SOME PROPERTIES OF THE SUBCLASS OF P-VALENT BAZILEVIC FUNCTIONS

Khalida Inayat Noor and Ali Muhammad

Abstract. In this paper, we define some new class, $B_{k}^{\lambda}(a, b, c, p, n, \alpha, \rho)$ by using the integral operators $I_{p, n}^{\lambda}(a, b, c) f(z)$. We also derive some interesting properties of functions belonging to the class $B_{k}^{\lambda}(a, b, c, p, n, \alpha, \rho)$. Our results generalizing the works of Owa and Cho, see [2, 10].

2000 Mathematics Subject Classification: 30C45, 30C50.
Keywords and phrases: Analytic functions; Bazilevic functions, Functions with positive real part, Integral operator.

1. Introduction

Let $\mathcal{A}_{n}(p)$ denote the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=n}^{\infty} a_{p+k} z^{p+k} \quad(p, n \in N=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the unit disk

$$
E=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

Let $P_{k}(\rho)$ be the class of functions $h(z)$ analytic in E satisfying the properties $h(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Reh}(z)-\rho}{1-\rho}\right| d \theta \leq k \pi \tag{1.2}
\end{equation*}
$$

where $z=r e^{i \theta}, k \geq 2$ and $0 \leq \rho<1$. This class has been introduced in [12]. We note, for $\rho=0$ we obtain the class P_{k} defined and studied in [13], and for
$\rho=0, k=2$ we have the well known class P of functions with positive real part. The case $k=2$ gives the class $P(\rho)$ of functions with positive real part greater than ρ. From (1.4) we can easily deduce that $h \in P_{k}(\rho)$ if, and only if, there exists $h_{1}, h_{2} \in P(\rho)$ such that for $z \in E$,

$$
\begin{equation*}
h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) . \tag{1.3}
\end{equation*}
$$

For functions $f_{j}(z) \in \mathcal{A}_{n}(p)$, given by

$$
\begin{equation*}
f_{j}(z)=z^{p}+\sum_{k=n}^{\infty} a_{p+k, j} z^{p+k} \quad(j=1,2), \tag{1.4}
\end{equation*}
$$

we define the Hadmard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z^{p}+\sum_{k=n}^{\infty} a_{p+k, 1} a_{p+k, 2} z^{p+k}=\left(f_{2} * f_{1}\right)(z) \quad(z \in E) \tag{1.5}
\end{equation*}
$$

In our present investigation we shall make use of the Gauss hypergeometric functions defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k} z^{k}}{(c)_{k}(1)_{k}}, \tag{1.6}
\end{equation*}
$$

where $a, b, c \in \mathbb{C}, a, b, c \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\}$, and $(x)_{k}$ denote the Pochhammer symbol (or the shifted factorial) given, in terms of the Gamma function Γ, by

$$
(x)_{k}=\frac{\Gamma(k+n)}{\Gamma(k)}= \begin{cases}x(x+1) \ldots(x+k-1), & k \in N \\ 1, & k=0\end{cases}
$$

We note that the series defined by (1.6) converges absolutely for $z \in E$ and hence ${ }_{2} F_{1}(a, b ; z)$ represents an analytic function in the open unit disk E, see [15].

We introduce a function $\left(z^{p}{ }_{2} F_{1}(a, b ; c ; z)\right)^{(-1)}$ given by

$$
\begin{equation*}
\left(z^{p}{ }_{2} F_{1}(a, b ; c ; z)\right)\left(z^{p}{ }_{2} F_{1}(a, b ; c ; z)\right)^{(-1)}=\frac{z^{p}}{(1-z)^{\lambda+p}}, \quad \lambda>-p, \tag{1.7}
\end{equation*}
$$

this leads us to a family of linear operators:
$I_{p, n}^{\lambda}(a, b, c) f(z)=\left(z^{p}{ }_{2} F_{1}(a, b ; c ; z)\right)^{(-1)} * f(z), \quad\left(a, b, c \in R \backslash Z_{0}^{-}, \lambda>-p, z \in E\right)$.

It is evident that $I_{1,1}^{\lambda}(a, n+1, a) f(z)$ is the Noor integral operator, see [1, $4,6,7,8,9]$ which has fundament and significant applications in the geometric functions theory. The operator $I_{p, n}^{\lambda}(a, 1, c)$ was introduced by Cho et al [3].

