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Abstract. In this work, we describe a spectral method coupled with a
variational decomposition technique for solving a biharmonic equations. We
construct new spaces. Using one approximation by a spectral method we can
bring the resolution of Dirichlet problem for ∆2 to a finite number of Dirichlet
approach for -∆. Some new theoretic spectral approaches are given, numerical
solutions and illustrations are established to prove our theoretic study.
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1. Introduction

Let Ω be a bounded domain of Rd (d = 1, 2, 3 in practice) of smooth bound-
ary Fr(Ω). We consider the following problem:

(DP )


∆2u = f in Ω,

u = g1 on Fr(Ω) ;

∂u
∂η

= g2 on Fr(Ω) ,

where ∆2 = ∆(∆) is the biharmonic operator. The reduction of boundary
problems to equivalent problems is doing by several theoretic methods. We
are interested in this work to one direct method based on the Green formula.
This approach is used with success, by several authors, to resolve mathematical
modelling problems.
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The solution of biharmonic problem (DP ) is studied by some authors and
by several methods, so by finite difference methods, finite element methods
and duality ...

J.W. McLaurin ([5], 1974) has given a decomposition technique for the
problem (DP ). He has proved that a solution of this problem by finite differ-
ence methods is equivalent to resolve a sequence of Dirichlet problems for the
operator ∆.

R. Glowinski and O. Pironneau ([4], 1977) have, only, established this de-
composition method using the finite element methods correspondent to same
problem on a domain of R2. They have proved that a solution of this problem
by this method is equivalent, also, to resolve a sequence of Dirichlet problems
for the operator ∆ and have given the error estimate:

‖u− uh‖H1(Ω) + ‖∆u+ ϕh‖L2(Ω) =©(hk−1).

Our work consists to give a spectral approach to this problem and estimate
the error theoretically on new space. We illustrate our numerical approach by
numerical tests on some examples.

Indeed, if we resolve the biharmonic problem by spectral method based
on the direct variational formulation, then we can give as advantage of this
method the following :

i) we store one convergent approximation of the solution u in norm ‖.‖H1(Ω)

in place of the norm ‖.‖H2(Ω) ;
ii) We obtain a convergent approximation ϕN of −∆u.
However, we will think that, in spite of the simplicity of the space VN , the

practice problem is to compute (uN , ϕN).
The basic idea in this case, consists to introduce a space MN ⊂ VN of

multipliers such that
VN = V 0

N ⊕MN

where
V 0
N = {vN ∈ VN : vN = 0 on Fr(Ω)}

In this paper, we prove that a resolution of Dirichlet problem for biharmonic
operator by Galerkin spectral method is equivalent to resolve a sequence of
Dirichlet problems for operator ∆ by the same method, and to resolve well
conditioned linear system. We prove some results of convergence which are
effecient and improve previously obtained results. We illustrate these results
by numerical trials.
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2. A Continuous Problem

Let Ω be a bounded domain of Rd (d = 1, 2, 3 in practice) with smooth
boundary Fr(Ω). Define the following problem:

(DP )


∆2u = f in Ω,

u = g1 on Fr(Ω),

∂u
∂η

= g2 on Fr(Ω),

where g1, g2 and f are given functions. This problem is equivalent to find
(u,w) such that

(EP )



−∆w = f in Ω,

−∆u = w on Ω,

u = g1 on Fr(Ω),

∂u
∂η

= g2 on Fr(Ω).

We prove that if f ∈ L2(Ω), g1 ∈ H
3
2 (Fr(Ω)) and g2 ∈ H

1
2 (Fr(Ω)) then (DP )

has one and only one solution in H2(Ω).
Theorem 1. [4] For all reals 0 ≤ ν ≤ µ we have

‖u‖Hµ(Ω) ≤ cN2(µ−ν) ‖u‖Hν(Ω) , ∀u ∈ V d
N(Ω).

Theorem 2. [5] Define the space W 0 as follows:

W 0 =
{
(v, ψ) ∈ H1

0 (Ω)× L2(Ω), ∀µ ∈ H1(Ω), S((v, ψ), µ) = 0
}
,

where

S((v, ψ), µ) =

∫
Ω

∇v∇µ dx −
∫

Ω

ψµdx.

