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Kawahara and the modified Kawahara equations. New multiple traveling wave so-
lutions are obtained for the Kawahara and the modified Kawahara equations.
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1. Introduction

The world around us is inherently nonlinear. Nonlinear evolution equations
(NEEs) are widely used as models to describe complex physical phenomena in various
fields of sciences, especially in fluid mechanics, solid state physics, plasma physics,
plasma wave and chemical physics. Particularly, various methods have been utilized
to explore different kinds of solutions of physical models described by nonlinear
PDEs. One of the basic physical problems for those models is to obtain their trav-
eling wave solutions. Concepts like solitons, peakons, kinks, breathers, cusps and
compactons are now being thoroughly investigated in the scientific literature [1-3].
During the past decades, quite a few methods for obtaining explicit traveling and
solitary wave solutions of nonlinear evolution equations have proposed a variety of
powerful methods, such as, Painleve expansion method [4], Jacobi elliptic function
method [5], Hirota’s bilinear method [6], the Sine-Cosine function method [7], the
Exp-function method [8], the tanh method [9, 10] and so on. Among those, the
tanh method, established by Malfliet [9], uses a particularly straightforward and
effective algorithm to obtain solutions for a large numbers of nonlinear PDEs. In
recent years, much research work has been concentrated on the various extensions
and applications of the tanh method. Fan [11, 12] has proposed an extended tanh
method and obtained new traveling wave solutions that cannot be obtained by the
tanh method. Recently, Wazwaz extended the tanh method and call it first the
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extended tanh method [13-15] and later as the tanh-coth method [16]. Most re-
cently, El-Wakil [17, 18] and Soliman [19] modified the extended tanh method (the
tanh-coth method) and obtained new solutions for some nonlinear PDEs. The goal
of this work is to implement the tanh-coth method and the Riccati equation in [20]
that named modified tanh-coth method, to obtain more new exact travelling wave
solutions of the Kawahara and the modefied Kawahara equations. The Kawahara
equation occurs in the theory of magneto-acoustic waves in a plasmas and in the-
ory of shallow water waves with surface tension. This equation was proposed by
Kawahara in 1972, as a model equation describing solitary-wave propagation in me-
dia [21]. In the literature this equation is also referred as fifth-order KdV equation
or singularly perturbed KdV equation [22]. The modified Kawahara equation was
proposed first by Kawahara [21] as an important dispersive equation. This equation
is also called the singularly perturbed KdV equation. This equation arises in the
theory of shallow water waves.

2.Description of modified tanh-coth method

Consider the general nonlinear wave PDE

ut = G(u, ux, uxx, ...) = 0. (1)

In order to apply the tanh-coth method, the independent variables, x and t, are
combined into a new variable ξ = µ(x − ct), where µ and c are undetermined
parameters which represent the wave number and velocity of the traveling wave,
respectively. Therefore, u(x, t) is replaced by u(ξ), which defines the traveling wave
solutions of (1). Equations such as (1) are then transformed into

−µc
du

dξ
= G(u, k

du

dξ
, µ2 d2u

dξ2 , ...). (2)

Hence, under the transformation ξ = µ(x − ct), the PDE in (1) has been reduced
to an ordinary differential equation (ODE) given by (2). The resulting ODE is then
solved by the modified tanh-coth method, which admits the use of a finite series of
functions of the form

u(x, t) = u(ξ) = a0 +
N∑

j=1

[ajY
j(ξ) + bjY

−j(ξ)], (3)

and the Riccati equation
Y ′ = α + βY + γY 2, (4)

where α, β and γ are constants to be prescribed later. The parameter N in (3) is
a positive constant that can be determined by balancing the linear term of highest
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order with the nonlinear term in (2). substituting (3) into the ODE in (2) and using
(4), we obtain an algebraic equation in powers of Y. Since all coefficients of Y j must
vanish. This will give a system of algebraic equations with respect to parameters
ai, bi, µ and c. With the aid of Maple, we can determine ai, bi, µ and c. We will
consider the following special solutions of the Riccati equation (4) are given in [23] by

• α = β = 1, γ = 0, Y (ξ) = eξ − 1,

• α =
1
2
, γ = −1

2
, β = 0, Y (ξ) = coth(ξ)± csch(ξ) or Y (ξ) = tanh(ξ)± isech(ξ),

• α = γ = ±1
2
, β = 0, Y (ξ) = sec(ξ)± tan(ξ) or Y (ξ) = csc(ξ)∓ cot(ξ),

• α = 1, γ = −1, β = 0, Y (ξ) = tanh(ξ) or Y (ξ) = coth(ξ),
• α = γ = ±1, β = 0, Y (ξ) = tan(ξ) or Y (ξ) = cot(ξ),

• α = 1, γ = −4, β = 0, Y (ξ) =
tanh(ξ)

1 + tanh2(ξ)
,

• α = 1, γ = 4, β = 0, Y (ξ) =
tan(ξ)

1− tan2(ξ)
, (5)

• α = −1, γ = −4, β = 0, Y (ξ) =
cot(ξ)

1− cot2(ξ)
,

• α = 1, β = ±2, γ = 2, Y (ξ) =
tan(ξ)

1∓ tan(ξ)
,

• α = −1, β = ±2, γ = −2, Y (ξ) =
cot(ξ)

1± cot(ξ)
.