After some computations, we obtain

$$
\begin{equation*}
I_{p, n}^{\lambda}(a, b, c) f(z)=z^{p}+\sum_{k=n}^{\infty} \frac{(c)_{k}(\lambda+p)_{k}}{(a)_{k}(b)_{k}} a_{p+k} z^{p+k} \tag{1.9}
\end{equation*}
$$

From equation (1.8) we deduce that

$$
\begin{gather*}
I_{p, n}^{\lambda}(a, p+\lambda, a) f(z)=f(z) \text { and } I_{p, n}^{\lambda}(a, p, a)=\frac{z f^{\prime}(z)}{p}, \\
z\left(I_{p, n}^{\lambda}(a, b ; c) f(z)\right)^{\prime}=(\lambda+p) I_{p, n}^{\lambda+1}(a, b ; c) f(z)-\lambda I_{p, n}^{\lambda}(a, b ; c) f(z), \tag{1.10}
\end{gather*}
$$

Using the operator $I_{p, n}^{\lambda}(a, b ; c) f(z)$ we now define a new subclass of $\mathcal{A}_{n}(p)$ as follows:

Definition 1.1. Let $f(z) \in \mathcal{A}_{n}(p)$. Then $f(z) \in B_{k}^{\lambda}(a, b, c, p, n, \alpha, \rho)$ if and only if

$$
\left(\frac{I_{p, n}^{\lambda+1}(a, b ; c) f(z)}{I_{p, n}^{\lambda}(a, b ; c) f(z)}\right)\left(\frac{I_{p, n}^{\lambda}(a, b ; c) f(z)}{z^{p}}\right)^{\alpha} \in P_{k}(\rho),
$$

where $k \geq 2, \alpha>0,0 \leq \rho<p$ and $z \in E$.

Special Cases.

(i) $B_{2}^{0}(a, 1+\lambda, a, 1, n, \alpha, \rho)=B(n, \alpha, \rho)$ is the subclass of Bazileivic functions studied by $[2,10]$.
(ii) The class $B_{2}^{0}(a, 1+\lambda, a, 1,1, \alpha, 0)=B(\alpha)$ is the subclass of Bazilevic functions which has been studied by Singh [14], see also [11].

2. Preliminaries and main results

Lemma 2.1. [5] Let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$ and $\Psi(u, v)$ be a complex-valued function satisfying the conditions:
(i) $\Psi(u, v)$ is continuous in a domain $D \subset C^{2}$.
(ii) $(1,0) \in D$ and $\Psi(1,0)>0$.
(iii) Re $\Psi\left(i u_{2}, v_{1}\right) \leq 0$ whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq \frac{-n}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\ldots$ is analytic in E such that $\left(h(z), z h^{\prime}(z)\right) \in$ D and $\operatorname{Re}\left\{\Psi\left(h(z), z h^{\prime}(z)\right)\right\}>0$ for $z \in E$, then $\operatorname{Re} h(z)>0$ in E.

Theorem 2.2. Let $f(z) \in B_{k}^{\lambda}(a, b, c, p, n, \alpha, \rho)$. Then

$$
\left\{\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z^{p}}\right\}^{\alpha} \in P_{k}\left(\rho_{1}\right)
$$

where ρ_{1} is given by

$$
\begin{equation*}
\rho_{1}=\frac{2 \alpha(\lambda+p) \rho+n p}{2 \alpha(\lambda+p) \rho+n} \tag{2.1}
\end{equation*}
$$

Proof. We begin by setting

$$
\begin{align*}
\left\{\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z^{p}}\right\}^{\alpha} & =\left(p-\rho_{1}\right) h(z)+\rho_{1} \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left(\left(p-\rho_{1}\right) h_{1}(z)+\rho_{1}\right) \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left(\left(p-\rho_{1}\right) h_{2}(z)+\rho_{1}\right), \tag{2.2}
\end{align*}
$$

so $h_{i}(z)$ is analytic in E, with $h_{i}(0)=1, i=1,2$.
Taking logarithmic differentiation of (2.2), and using the identity (1.10) in the resulting equation we obtain

$$
\begin{gathered}
\left(\frac{I_{p, n}^{\lambda+1}(a, b, c) f(z)}{I_{p, n}^{\lambda}(a, b, c) f(z)}\right)\left(\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z^{p}}\right)^{\alpha}= \\
=\left\{\left(p-\rho_{1}\right) h(z)+\rho_{1}+\frac{\left(p-\rho_{1}\right) z h^{\prime}(z)}{\alpha(\lambda+p)}\right\} \in P_{k}(\rho), \quad z \in E
\end{gathered}
$$

This implies that

$$
\frac{1}{p-\rho}\left\{\left(p-\rho_{1}\right) h_{i}(z)+\rho_{1}-\rho+\frac{\left(p-\rho_{1}\right) z h^{\prime}(z)}{\alpha(\lambda+p)}\right\} \in P, \quad z \in E, \quad i=1,2 .
$$

We form the functional $\Psi(u, v)$ by choosing $u=h_{i}(z), v=z h_{i}^{\prime}(z)$.

$$
\Psi(u, v)=\left\{\left(p-\rho_{1}\right) u+\rho_{1}-\rho+\frac{\left(p-\rho_{1}\right) v}{\alpha(\lambda+p)}\right\} .
$$