Then, a mapping : (v, ψ) ∈ W 0 → ‖ψ‖L2(Ω) is a norm on W 0 equivalent to the
norm:

(v, ψ) ∈ W 0 → (|v|2H1(Ω) + ‖ψ‖2L2(Ω))
1/2.
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Further
W 0 =

{
(v, ψ) ∈ H2

0 (Ω)× L2(Ω), −∆v = ψ
}
.

We have
Theorem 3. [6] Let λ ∈ H− 1

2 (Fr(Ω)). The problem
∆2u = 0 in Ω,

−∆u = λ on Fr(Ω),

u = 0 on Fr(Ω),

(1)

has one and only one solution in H2(Ω)∩H1
0 (Ω), and the linear operator A

defined by

Aλ = −∂u
∂η

on Fr(Ω)

is an isomorphism from H− 1
2 (Fr(Ω)) into H

1
2 (Fr(Ω)). Also, the bilinear form

a(., .) defined by
a(λ, µ) =< Aλ, µ >

where < ., . > is the bilinear form of duality between H− 1
2 (Fr(Ω)) and H

1
2 (Fr(Ω)),

is continuous, symmetric and H− 1
2 (Fr(Ω))-elliptic. Namely there exist an

α > 0 such that

a(µ, µ) ≥ α ‖µ‖2
H− 1

2 (Fr(Ω))
, ∀µ ∈ H− 1

2 (Fr(Ω)).

We will reduce the (DP ) problem to a variational equation in H− 1
2 (Fr(Ω)).

Indeed, let w0 and u0 be solutions of
−∆w0 = f in Ω,

w0 = 0 on Fr(Ω);
(2)


−∆u0 = w0 in Ω,

u0 = g1 on Fr(Ω).
(3)

We have then
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Theorem 4. [4] Let u be a solution of (DP ). The trace λ of −∆u on
Fr(Ω) is an unique solution of variational equation

< Aλ, µ >=<
∂u0

∂η
− g2, µ > , ∀µ ∈ H− 1

2 (Fr(Ω)), λ ∈ H− 1
2 (Fr(Ω)).

Remark 1. To determine ∂u0

∂η
we resolve two Dirichlet problems (2), (3), and

we resolve more again two Dirichlet problems to obtain the couple (u, w).

3. Main Results

3.1. Approximation of (DP ) by Spectral Method
We consider the following finite dimension space:

VN = Span {L0, L1, ..., LN}

where Lk(x) are Legendre polynomials. Let

V 0
N =

{
vN ∈ VN : vN|Fr(Ω)

= 0
}

and letMN ⊂ VN be such that VN = V 0
N ⊕MN . We introduce the following

spaces :

WN =


(vN , ψN) ∈ VN × VN , vN|Fr(Ω)

= g1, and∫
Ω
∇vN∇µN dx =

∫
Ω
ψNµN dx+

∫
Fr(Ω)

g2µN dσ, ∀µN ∈ VN

 ;

W 0
N =

{
(vN , ψN) ∈ V 0

N × VN ,
∫

Ω

∇vN∇µN dx −
∫

Ω

ψNµN dx = 0 , ∀µN ∈ VN
}
.

3.1.1. Choice of V 0
N and Appropriate Basis for Galerkin Method

If we have a nonhomogenous Dirichlet problem associated to the operator
(∆) and posed on the space VN , we can define one transformation for which
this problem will be equivalent to one posed homogenous problem on V 0

N .
The Galerkin approach consists plainly to replace the test functions space

by polynomials space.
The effectiveness of numerical method to resolve the linear system Au = F

wich has been given in the abstract form will be subordinate to :
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i) the way from which space V 0
N(Ω) approaches the space V ;

ii) steepness and the simpleness calculus of coefficients aij and Fj;

iii) steepness to resolve a linear system Au = F.

To satisfy the 1st criterion i), we will consider the space V 0
N(Ω) of

enough large dimension.

To satisfy the 2nd and 3rd critera ii) and iii), it will require obtain
one sufficiently deep matrix A such that the linear system Au = F
does not enough at cost (in time and required space machine), and
such that there are not coefficients aij to compute.

What is to be done in the choice of a basis of V 0
N(Ω) such that the

linear system to resolve will be possible ?

To answer this question, we need the following lemma :
Lemma 1. [6] Put

ck = 1√
4k+6

, φk(x) = ck(Lk(x)− Lk+2(x))

ajk = (φ
′

k(x), φ
′
j(x)) , bjk = (φk(x), φj(x)), k, j = 0, 1, ..., N − 2.