Other values for Y can be derived for other arbitrary values for α, β and γ.

3.The Kawahara equation

Let us first consider the Kawahara equation which has the form

ut + auux + buxxx − kuxxxxx = 0, (6)

where a, b and k are nonzero real constants. In order to obtain travelling wave
solutions for Eq. (6), we use

u(x, t) = u(ξ), ξ = µ(x− ct). (7)

Substituting (7) into (6), we obtain

−cu′ + auu′ + bµ2u′′′ − kµ4u(5) = 0, (8)
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and by once time integrating we find

−cu +
a

2
u2 + bµ2u′′ − kµ4u(4) = 0. (9)

Balancing the order of the nonlinear term u2 with the highes order linear term u(4)

in (9), we obtain N=4.
Thus, the solution of (3) has the form

u(ξ) = a0 + a1Y + a2Y
2 + a3Y

3 + a4Y
4 + b1Y

−1 + b2Y
−2 + b3Y

−3 + b4Y
−4. (10)

Substituting (10) into (9) and using the Riccati equation (4), and because all
coefficients of Y i have to vanish, we obtain a system of algebraic equations in the
unknowns a0, a1, a2, a3, a4, b1, b2, b3, b4, α, β, γ, µ and c of the following form:

1
2
ab4

2 − 840kµ4b4α
4 = 0,

ab3b4 − 360kµ4b3α
4 − 2640kµ4b4βα3 = 0,

1
2
ab3

2 + ab2b4 + 20bµ2b4α
2 − 120kµ4b2α

4 − 1080kµ4b3βα3 − 3020kµ4b4β
2α2

−2080kµ4b4γα3 = 0,

ab1b4 + ab2b3 + 12bµ2b3α
2 + 36bµ2b4βα− 336kµ4b2βα3 − 24kµ4b1α

4

−1164kµ4b3β
2α2 − 816kµ4b3γα3 − 1476kµ4b4β

3α− 4608kµ4b4βγα2 = 0,

−cb4 +
1
2
ab2

2 + ab1b3 + ab4a0 + 6bµ2b2α
2 + 16bµ2b4β

2 + 21bµ2b3βα + 32bµ2b4γα

−60kµ4b1βα3 − 330kµ4b2β
2α2 − 240kµ4b2γα3 − 1680kµ4b3βγα2 − 525kµ4b3β

3α

−256kµ4b4β
4 − 3232kµ4b4β

2γα− 1696kµ4b4γ
2α2 = 0,

−cb3 + aa1b4 + ab1b2 + ab3a0 + 9bµ2b3β
2 + 2bµ2b1α

2 + 10bµ2b2βα + 18bµ2b3γα

+28bµ2b4βγ − 50kµ4b1β
2α2 − 40kµ4b1γα3 − 130kµ4b2β

3α− 440kµ4b2βγα2

−81kµ4b3β
4 − 576kµ4b3γ

2α2 − 1062kµ4b3β
2γα− 2240kµ4b4βγ2α− 700kµ4b4β

3γ

= 0,

−cb2 +
1
2
ab1

2 + aa1b3 + aa2b4 + ab2a0 + 4bµ2b2β
2 + 12bµ2b4γ

2 + 3bµ2b1βα

+8bµ2b2γα + 15bµ2b3βγ − 15kµ4b1β
3α− 136kµ4b2γ

2α2 − 60kµ4b1βγα2

−232kµ4b2β
2γα− 16kµ4b2β

4 − 195kµ4b3β
3γ − 660kµ4b3βγ2α− 660kµ4b4β

2γ2

−480kµ4b4γ
3α = 0,

(11)
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−cb1 + aa3b4 + aa1b2 + aa2b3 + ab1a0 + bµ2b1β
2 + 6bµ2b3γ