The first two conditions of Lemma 2.1 are clearly satisfied. We verify the condition (iii) as follows:

$$
\begin{aligned}
\operatorname{Re}\left\{\Psi\left(i u_{2}, v_{1}\right)\right\} & =\rho_{1}-\rho+\operatorname{Re}\left\{\frac{\left(p-\rho_{1}\right) v_{1}}{\alpha(\lambda+p)}\right\} \\
& \leq \rho_{1}-\rho-\frac{n\left(p-\rho_{1}\right)\left(1+u_{2}^{2}\right)}{2 \alpha(\lambda+p)} \\
& =\frac{A+B u_{2}^{2}}{2 C},
\end{aligned}
$$

where

$$
\begin{gathered}
A=2 \alpha(\lambda+p)\left(\rho_{1}-\rho\right)-n\left(p-\rho_{1}\right), \\
B=-n\left(p-\rho_{1}\right), \quad C=2 \alpha(\lambda+p)>0 .
\end{gathered}
$$

We notice that $\operatorname{Re}\left\{\Psi\left(i u_{2}, v_{1}\right)\right\} \leq 0$ if and only if $A \leq 0, B \leq 0$ and this gives us ρ_{1} as given by (2.1) and $B \leq 0$ gives us $0 \leq \rho_{1}<1$. Therefore applying Lemma 2.1, $h_{i} \in P, i=1,2$ and consequently $h \in P_{k}\left(\rho_{1}\right)$ for $z \in E$. This completes the proof.

Corollary 2.3. If $f(z) \in B_{2}^{0}(a, b, c, 1, n, \alpha, \rho)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z}\right\}>\frac{n+2 \alpha \rho}{n+2 \alpha}, \quad z \in E \tag{2.3}
\end{equation*}
$$

Corollary 2.4. If $f(z) \in B_{2}^{0}(a, b, c, 1, n, 1,0)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z}\right\}>\frac{n}{n+2}, \quad z \in E \tag{2.4}
\end{equation*}
$$

Corollary 2.5. If $f(z) \in B_{2}^{0}\left(a, b, c, 1, n, \frac{1}{2}, \rho\right)$ then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z}\right\}>\frac{\rho+n}{n+1}, \quad z \in E \tag{2.5}
\end{equation*}
$$

With certain choices of the parameters $\lambda, k, a, b, c, p, \alpha$ and ρ, we obtain the corresponding works of $[2,10]$.

Theorem 2.6. Let $f(z) \in B_{k}^{\lambda}(a, b, c, p, n, \alpha, \rho)$. Then

$$
\left\{\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z^{p}}\right\}^{\frac{\alpha}{2}} \in P_{k}(\lambda)
$$

where

$$
\begin{equation*}
\lambda=\frac{n p+\sqrt{(n p)^{2}+4(\alpha(\lambda+p)+n)(\rho \alpha(\lambda+p))}}{2(\alpha(\lambda+p)+n)} \tag{2.6}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
\left\{\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z^{p}}\right\}^{\alpha} & =((p-\gamma) h(z)+\gamma)^{2} \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left((p-\gamma) h_{1}(z)+\gamma\right)^{2} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left((p-\gamma) h_{2}(z)+\gamma\right)^{2} \tag{2.7}
\end{align*}
$$

so $h_{i}(z)$ is analytic in E with $h_{i}(0)=1, i=1,2$.
Taking logarithmic differentiation of (2.7), and using the identity (1.10) in the resulting equation we obtain that

$$
\begin{gathered}
\left(\frac{I_{p, n}^{\lambda+1}(a, b, c) f(z)}{I_{p, n}^{\lambda}(a, b, c) f(z)}\right)\left(\frac{I_{p}^{\lambda}(a, b, c) f(z)}{z^{p}}\right)^{\alpha}= \\
=\left[\{(p-\gamma) h(z)+\gamma\}^{2}+\frac{2}{\alpha(\lambda+p)}\{(p-\gamma) h(z)+\gamma\}(p-\gamma) z h^{\prime}(z)\right] \in P_{k}(\rho) .
\end{gathered}
$$

This implies that
$\frac{1}{p-\rho}\left[\left\{(p-\gamma) h_{i}(z)+\gamma\right\}^{2}+\frac{2}{\alpha(\lambda+p)}\left\{(p-\gamma) h_{i}(z)+\gamma\right\}(p-\gamma) z h_{i}^{\prime}(z)-\rho\right] \in P$,
where $z \in E, i=1,2$. We form the functional $\Psi(u, v)$ by choosing $u=$ $h_{i}(z), v=z h_{i}^{\prime}(z)$.