Then,

ajk =


1 if k = j,

0 if k 6= j,

bkj = bjk =


ck cj ( 2

2j+1
+ 2

2j+5
), if k = j,

−ck cj, if k = j + 2,

0 else,

and
V 0
N(I) = Span {φ0(x), φ1(x), ..., φN−2(x)} ,

where (., .) is an L2-inner product.

3.1.2. Choice of MN

We selectMN ⊂ VN such that VN = V 0
N ⊕MN , where

V 0
N = Span {φ0, φ1, ..., φN−2} .
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Let φ−1, φN−1 be two functions such that φ−1, φN−1 ∈ VN and φ−1,φ0,
φ1, ..., φN−2, φN−1 are linearly independent.

Proposition 1. For d = 1, the space MN is given by

MN = Span {φ−1(x), φN−1(x)} .

For d = 2, the space MN is given by

MN = Span


φ−1(x)φj(y), φN−1(x)φj(y), − 1 ≤ j ≤ N − 1

φi(x)φ−1(y), φi(x)φN−1(y), 0 ≤ i ≤ N − 2

 .

For d = 3, the space MN is given by

MN = Span



φi(x)φj(y)φ−1(z), φi(x)φj(y)φN−1(z), −1 ≤ i, j ≤ N − 1;

φi(x)φ−1(y)φk(z), φi(x)φN−1(y)φk(z), −1 ≤ i ≤ N − 1,
0 ≤ k ≤ N − 2;

φ−1(x)φj(y)φk(z), φN−1(x)φj(y)φk(z), 0 ≤ j, k ≤ N − 2


.

Remark 2. The choice of functions φ−1, φN−1 is not unique, then the
choice of space MN is not unique.

Now, we give some choices of φ−1, φN−1:

Remark 3. i) φ−1 = L0, φN−1 = L1

ii) φ−1 = L0, φN−1 = LN−1 − L1

iii) φ−1 = L1 − L0, φN−1 = LN−1.
Numerical tests are proofs to the good choice.
We approache then (DP ) by

(DP )N


Find (uN , ϕN) ∈ WN such that

jN(uN , ϕN) ≤ jN(vN , ψN ), ∀(vN , ψN) ∈ WN ,

where

jN(vN , ψN) =
1

2

∫
Ω

|ψN |2 dx −
∫

Ω

fvN dx.

This problem has one and only one solution.
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4. Convergence Results

Consider the following problem:

(DP )0


∆2u = g in Ω,

u = 0 on Fr(Ω),

∂u
∂η

= 0 on Fr(Ω),

which is equivalent to the following optimization problem:

(DP )1


Find u ∈ H2

0 (Ω) such that

J0(u) ≤ J0(v), ∀v ∈ H2
0 (Ω),

where

J0(v) =
1

2

∫
Ω

|∆v|2 dx −
∫

Ω

gvdx.

Now, we prove some results of convergence.
Lemma 2. Let u be a solution of problem (DP )0. Then there exist a

constant c > 0 independent of N such that

|u− uN |H1(Ω) + ‖∆u+ ϕN‖L2(Ω) ≤ c( inf
(vN , ψN )∈W 0

N

(|u− vN |H1(Ω) + ‖∆u+ ψN‖L2(Ω))

+ inf
µN∈VN

‖∆u+ µN‖H1(Ω)).

Proof. Let u be a solution of problem (DP )0, then

−
∫

Ω

∇v∇ (∆u) dx =

∫
Ω

∆u∆vdx =

∫
Ω

gvdx, ∀v ∈ D(Ω)

but D(Ω) is dense in H1
0 (Ω), then

−
∫

Ω

∇v∇(∆u)dx =

∫
Ω

gvdx, ∀v ∈ H1
0 (Ω).

We have

S((v, ψ), µ) =

∫
Ω

∇v∇µdx −
∫

Ω

ψµdx,
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and

S((v, ψ),−∆u) = −
∫

Ω

∇v∇(∆u)dx +

∫
Ω

ψ∆udx =

∫
Ω

gvdx +

∫
Ω

ψ∆udx.