2 + 2bµ2b1γα (12)
+6bµ2b2βγ − 16kµ4b1γ

2α2 − 30kµ4b2β
3γ − 22kµ4b1β

2γα− kµ4b1β
4

−120kµ4b2βγ2α− 150kµ4b3β
2γ2 − 120kµ4b3γ

3α− 240kµ4b4βγ3 = 0,

−ca0 + 2bµ2a2α
2 + 2bµ2b2γ

2 − 24kµ4a4α
4 − 24kµ4b4γ

4 + aa1b1 +
1
2
aa0

2

+aa2b2 + aa3b3 + aa4b4 + bµ2a1βα + bµ2b1βγ − kµ4b1β
3γ − 14kµ4b2β

2γ2

−16kµ4b2γ
3α− 14kµ4a2β

2α2 − 8kµ4b1βγ2α− 36kµ4b3βγ3 − 8kµ4a1βγα2

−kµ4a1β
3α− 16kµ4a2γα3 − 36kµ4a3α

3β = 0,

−ca1 − kµ4a1β
4 + aa1a0 + aa2b1 + aa3b2 + aa4b3 + bµ2a1β

2 + 6bµ2a3α
2

+2bµ2a1γα + 6bµ2a2βα− 240kµ4a4βα3 − 150kµ4a3β
2α2 − 120kµ4a3γα3

−30kµ4a2β
3α− 120kµ4a2γα2β − 16kµ4a1γ

2α2 − 22kµ4a1β
2γα = 0,

−ca2 +
1
2
aa1

2 + aa2a0 + aa3b1 + aa4b2 + 4bµ2a2β
2 + 12bµ2a4α

2 + 3bµ2a1βγ

+8bµ2a2γα + 15bµ2a3βα− 660kµ4a4β
2α2 − 480kµ4a4γα3 − 195kµ4a3β

3α

−660kµ4a3γα2β − 136kµ4a2γ
2α2 − 16kµ4a2β

4 − 232kµ4a2β
2γα− 15kµ4a1β

3γ

−60kµ4a1βγ2α = 0,

−ca3 + aa4b1 + aa1a2 + aa3a0 + 2bµ2a1γ
2 + 9bµ2a3β

2 + 10bµ2a2βγ + 18bµ2a3γα

+28bµ2a4βα− 700kµ4a4β
3α− 2240kµ4a4βγα2 − 81kµ4a3β

4 − 576kµ4a3γ
2α2

−1062kµ4a3β
2γα− 130kµ4a2β

3γ − 440kµ4a2βγ2α− 50kµ4a1β
2γ2 − 40kµ4a1γ

3α = 0,

−ca4 +
1
2
aa2

2 + aa1a3 + aa4a0 + 6bµ2a2γ
2 + 16bµ2a4β

2 + 21bµ2a3βγ + 32bµ2a4γα

−1696kµ4a4γ
2α2 − 256kµ4a4β

4 − 3232kµ4a4β
2γα− 525kµ4a3β

3γ − 1680kµ4a3βγ2α

−330kµ4a2β
2γ2 − 240kµ4a2γ

3α− 60kµ4a1βγ3 = 0,

aa2a3 + aa1a4 + 12bµ2a3γ
2 + 36bµ2a4βγ − 1476kµ4a4β

3γ − 4608kµ4a4βγ2α

−1164kµ4a3β
2γ2 − 816kµ4a3γ

3α− 336kµ4a2βγ3 − 24kµ4a1γ
4 = 0,

1
2
aa3

2 + aa2a4 + 20bµ2a4γ
2 − 3020kµ4a4β

2γ2 − 2080kµ4a4γ
3α− 1080kµ4a3βγ3

−120kµ4a2γ
4 = 0,

aa3a4 − 2640kµ4a4βγ3 − 360kµ4a3γ
4 = 0,

1
2
aa4

2 − 840kµ4a4γ
4 = 0.

Case (1): By seting α = β = 1 and γ = 0 in (11) and solving the resulting system,
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we obtain the following two sets of solutions:

• a0 = a1 = a2 = a3 = a4 = 0, b1 = 0, b2 =
1680b2

169ka
, b3 =

3360b2

169ka
,

b4 =
1680b2

169ka
, c =

36b2

169k
, µ = ±

√
b

13k
,

b

k
> 0,

• a0 =
−72b2

169ka
, a1 = a2 = a3 = a4 = 0, b1 = 0, b2 =

1680b2

169ka
, b3 =

3360b2

169ka
,

b4 =
1680b2

169ka
, c =

−36b2

169k
, µ = ±

√
b

13k
,

b

k
> 0.

Substituting these values and Y = eξ − 1 in (10), after some simplifications, we
obtain

u1(x, t) =
1680kµ4

a

e2µ(x− 36b2

169k
t)

(eµ(x− 36b2

169k
t) − 1)4

, (13)

and

u2(x, t) =
24kµ4

a

−3e4µ(x+ 36b2

169k
t) + 12e3µ(x+ 36b2

169k
t) + 52e2µ(x+ 36b2

169k
t) + 12eµ(x+ 36b2

169k
t) − 3

(eµ(x+ 36b2

169k
t) − 1)4

,

(14)

where µ = ±
√

b
13k , b

k > 0.

