31) and (32), we have $b_{r} D_{i j}^{r}=0$. Substituting (35) in (28) and using (18), we get

$$
\begin{equation*}
H_{\alpha \beta}=0 \tag{36}
\end{equation*}
$$

Thus, from Lemmas (1), (2) (3) and Theorem 3, we have the following:
Theorem 4 If the special Finsler hypersurface $F^{n-1}(c)$ is a hyperplane of the $1^{\text {st }}$ kind then it becomes a hyperplane of the $2^{\text {nd }}$ kind too.

Hence from (17), (36), Theorem 2, and Lemma (4) we have
Theorem 5 The special Finsler hypersurface $F^{n-1}(c)$ is a hyperplane of the $3^{\text {rd }}$ kind if and only if it is a hyperplane of $1^{\text {st }}$ kind.

References

[1] M. Hashiguchi and Y. Ichijyo, On some special (α, β)-metrics, Rep. Fac. Sci. Kagasima Univ. (Math., Phys., Chem.), 8 (1975), 39-46.
[2] S. Kikuchi, On the condition that a space with (α, β)-metric be locally Minkowskian, Tensor, N.S., 33 (1979), 242-246.
[3] M. Kitayama, On Finslerian hypersurfaces given by β change, Balkan J. of Geometry and its Applications, 7(2002), 49-55.
[4] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha press, Saikawa, Otsu, Japan, 1986.
[5] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys., 30(1991), 15-20.
[6] M. Matsumoto, The induced and intrinsic Finsler connection of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ., 25(1985), 107-144.
[7] G. Randres, On an asymmetrical metric in the four-apace of general relativity, Phys. Rev., 59(2)(1941), 195-199.
[8] C. Shibata, On Finsler spaces whih an (α, β)-metric, J. Hokkaido Univ. of Education, IIA 35(1984), 1-16.
[9] Il-Yong Lee, Ha-Yong Park and Yong-Duk Lee, On a hypersurface of a special Finsler space with a metric $\alpha+\frac{\beta^{2}}{\alpha}$, Korean J. Math. Sciences, 8(1)(2001), 93-101.

Authors:

S.K. Narasimhamurthy, S.T. Aveesh and Pradeep Kumar

Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta - 577451, Shimoga, Karnataka, India. email: nmurthysk@gmail.com, aveeshst@gmail.com, pradeepget@gmail.com.
H.G. Nagaraja

Department of Mathematics, Bangalore University, Central College Campus, Bangalore - 577451,
Karnataka, India.
email: nagaraj@bub.ernet.in.