Let (vN , ψN) ∈ W 0
N and µN ∈ VN , then

S((uN − vN , ϕN − ψN),∆u+ µN) =
∫

Ω
∇(uN − vN)∇(∆u+ µN)dx

−
∫

Ω
(ϕN − ψN)(∆u+ µN)dx

= S((uN − vN , ϕN − ψN), ∆u) + S((uN − vN , ϕN − ψN), µN)

= −
∫

Ω
g(uN − vN)dx −

∫
Ω
(ϕN − ψN)∆udx

+
∫

Ω
∇(uN − vN)∇µNdx −

∫
Ω
(ϕN − ψN)µNdx

= −
∫

Ω
(ϕN − ψN)∆udx −

∫
Ω
guNdx +

∫
Ω
gvNdx

+
∫

Ω
∇uN∇µNdx−

∫
Ω
∇vN∇µNdx −

∫
Ω
ϕNµNdx+

∫
Ω
ψNµNdx.

Or ∫
Ω

∇uN∇µNdx =

∫
Ω

ϕNµNdx and

∫
Ω

ϕNψNdx =

∫
Ω

gvNdx,

then ∫
Ω

(ϕN − ψN)(∆u+ ϕN)dx = −S((uN − vN , ϕN − ψN), ∆u+ µN)

By continuity of S ((., .) , .) , we have∣∣∫
Ω
(ϕN − ψN)(∆u+ ϕN)dx

∣∣ ≤ c(|uN − vN |H1(Ω) ‖∆u+ µN‖H1(Ω)

+ ‖ϕN − ψN‖L2(Ω) ‖∆u+ µN‖H1(Ω))

Using Theorem 2, it holds,

|v|H1(Ω) ≤ c(Ω) ‖ψ‖L2(Ω)
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and∣∣∫
Ω
(ϕN − ψN)(∆u+ ϕN)dx

∣∣ ≤ c(c(Ω) ‖ϕN − ψN‖L2(Ω) ‖∆u+ µN‖H1(Ω)

+ ‖ϕN − ψN‖L2(Ω) ‖∆u+ µN‖H1(Ω))

≤ d(Ω) ‖ϕN − ψN‖L2(Ω) ‖∆u+ µN‖H1(Ω) ,

where d(Ω) = max(cc(Ω), c). Thus

‖ϕN − ψN‖2L2(Ω) =
∫

Ω
(ϕN − ψN)(∆u+ ϕN)dx −

∫
Ω
(ϕN − ψN)(∆u+ ψN)dx

‖ϕN − ψN‖2L2(Ω) ≤ d(Ω) ‖ϕN − ψN‖L2(Ω) ‖∆u+ µN‖H1(Ω)

+ ‖ϕN − ψN‖L2(Ω) ‖∆u+ ψN‖L2(Ω) .

It holds that

‖ϕN − ψN‖L2(Ω) ≤ d(Ω) ‖∆u+ µN‖H1(Ω) + ‖∆u+ ψN‖L2(Ω) (4)

and

|u− uN |H1(Ω) + ‖∆u+ ϕN‖L2(Ω) ≤ |u− vN |H1(Ω) + |vN − uN |H1(Ω)

+ ‖∆u+ ψN‖L2(Ω) + ‖ϕN − ψN‖L2(Ω)

≤ |u− vN |H1(Ω) + ‖∆u+ ψN‖L2(Ω) + (1 + c(Ω)) ‖ϕN − ψN‖L2(Ω) .

Using inequality (4), we obtain

|u− uN |H1(Ω) + ‖∆u+ ϕN‖L2(Ω) ≤ (|u− vN |H1(Ω) + ‖∆u+ ψN‖L2(Ω)

+(1 + c(Ω))) · (d(Ω) ‖∆u+ µN‖H1(Ω) + ‖∆u+ ψN‖L2(Ω)),

hence

|u− uN |H1(Ω) + ‖∆u+ ϕN‖L2(Ω) ≤ |u− vN |H1(Ω) + (2 + c(Ω)) ‖∆u+ ψN‖L2(Ω)

+(1 + c(Ω))d(Ω) ‖∆u+ µN‖H1(Ω)

≤ c∗(|u− vN |H1(Ω) + ‖∆u+ ψN‖L2(Ω) + ‖∆u+ µN‖H1(Ω)),
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where
c∗ = max(2 + c(Ω), (1 + c(Ω))d(Ω)).

Therefore, it holds

|u− uN |H1(Ω) + ‖∆u+ ϕN‖L2(Ω) ≤ c∗( inf
(vN ,ψN )∈W 0

N

(|u− vN |H1(Ω) + ‖∆u+ ψN‖L2(Ω))

+ inf
µN∈VN

‖∆u+ µN‖H1(Ω)).