Case (2): By assuming α = 1/2, γ = −1/2 and β = 0 in (11) and solving the
obtained system and Substituting it’s solution and Y = coth(ξ) ± csch(ξ) or Y =
tanh(ξ)± isech(ξ), in (10), we we have

u3(x, t) =
105b2

169ka
[1− 2(coth(ξ)± csch(ξ))2 + (coth(ξ)± csch(ξ))4], (15)

u4(x, t) =
105b2

169ka
[1− 2(tanh(ξ)± isech(ξ))2 + (tanh(ξ)± isech(ξ))4], (16)

where ξ =
√

b
13k (x− 36b2t

169k ), b
k > 0.

u5(x, t) =
b2

169ka
[33− 210(coth(ξ)± csch(ξ))2 + 105(coth(ξ)± csch(ξ))4],(17)

u6(x, t) =
b2

169ka
[33− 210(tanh(ξ)± isech(ξ))2 + 105(tanh(ξ)± isech(ξ))4],(18)
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where ξ =
√

b
13k (x + 36b2t

169k ), b
k > 0.

u7(x, t) =
105b2

169ka
[1− 2(coth(ξ)± csch(ξ))−2 + (coth(ξ)± csch(ξ))−4], (19)

u8(x, t) =
105b2

169ka
[1− 2(tanh(ξ)± isech(ξ))−2 + (tanh(ξ)± isech(ξ))−4],(20)

where ξ =
√

b
13k (x− 36b2t

169k ), b
k > 0.

u9(x, t) =
b2

169ka
[33− 210(coth(ξ)± csch(ξ))−2 + 105(coth(ξ)± csch(ξ))−4],(21)

u10(x, t) =
b2

169ka
[33− 210(tanh(ξ)± isech(ξ))−2 + 105(tanh(ξ)± isech(ξ))−4],(22)

where ξ =
√

b
13k (x + 36b2t

169k ), b
k > 0.

Case (3): By solving (11) for α = γ = ±1/2 and β = 0, and Substituting obtained
values and Y = sec(ξ)± tan(ξ) or Y = csc(ξ)∓ cot(ξ), in (10), we get

u11(x, t) =
105b2

169ka
[1 + 2(sec(ξ)± tan(ξ))2 + (sec(ξ)± tan(ξ))4], (23)

u12(x, t) =
105b2

169ka
[1 + 2(csc(ξ)∓ cot(ξ))2 + (csc(ξ)∓ cot(ξ))4], (24)

where ξ =
√

−b
13k (x− 36b2t

169k ), b
k < 0.

u13(x, t) =
b2

169ka
[33 + 210(sec(ξ)± tan(ξ))2 + 105(sec(ξ)± tan(ξ))4], (25)

u14(x, t) =
b2

169ka
[33 + 210(csc(ξ)∓ cot(ξ))2 + 105(csc(ξ)∓ cot(ξ))4], (26)

where ξ =
√

−b
13k (x + 36b2t

169k ), b
k < 0.

u15(x, t) =
105b2

169ka
[1 + 2(sec(ξ)± tan(ξ))−2 + (sec(ξ)± tan(ξ))−4], (27)

u16(x, t) =
105b2

169ka
[1 + 2(csc(ξ)∓ cot(ξ))−2 + (csc(ξ)∓ cot(ξ))−4], (28)

where ξ =
√

−b
13k (x− 36b2t

169k ), b
k < 0.

u17(x, t) =
b2

169ka
[33 + 210(sec(ξ)± tan(ξ))−2 + 105(sec(ξ)± tan(ξ))−4],(29)

u18(x, t) =
b2

169ka
[33 + 210(csc(ξ)∓ cot(ξ))−2 + 105(csc(ξ)∓ cot(ξ))−4],(30)
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where ξ =
√

−b
13k (x + 36b2t

169k ), b
k < 0.

Case (4): Let α = 1, γ = −1 and β = 0. By solving (11) and Substituting it’s
solutions and Y = tanh(ξ) or Y = coth(ξ), in (10), we obtain

u19(x, t) =
105b2

169ka
[1− 2 tanh2(ξ) + tanh4(ξ)], (31)

where ξ = 1
2

√
b

13k (x− 36b2t
169k ), b

k > 0.

u20(x, t) =
3b2

169ka
[11− 70 tanh2(ξ) + 35 tanh4(ξ)], (32)

where ξ = 1
2

√
b

13k (x + 36b2t
169k ), b

k > 0.

u21(x, t) =
105b2

169ka
[1− 2 coth2(ξ) + coth4(ξ)], (33)

where ξ = 1
2

√
b

13k (x− 36b2t
169k ), b

k > 0.

u22(x, t) =
3b2

169ka
[11− 70 coth2(ξ) + 35 coth4(ξ], (34)

where ξ = 1
2

√
b

13k (x + 36b2t
169k ), b

k > 0.