$$
\Psi(u, v)=\{(p-\gamma) u+\gamma\}^{2}+\left[\frac{2}{\alpha(\lambda+p)}\{(p-\gamma) u+\gamma\}(p-\gamma) v-\rho\right]
$$

$$
\begin{aligned}
\operatorname{Re}\left\{\Psi\left(i u_{2}, v_{1}\right)\right\} & =\gamma^{2}-(p-\gamma)^{2} u_{2}^{2}+\left[\frac{2}{\alpha(\lambda+p)} \gamma(p-\gamma) v_{1}-\rho\right] \\
& \leq \gamma^{2}-\rho-(p-\gamma)^{2} u_{2}^{2}-\left[\frac{n \gamma(p-\gamma)\left(1+u_{2}^{2}\right)}{\alpha(\lambda+p)}\right] \\
& =\frac{A+B u_{2}^{2}}{2 C},
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\gamma^{2} \alpha(\lambda+p)-\rho \alpha(\lambda+p)+n \gamma(p-\gamma) \\
& B=-(p-\gamma)^{2}-n \gamma(p-\gamma) \\
& C=\frac{\alpha(\lambda+p)}{2}>0
\end{aligned}
$$

We notice that $\operatorname{Re}\left\{\Psi\left(i u_{2}, v_{1}\right)\right\} \leq 0$ if and only if $A \leq 0, B \leq 0$ and this gives us γ as given by (2.6) and $B \leq 0$ gives us $0 \leq \gamma<1$. Therefore applying Lemma 2.1, $h_{i} \in P, i=1,2$ and consequently $h \in P_{k}\left(\rho_{1}\right)$ for $z \in E$. This completes the proof of Theorem 2.6.

Corollary 2.7. If $f(z) \in B_{2}^{0}(a, b, c, 1, n, \alpha, \rho)$ then

$$
\operatorname{Re}\left\{\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z}\right\}>\frac{n+\sqrt{n^{2}+4(\alpha+n)(\rho \alpha)}}{2(\alpha+n)}, \quad z \in E .
$$

Corollary 2.8. If $f(z) \in B_{2}^{0}(a, b, c, 1, n, 1, \rho)$ then

$$
\operatorname{Re}\left\{\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z}\right\}>\frac{n+\sqrt{n^{2}+4(1+n) \rho}}{2(1+n)}, \quad z \in E .
$$

Corollary 2.9. If $f(z) \in B_{2}^{0}(a, b, c, 1, n, 2,0)$ then

$$
\operatorname{Re}\left\{\frac{I_{p, n}^{\lambda}(a, b, c) f(z)}{z}\right\}>\frac{n}{1+n}, \quad z \in E .
$$

Again with certain choices of the parameters $\lambda, k, a, b, c, p, \alpha, \rho$ and we obtain the corresponding works of $[2,10]$.

Acknowledgement. We would like to thank Dr S. M. Junaid Zaidi, Rector CIIT for providing us excellent research facilities.

References

[1] N. E. Cho, The Noor integral operator and strongly close-to-convex functions, J. Math. Anal. Appl., 238 (2003), 202
[2] N. E. Cho, On certain subclasses of univalent functions, Bull. Korean Math. Soc. 25 (1988), 215
[3] N. E. Cho, Oh Sang Kown and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470
[4] J. L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21 (2002), 8190.
[5] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289
[6] K. I. Noor, Some classes of p-valent analytic functions defined by certain integral operator, Appl. Math. Compute. 157 (2004), 835840.
[7] K. I. Noor, On new classes of integral operator, J. Nat. Geo, 16 (1999), 71
[8] K. I. Noor and M. A. Noor, On certain classes of analytic functions defined by Noor integral operator, J. Math. Appl. 281 (2003), 244252.
[9] K. I. Noor and M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341
[10] S. Owa, On certain Bazilevic functions of order, Internat. J. Math. and Math. Sci. 15 (1992), 613
[11] S. Owa and M. Obradovic, Certain subclasses of Bazilevic function of type, Internat. J. Math. and Math. Sci., 9:2 (1986), 97105.
[12] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10 (1971), 716.
[13] K. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975), 311323.
[14] R. Singh, On Bazilevic functions, Proc. Amer. Math. Sci., 38 (1973), 261267.
[15] E. T. Whittaker and G. N. Watson, A course on Modern Analysis: An introduction to the general Theory of Infinite processes and of Analytic Functions; With an account of the principle of Transcendental Functions, 4th Edition, Cambridge University Press, Cambridge, 1927.
K.I. Noor, A. Muhammad - Some properties of the subclass of P-valent...

Authors:

Khalida Inayat Noor
Mathematics Department, COMSATS Institute of Information Technology, H-8/1 Islamabad, Pakistan.
e-mail: khalidanoor@hotmail.com
Ali Muhammad
Mathematics Department, COMSATS Institute of Information Technology, H-8/1 Islamabad, Pakistan.
e-mail: ali7887@gmail.com