Lemma 3. Let u ∈ H2(Ω) be a solution of optimization problem (DP )0.
If u ∈ Hk+2(Ω), k ≥ 2, then there exist a constant c > 0 independent of N
such that

|u− uN |H1(Ω) + ‖∆u+ ϕN‖L2(Ω) ≤ cN1−k(|u|Hk+2(Ω) + |∆u|Hk(Ω))

Proof. Let (vN , ψN) ∈ W 0
N and µN ∈ VN . Put

νN = µN + ψN , νN ∈ VN .

Then, we have
S((vN , ψN), νN) = 0, (5)∫

Ω

∆uνN dx = −
∫

Ω

∇u∇νN dx +

∫
Fr(Ω)

∂u

∂η
νN dσ

Or
∂u

∂η
|Fr(Ω)= 0, so one has∫

Ω

∆uνNdx = −
∫

Ω

∇u∇νNdx. (6)

By (5) and (6), we have∫
Ω

(∆u+ ψN)νN dx =

∫
Ω

∇(vN − u)∇νN dx∣∣∣∣∫
Ω

(∆u+ ψN)νN dx

∣∣∣∣ ≤ |u− vN |H1(Ω) |νN |H1(Ω) .

By Theorem 1, we obtain

|νN |H1(Ω) ≤ cN2 ‖νN‖L2(Ω)
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so ∣∣∣∣∫
Ω

(∆u+ ψN)νN dx

∣∣∣∣ ≤ cN2 |u− vN |H1(Ω) ‖νN‖L2(Ω)

And

‖νN‖2L2(Ω) =
∫

Ω
(µN −∆u)νN dx+

∫
Ω
(∆u+ ψN)νN dx

≤ ‖∆u− µN‖L2(Ω) ‖νN‖L2(Ω) + cN2 |u− vN |H1(Ω) ‖νN‖L2(Ω)

⇒ ‖νN‖L2(Ω) ≤ ‖∆u− µN‖L2(Ω) + cN2 |u− vN |H1(Ω).

Hence

‖∆u+ ψN‖L2(Ω) = ‖∆u+ νN − µN‖L2(Ω)

≤ ‖∆u− µN‖L2(Ω) + ‖νN‖L2(Ω) ≤ 2 ‖∆u− µN‖L2(Ω) + cN2 |u− vN |H1(Ω) .

Then

|u− vN |H1(Ω) + ‖∆u+ ψN‖L2(Ω) ≤ (1 + cN2) |u− vN |H1(Ω) + 2 ‖∆u− µN‖L2(Ω) ,

∀ (vN , ψN) ∈ W 0
N , ∀µN ∈ VN .

Thus

inf
(vN ,ψN )∈W 0

N

(|u− vN |H1(Ω) + ‖∆u+ ψN‖L2(Ω)) ≤ (1 + cN2) inf
vN∈V 0

N

|u− vN |H1(Ω)

+2 inf
µN∈VN

‖∆u− µN‖L2(Ω) .

Lemma 2 implies

|u− uN |H1(Ω) + ‖∆u+ ϕN‖L2(Ω) ≤ c((1 + cN2) inf
vN∈V 0

N

|u− vN |H1(Ω)

+ inf
µN∈VN

‖∆u− µN‖H1(Ω)).

Further, we have

inf
vN∈V 0

N

|u− vN |H1(Ω) ≤ cN−1−k |u|Hk+2(Ω)

inf
µN∈VN

‖∆u+ µN‖H1(Ω) ≤ cN1−k |∆u|Hk(Ω) ,

168



L. Benaissa, N. Daili - About Biharmonic Problem via a Spectral Approach

then, it holds

|u− uN |H1(Ω) + ‖∆u+ ϕN‖L2(Ω) ≤ c((1 + cN2)cN−1−k |u|Hk+2(Ω) + cN1−k |∆u|Hk(Ω))

≤ cN1−k(|u|Hk+2(Ω) + |∆u|Hk(Ω)).