The solutions (32) and (34) are same Eq. (33) and Eq. (34) in [24] respectively.
Case(5): By considering α = γ = ±1, and β = 0 in (11) and solving the resulting
system, we obtain unknown variables. By Substituting these values and Y = tan(ξ)
or Y = cot(ξ), in (10) we derive

u23(x, t) =
105b2

169ka
(1 + 2 tan2(ξ) + tan4(ξ)), (35)

where ξ = 1
2

√
−b
13k (x− 36b2t

169k ), b
k < 0.

u24(x, t) =
3b2

169ka
(11 + 70 tan2(ξ) + 35 tan4(ξ)), (36)

where ξ = 1
2

√
−b
13k (x + 36b2t

169k ), b
k < 0.

u25(x, t) =
105b2

169ka
(1 + 2 cot2(ξ) + cot4(ξ)), (37)
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where ξ = 1
2

√
−b
13k (x− 36b2t

169k ), b
k < 0.

u26(x, t) =
3b2

169ka
(11 + 70 cot2(ξ) + 35 cot4(ξ)). (38)

where ξ = 1
2

√
−b
13k (x + 36b2t

169k ), b
k < 0.

The solutions (36) and (38) are same Eq. (35) and Eq. (36) in [24] respectively.
Case (6): By letting α = 1, γ = −4, and β = 0 in (11) and solving the result-
ing system and Substituting it’s solutions and Y = tanh(ξ)

1+tanh2(ξ)
, in (10), after some

simplifications, we get

u27(x, t) =
105b2

169ka

(1− 4 tanh2(ξ) + 6 tanh4(ξ)− 4 tanh6(ξ) + tanh8(ξ))
(1 + tanh2(ξ))4

, (39)

where ξ = 1
4

√
b

13k (x− 36b2t
169k ), b

k > 0.

u28(x, t) =
3b2

169ka

(11− 236 tanh2(ξ) + 66 tanh4(ξ)− 236 tanh6(ξ) + 11 tanh8(ξ))
(1 + tanh2(ξ))4

,

(40)

where ξ = 1
4

√
b

13k (x + 36b2t
169k ), b

k > 0.

u29(x, t) =
105b2

2704ka
(6− 4 coth2(ξ)− 4 tanh2(ξ) + coth4(ξ) + tanh4(ξ)), (41)

where ξ = 1
4

√
b

13k (x− 36b2t
169k ), b

k > 0.

u30(x, t) =
3b2

2704ka
(−174− 140 coth2(ξ)− 140 tanh2(ξ) + 35 coth4(ξ) + 35 tanh4(ξ)).

(42)

where ξ = 1
4

√
b

13k (x + 36b2t
169k ), b

k > 0.

The solutions (41) and (42) are same Eq. (44) and Eq. (47) in [24] respectively.
Case (7): By solving (11) for α = 1, γ = 4, and β = 0 we obtain unknown variables.
By Substituting these values and Y = tan(ξ)

1−tan2(ξ)
, in (10), after some simplifications,

we get

u31(x, t) =
105b2

169ka

(1 + 4 tan2(ξ) + 6 tan4(ξ) + 4 tan6(ξ) + tan8(ξ))
(−1 + tan2(ξ))4

, (43)

where ξ = 1
4

√
−b
13k (x− 36b2t

169k ), b
k < 0.

u32(x, t) =
3b2

169ka

(11 + 236 tan2(ξ) + 66 tan4(ξ) + 236 tan6(ξ) + 11 tan8(ξ))
(−1 + tan2(ξ))4

, (44)
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where ξ = 1
4

√
−b
13k (x + 36b2t

169k ), b
k < 0.

u33(x, t) =
105b2

2704ka
(6 + 4 cot2(ξ) + 4 tan2(ξ) + cot4(ξ) + tan4(ξ)), (45)

where ξ = 1
4

√
−b
13k (x− 36b2t

169k ), b
k < 0.

u34(x, t) =
3b2

2704ka
(−174+140 cot2(ξ)+140 tan2(ξ)+35 cot4(ξ)+35 tan4(ξ)). (46)

where ξ = 1
4

√
−b
13k (x + 36b2t

169k ), b
k < 0.

The solutions (45) and (46) are same Eq. (45) and Eq. (48) in [24] respectively.
Case (8): By letting α = −1, γ = −4 and β = 0 in (11) and solving the resulting
system and Substituting it’s solutions and Y = cot(ξ)

1−cot2(ξ)
in (10) we have

u35(x, t) =
105b2

169ka

(1 + 4 cot2(ξ) + 6 cot4(ξ) + 4 cot6(ξ) + cot8(ξ))
(−1 + cot2(ξ))4

, (47)

where ξ = 1
4

√
−b
13k (x− 36b2t

169k ), b
k < 0.

u36(x, t) =
3b2

169ka

(11 + 236 cot2(ξ) + 66 cot4(ξ) + 236 cot6(ξ) + 11 cot8(ξ))
(−1 + cot2(ξ))4

, (48)

where ξ = 1
4

√
−b
13k (x + 36b2t

169k ), b
k < 0.

u37(x, t) =
105b2

2704ka
(6 + 4 tan2(ξ) + 4 cot2(ξ) + tan4(ξ) + cot4(ξ)), (49)

where ξ = 1
4

√
−b
13k (x− 36b2t

169k ), b
k < 0.

u38(x, t) =
3b2

2704ka
(−174+140 tan2(ξ)+140 cot2(ξ)+35 tan4(ξ)+35 cot4(ξ)). (50)

where ξ = 1
4

√
−b
13k (x + 36b2t

169k ), b
k < 0.