Theorem 5. Le u ∈ H2(Ω) be a solution of a problem (DP ), then for all
integer k ≥ 2, if u ∈ Hk+2(Ω) we have

‖u− uN‖H1(Ω) + ‖∆u+ ϕN‖L2(Ω) ≤ cN1−k ‖u‖Hk+2(Ω)

If u ∈ Hk+1(Ω), k ≥ 3, then

‖u− uN‖L2(Ω) +
1

N2
‖∆u+ ϕN‖L2(Ω) ≤ cN−1−k ‖u‖Hk+1(Ω)

Proof. We will reduce the problem (PD)N to one variational problem in
MN . Indeed, let aN(., .) : MN ×MN → R be a bilinear form defined for
λN ∈MN by∫

Ω

∇wN∇vNdx = 0 , ∀vN ∈ V 0
N , wN − λN ∈ V 0

N ; (7)

∫
Ω

∇uN∇vNdx =

∫
Ω

wNvNdx , ∀vN ∈ V 0
N , uN ∈ V 0

N ; (8)

aN(λN , µN) =

∫
Ω

wNµNdx−
∫

Ω

∇uN∇µNdx, ∀µN ∈MN . (9)

Lemma 4. A bilinear form aN(., .) is positive definite and symmetric on
MN ×MN .Moreover

aN(λ1N , λ2N) =

∫
Ω

w1Nw2Ndx, ∀λ1N , λ2N ∈MN ,

where w1N , w2N are solutions of (7) associated to λ1N , λ2N .
Proof. By definition one has

aN(λ1N , λ2N) =

∫
Ω

w1Nλ2N dx −
∫

Ω

∇u1N∇λ2N dx, ∀µN ∈MN ,

where w1N , w2N are solutions of (7) and (8) respectively.
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Put λ2N = (λ2N − w2N) + w2N , then

aN(λ1N , λ2N) =
∫

Ω
w1Nw2N dx −

∫
Ω
∇u1N∇w2N dx+

∫
Ω
∇u1N∇(w2N − λ2N) dx

−
∫

Ω
w1N∇(w2N − λ2N) dx

One has u1N ∈ V 0
N , using (7) one has∫

Ω

∇u1N∇(w2N − λ2N) dx =

∫
Ω

w1N∇(w2N − λ2N) dx.

Then

aN(λ1N , λ2N) =

∫
Ω

w1Nw2N dx, ∀λ1N , λ2N ∈MN .

It is obvious that aN(., .) is symmetric and coercive.
Theorem 6. Let (uN , wN) be a solution of (DP )N and λN the compo-

nent of wN in MN . Then λN is an unique solution of the linear variational
problem:

aN(λN , µN) =
∫

Ω
∇u0N∇µN dx −

∫
Ω
w0NµN dx −

∫
Fr(Ω)

g2NµN dσ,

∀µN ∈MN , λN ∈MN

(10)

where w0N is a solution of∫
Ω

∇w0N ∇vNdx =

∫
Ω

f vN dx , ∀vN ∈ V 0
N , w0N ∈ V 0

N (11)

and u0N is a solution of
∫

Ω
∇u0N ∇vNdx =

∫
Ω
w0N vN dx , ∀vN ∈ V 0

N ,

u0N = g1 on Fr(Ω).
(12)

Proof. We have

aN(λN , µN) =
∫

Ω
w̄NµN dx−

∫
Ω
∇ūN∇µN dx

=
∫

Ω
(wN − w0N)µN dx−

∫
Ω
∇(uN − u0N)∇µN dx

=
∫

Ω
∇u0N∇µNdx −

∫
Ω
w0NµNdx− (

∫
Ω
∇uN∇µN dx−

∫
Ω
wNµN dx).
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But (uN , wN) ∈ WN , hence∫
Ω

∇uN∇µN dx−
∫

Ω

wNµN dx =

∫
Fr(Ω)

g2NµNdσ, ∀µN ∈MN

Therefore

aN(λN , µN) =

∫
Ω

∇u0N∇µNdx−
∫

Ω

w0NµNdx−
∫
Fr(Ω)

g2NµNdσ, ∀µN ∈MN .

Existence and uniqueness of a solution of (10) is a direct consequence from Lax-
Milgram Lemma. A system is symmetric because a form aN(., .) is symmetric.

Remak 4. The problem (10) is equivalent to a system from which associ-
ated matrix is positive definite and symmetric.

Now we prove a problem (10) is equivalent to a system from which associ-
ated matrix is positive definite.