The solutions (49) and (50) are same Eq. (45) and Eq. (48) in [24] respectively.
Case (9): By solving (11) for α = 1, β = ∓2 and γ = 2 Substituting these values
and Y = tan(ξ)

1±tan(ξ) , in (10) and after some simplifications, we get

u39(x, t) =
420b2

169ka

(1 + 2 tan2(ξ) + tan4(ξ))
(±1 + tan(ξ))4

, (51)
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where ξ = 1
2

√
−b
13k (x− 36b2t

169k ), b
k < 0.

u40(x, t) =
12b2

169ka

(29∓ 24 tan(ξ) + 34 tan2(ξ)∓ 24 tan3(ξ) + 29 tan4(ξ))
(±1 + tan(ξ))4

, (52)

where ξ = 1
2

√
−b
13k (x + 36b2t

169k ), b
k < 0.

u41(x, t) =
105b2

169ka
(1 + 2 cot2(ξ) + cot4(ξ)), (53)

where ξ = 1
2

√
−b
13k (x− 36b2t

169k ), b
k < 0.

u42(x, t) =
3b2

169ka
(11 + 70 cot2(ξ) + 35 cot4(ξ)). (54)

where ξ = 1
2

√
−b
13k (x + 36b2t

169k ), b
k < 0.

The solution (54) is same Eq. (36) in [24].
Case (10): By assuming α = −1, β = ±2 and γ = −2 in (11) and solving the
obtained system, then Substituting it’s solutions and Y = cot(ξ)

1±cot(ξ) in (10), after
some simplifications, we obtain

u43(x, t) =
420b2

169ka

(1 + 2 cot2(ξ) + cot4(ξ))
(±1 + cot(ξ))4

, (55)

where ξ = 1
2

√
−b
13k (x− 36b2t

169k ), b
k < 0.

u44(x, t) =
12b2

169ka

(29∓ 24 cot(ξ) + 34 cot2(ξ)∓ 24 cot3(ξ) + 29 cot4(ξ))
(±1 + cot(ξ))4

, (56)

where ξ = 1
2

√
−b
13k (x + 36b2t

169k ), b
k < 0.

u45(x, t) =
105b2

169ka
(1 + 2 tan2(ξ) + tan4(ξ)), (57)

where ξ = 1
2

√
−b
13k (x− 36b2t

169k ), b
k < 0.

u46(x, t) =
3b2

169ka
(11 + 70 tan2(ξ) + 35 tan4(ξ)). (58)

where ξ = 1
2

√
−b
13k (x + 36b2t

169k ), b
k < 0.

The solution (58) is same Eq. (35) in [24].
Not only our solutions cover all results obtained by wazwaz in [24], but also other
new solutions appear.
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4.The modified Kawahara equation

Let us consider the modified Kawahara equation

ut + au2ux + buxxx − kuxxxxx = 0, (59)

where a, b and k are nonzero real constants. In order to obtain traveling wave
solutions for Eq. (59), we use

u(x, t) = u(ξ), ξ = µ(x− ct), (60)

Substituting (60) into (59), we obtain

−cu′ + au2u′ + bµ2u′′′ − kµ4u(5) = 0, (61)

by once time integrating we find

−cu +
a

3
u3 + bµ2u′′ − kµ4u(4) = 0. (62)

Balancing the order of the nonlinear term u3 with the highest order linear term u(4)

in (62), we obtain N=2.
Thus, the solution of (3) has the form

u(ξ) = a0 + a1Y + a2Y
2 + b1Y

−1 + b2Y
−2. (63)

Substituting (63) into (62) and using the Riccati equation (4), and because all
coefficients of Y i have to vanish, we obtain a system of algebraic equations in the
unknowns a0, a1, a2, b1, b2, α, β, γ, µ and c of the following form:

1
3
ab2

3 − 120kµ4b2α
4 = 0,

ab1b2
2 − 24kµ4b1α

4 − 336kµ4b2βα3 = 0,

ab1
2b2 + ab2

2a0 + 6bµ2b2α
2 − 60kµ4b1βα3 − 330kµ4b2β

2α2 − 240kµ4b2γα3 = 0,
1
3
ab1

3 + aa1b2
2 + 2ab1b2a0 + 10bµ2b2βα + 2bµ2b1α

2 − 50kµ4b1β
2α2 − 40kµ4b1γα3

−130kµ4b2β
3α− 440kµ4b2βγα2 = 0,

aa2b2
2 + ab1

2a0 + ab2a0
2 − cb2 + 2aa1b1b2 + 3bµ2b1βα + 8bµ2b2γα + 4bµ2b2β

2

−16kµ4b2β
4 − 15kµ4b1β

3α− 60kµ4b1βγα2 − 136kµ4b2γ
2α2 − 232kµ4b2β

2γα = 0,

aa1b1
2 + ab1a0

2 − cb1 + 2aa1b2a0 + 2aa2b1b2 + 2bµ2b1γα + 6bµ2b2βγ + bµ2b1β
2

−16kµ4b1γ
2α2 − 22kµ4b1β

2γα− kµ4b1β
4 − 30kµ4b2β

3γ − 120kµ4b2βγ2α = 0,
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−ca0 +
1
3
aa0