5. Numerical Approach

5.1. Construction of Linear System Associated to the Variational
Problem (10)

Put

lN(µN) =

∫
Ω

∇u0N∇µN dx −
∫

Ω

w0NµN dx −
∫
Fr(Ω)

g2µN dσ, ∀µN ∈MN

Then solve a problem (10) is equivalent to resolve the following system :

aN(λN , µN) = lN(µN), ∀µN ∈MN , λN ∈MN . (13)

Define the set

Id =



{−1, N − 1} if d = 1
(−1, j), (N − 1, j) , −1 ≤ j ≤ N − 1

(i, −1), (i, N − 1) , 0 ≤ i ≤ N − 2

 , if d = 2


(i, j, −1), (i, j, N − 1) , −1 ≤ i, j ≤ N − 1,

(i, −1, k), (i, N − 1, k) , −1 ≤ i ≤ N − 1, 0 ≤ k ≤ N − 2

(−1, j, k), (N − 1, j, k), 0 ≤ j, k ≤ N − 2

 , if d = 3,
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and
φid = φi1φi2 · ... · φid d = 1, 2, 3

where id = (i1, i2, ..., id). So (13) is equivalent to
aN(λN , φid) = lN(φid) , i

d ∈ Id

λN =
∑
jd∈Id

λjdφjd .
(14)

Namely ∑
jd∈Id

λjdaN(φjd , φkd) = lN(φkd), kd ∈ Id (15)

and

p = Card(Id) = dim(MN) =


2, if d = 1,

4N, if d = 2,

6N2 + 2, if d = 3.

5.2. Computation of the Matrix AN

Denote BN the basis ofMN and wjdN , ujdN solutions respectively of∫
Ω
∇wjdN∇vNdx = 0, ∀vN ∈ V 0

N , wjdN ∈ VN , wjdN − φjd ∈ V 0
N ;∫

Ω
∇ujdN∇vNdx =

∫
Ω
wjdNvNdx, ∀vN ∈ V 0

N , ujdN ∈ V 0
N ,

further we have

aidjd = aN(φjd , φid) =

∫
Ω

wjdNφiddx−
∫

Ω

∇ujdN∇φiddx, id, jd ∈ Id.

It results that a computation of a matrix AN requires the computation of 2p
Dirichlet problems for an operator ∆.

We have
Theorem 7. For all integer N ≥ 1, we have

α
1

N
‖γ0λN‖2L2(Fr(Ω)) ≤ aN(λN , λN) ≤ β ‖γ0λN‖2L2(Fr(Ω)) , ∀λN ∈MN ,

where α and β are independents of N and λN .
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Proof. Let λN ∈MN , we have

aN(λN , λN) =

∫
Ω

w2
N dx,

where wN is a solution of (7). Let w̃N ∈ H1(Ω) be a solution of
∆w̃N = 0 in Ω,

w̃N = λN on Fr (Ω) ,

then one has√
aN(λN , λN) = ‖wN‖L2(Ω)

≤ ‖wN − w̃N‖L2(Ω) + ‖w̃N‖L2(Ω) = ‖wN − w̃N‖L2(Ω) +
√
< Aγ0λN , γ0λN >.

Put |A| = ‖A‖Lc(L2(Fr(Ω)),L2(Fr(Ω))), it holds that

|< Aλ, µ >| ≤ |A| ‖λ‖L2(Fr(Ω)) ‖µ‖L2(Fr(Ω)) , ∀λ, µ ∈ L2(Fr(Ω))

⇒
√
aN(λN , λN) ≤ ‖wN − w̃N‖L2(Ω) +

√
|A| ‖γ0λN‖L2(Fr(Ω)) .

and we have
‖wN − w̃N‖L2(Ω) ≤ cN− 3

2 ‖w̃N‖H 3
2 (Ω)

,

and
‖w̃N‖H 3

2 (Ω)
≤ c ‖λN‖H1(Fr(Ω))

‖λN‖H1(Fr(Ω)) ≤ cN ‖λN‖L2(Fr(Ω)) .

Namely √
aN(λN , λN) ≤ c ‖γ0λN‖L2(Fr(Ω)) .