3 + 2aa1b1a0 + 2aa2b2a0 + aa2b1
2 + aa1

2b2 + 2bµ2a2α
2 + 2bµ2b2γ

2

+bµ2b1βγ + bµ2a1βα− kµ4a1β
3α− 14kµ4a2β

2α2 − 16kµ4a2γα3 − 8kµ4a1βγα2

−kµ4b1β
3γ − 8kµ4b1βγ2α− 14kµ4b2β

2γ2 − 16kµ4b2γ
3α = 0, (64)

aa1
2b1 + aa1a0

2 − ca1 + 2aa1a2b2 + 2aa2b1a0 + 2bµ2a1γα + 6bµ2a2βα + bµ2a1β
2

−22kµ4a1β
2γα− kµ4a1β

4 − 16kµ4a1γ
2α2 − 30kµ4a2β

3α− 120kµ4a2γα2β = 0,

aa1
2a0 + aa2

2b2 + aa2a0
2 − ca2 + 2aa1a2b1 + 3bµ2a1βγ + 8bµ2a2γα + 4bµ2a2β

2

−15kµ4a1β
3γ − 16kµ4a2β

4 − 60kµ4a1βγ2α− 136kµ4a2γ
2α2 − 232kµ4a2β

2γα = 0,

aa2
2b1 +

1
3
aa1

3 + 2aa1a2a0 + 10bµ2a2βγ + 2bµ2a1γ
2 − 50kµ4a1β

2γ2 − 40kµ4a1γ
3α

−130kµ4a2β
3γ − 440kµ4a2βγ2α = 0,

aa1
2a2 + aa2

2a0 + 6bµ2a2γ
2 − 60kµ4a1βγ3 − 330kµ4a2β

2γ2 − 240kµ4a2γ
3α = 0,

aa1a2
2 − 24kµ4a1γ

4 − 336kµ4a2βγ3 = 0,
1
3
aa2

3 − 120kµ4a2γ
4 = 0.

Case (1): By assuming α = β = 1 and γ = 0 in (64), and solving the resulting
system, we obtain

• a0 = a1 = a2 = 0, b1 = b2 = ∓ 12b√
10ka

, c =
4b2

25k
, µ = ±

√
b

5k
,

b

k
> 0.

Substituting these values and Y = eξ − 1 in (63), after some simplifications, we
obtain

u1(x, t) = ∓ 12b√
10ka

e
±

√
b
5k

(x− 4b2

25k
t)

(e±
√

b
5k

(x− 4b2

25k
t) − 1)2

. (65)

Case (2): By considering α = 1
2 , γ = −1

2 , and β = 0 in (64) and solving the obtained
system and Substituting it’s solution and Y = coth ξ± cschξ or Y = tanh ξ± isechξ
in (63), after some simplifications, we have

u2(x, t) = ∓ 6b√
10ka

(1± cosh(µ(x− 4b2

25k t)))

sinh2(µ(x− 4b2

25k t))
, (66)

u3(x, t) = ± 6b√
10ka

(1∓ i sinh(µ(x− 4b2

25k t)))

cosh2(µ(x− 4b2

25k t))
, (67)
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u4(x, t) = ± 6b√
10ka

1
(1± cosh(µ(x− 4b2

25k t)))
, (68)

u5(x, t) = ± 6b√
10ka

(i sinh(µ(x− 4b2

25k t))∓ 1)

(2i sinh(µ(x− 4b2

25k t))∓ 2± cosh2(µ(x− 4b2

25k t)))
, (69)

where µ =
√

b
5k , b

k > 0.

Case (3): by solving (64) for α = γ = ±1
2 , and β = 0 we obtain unknown variables.