And

c
1

N
‖γ0vN‖2L2(Fr(Ω)) ≤ ‖vN‖

2
L2(Ω) , ∀vN ∈ VN .

It holds that

aN(λN , λN) = ‖wN‖2L2(Ω) ≥ c
1

N
‖γ0wN‖2L2(Fr(Ω)) = c

1

N
‖γ0λN‖2L2(Fr(Ω)) .
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Proposition 2. (Condition Number of the Matrix AN) We have

cond(A) = O(N),

where A is a square matrix associated to the problem (10).
Proof. Let A be a square inversible matrix N ×N . We have

cond(A) = ‖A‖ .
∥∥A−1

∥∥ ,
where ‖.‖ is a matrix norm associated to canonical euclidean norm of RN . If
A is positive definite and symmetric then

cond(A) =
λmax

λmin

,

where λmax is the largest eigenvalue and λmin is the smallest eigenvalue of A.
By Theorem 7, there exist two constants α and β > 0 such that

α
1

N
‖γ0λN‖2L2(Fr(Ω)) ≤ aN(λN , λN) ≤ β ‖γ0λN‖2L2(Fr(Ω)) , ∀λN ∈MN .

Put
pmax = sup

λN∈MN−{0}

aN (λN , λN )

‖γ0λN‖2L2(Fr(Ω))

pmin = inf
λN∈MN−{0}

aN (λN , λN )

‖γ0λN‖2L2(Fr(Ω))

,

then we have

pmax ≤ β and pmin ≥ α
1

N
,

where pmax is the largest eigenvale and pmin is the smallest eigenvalue of AN .
Therefore, we have

1

pmin

≤ N

α
⇒ pmax

pmin

≤ cN ⇒ cond(A) =©(N)

5.3. Algorithm (Conjugate Gradient Method Applied to Varia-
tional Problem (10)

We introduce the isomorphism rN :MN → Rp defined as follows :

µN ∈MN , µN =

p∑
i=1

µiϕi,
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rN = {µ1, µ2, ..., µP} , ∀µN ∈MN .

Then
aN(λN , µN) = (ANrNλN , rNµN)N , ∀λN , µN ∈MN

and∫
Ω

∇u0N∇µN dx−
∫

Ω

w0NµNdx−
∫
Fr(Ω)

g2NµNdσ = (bN , rNµN)N , ∀µN ∈MN ,

where (., .)N is the inner euclidien scalar of Rp and ‖.‖N is the associated
norm.

Algorithm :
Step 1: k = 0, let λ0

N ∈MN be an arbitrary initial data.

g0
N = ANrNλ

0
N − bN , d0

N = g0
N

Step 2 : If ‖g0
N‖N ≤ ε stop, else put

ρn =
(dn

N , g
n
N )N

(ANd
n
N , d

n
N )N

rNλ
n+1
N = rNλ

n
N − ρndnN

gn+1
N = gnN − ρnANdnN

and
βn =

(gn+1
N , gn+1

N )N

(gn
N , g

n
N )N

dn+1
N = gn+1

N + βnd
n+1
N

Step 3 : k ← k + 1 and return to step 2.
Numerical Results :
Example 1. Consider the following problem :

∆2u = −128π4 cos(4πx) in Ω = ]−1,+1[2 ,

u = 0 on Fr(Ω),

∂u

∂η
= 0 on Fr(Ω).
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Figure 1: exact solution u(x) = (sin(2πx))2

This problem has one and only one solution : u(x, y) = (sin(2πx))2.
We have:
If we select the 3 rd choice of the spaceMN with

φ−1 = L1 − L0,

φN−1 = LN−1,

then we have

Figure 2: approach solution for N=12
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Figure 3: Comparison between exact and approach solutions for N=12

Figure 4: approach solution for N=14

Figure 5: Comparison between exact and approach solutions for N=14
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Figure 6: approach solution for N=16

Figure 7: Comparison between exact and approach solutions for N=16
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Example 2. Consider the following problem :

∆2u = 24(1− x2)2 + 24(1− y2)2 + 32(3x2 − 1)(3y2 − 1) in Ω = ]−1,+1[2 ,

u = 0 on Fr(Ω),

∂u

∂η
= 0 on Fr(Ω).

This problem has one and only one solution: u(x, y) = (1−x2)2(1−y2)2. We
have

Figure 8: exact solution
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Figure 9: exact solution with contour

If we select the 1st choice of the spaceMN with{
φ−1 = L0,
φN−1 = L1,

then we have

Figure 10: approach solution with line of contour for N=2
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Figure 11: approach solution with lines of contour for N=4

6. Conclusion

We will say that developped methods are globally interesting when we
dispose beforehand a good and well program to resolve the Dirichlet approach
problem. One generalization of this problem is given in ([2]). An other more
intersting problem is to study the evolution problem and the estimate of error
for this last.
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