By substituting these values and Y = sec ξ ± tanξ or Y = csc ξ ∓ cot ξ in (63), after
some simplifications, we derive

u6(x, t) = ± 6b√
10ka

1
(1∓ sin(µ(x− 4b2

25k t)))
, (70)

u7(x, t) = ± 6b√
10ka

1
(1± cos(µ(x− 4b2

25k t)))
, (71)

where µ =
√

−b
5k , b

k < 0.
The solution (69) is same Eq. (43) in [25].
Case (4): By letting α = 1, γ = −1, and β = 0 in (64) and solving the resulting
system and Substituting it’s solution and Y = tanh ξ or Y = coth(ξ) in (63), after
some straightforward computations, we obtain

u8(x, t) = ± 3b√
10ka

sech2(µ(x− 4b2

25k
t)), (72)

u9(x, t) = ∓ 3b√
10ka

csch2(µ(x− 4b2

25k
t)), (73)

where µ = 1
2

√
b
5k , b

k > 0.
The solution (71) and (72) are same Eq. (23) and Eq. (30) in [25] respectively.
Case (5): By assuming α = γ = ±1, and β = 0 in (64) and solving the resulting
system and Substituting obtained values and Y = tan(ξ) and Y = cot(ξ) in (63),
after some simplifications, we get

u10(x, t) = ± 3b√
10ka

sec2(µ(x− 4b2

25k
t)), (74)

u11(x, t) = ± 3b√
10ka

csc2(µ(x− 4b2

25k
t)), (75)

where µ = 1
2

√
−b
5k , b

k < 0.
The solution (73) and (74) are same Eq. (21) and Eq. (32) in [25] respectively.
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Case (6): By solving (64) for α = 1, γ = −4, and β = 0 in (64) we derive unknown
variables. By Substituting obtained results and Y = tanh(ξ)

1+tanh2(ξ)
in (63), after some

straightforward computations, we obtain

u12(x, t) = ± 3b√
10ka

1− 2 tanh2(µ(x− 4b2

25k t)) + tanh4(µ(x− 4b2

25k t))

(1 + tanh2(µ(x− 4b2

25k t)))2
, (76)

u13(x, t) = ∓ 3b

4
√

10ka
(−2 + coth2(µ(x− 4b2

25k
t)) + tanh2(µ(x− 4b2

25k
t))),(77)

where µ = 1
4

√
b
5k , b

k > 0.
The solution (76) is same Eq. (38) in [25].
Case (7): By assuming α = 1, γ = 4, and β = 0 in (64) and solving the result-
ing system and Substituting it’s solutions and Y = tan(ξ)

1−tan2(ξ)
in (63), after some

simplifications, we obtain

u14(x, t) = ± 3b√
10ka

1 + 2 tan2(µ(x− 4b2

25k t)) + tan4(µ(x− 4b2

25k t))

(tan2(µ(x− 4b2

25k t))− 1)2
, (78)

u15(x, t) = ± 3b

4
√

10ka
(2 + cot2(µ(x− 4b2

25k
t)) + tan2(µ(x− 4b2

25k
t))), (79)

where µ = 1
4

√
−b
5k , b

k < 0.
The solution (78) is same Eq. (39) in [25].
Case (8): By considering α = −1, γ = −4, and β = 0 in (64) and solving the
obtained system and Substituting it’s solutions and Y = cot(ξ)

1−cot2(ξ)
in (63) after some

straightforward computations, we get

u16(x, t) = ± 3b√
10ka

1 + 2 cot2(µ(x− 4b2

25k t)) + cot4(µ(x− 4b2

25k t))

(cot2(µ(x− 4b2

25k t))− 1)2
, (80)

u17(x, t) = ± 3b

4
√

10ka
(2 + tan2(µ(x− 4b2

25k
t)) + cot2(µ(x− 4b2

25k
t))), (81)

where µ = 1
4

√
−b
5k , b

k < 0.
The solution (80) is same Eq. (39) in [25].
Case (9): By solving (64) for α = 1, γ = 2, and β = −2 we obtain unknown variables.
By Substituting these values and Y = tan(ξ)

1+tan(ξ) in (63), after some simplifications,
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we obtain

u18(x, t) = ± 6b√
10ka

(1 + tan2(µ(x− 4b2

25k t)))

(1 + tan(µ(x− 4b2

25k t)))2
, (82)

u19(x, t) = ± 3b√
10ka

csc2(µ(x− 4b2

25k
t)), (83)

where µ = 1
2

√
−b
5k , b

k < 0.
The solution (82) is same Eq. (22) and Eq. (32) in [25].
Case (10): By letting α = 1, γ = 2, and β = 2 in (64) and solving the resulting
system and Substituting it’s solutions and Y = tan(ξ)

1−tan(ξ) in (63), after some simplifi-
cations, we obtain

u20(x, t) = ± 6b√
10ka

(1 + tan2(µ(x− 4b2

25k t)))

(tan(µ(x− 4b2

25k t))− 1)2
, (84)

u21(x, t) = ± 3b√
10ka

csc2(µ(x− 4b2

25k
t)), (85)

where µ = 1
2

√
−b
5k , b

k < 0.
The solution (84) is same Eq. (22) and Eq. (32) in [25].
Case (11): By considering α = −1, γ = −2, and β = 2 in (64) and solving the
obtained system and Substituting it’s solutions and Y = cot(ξ)

1+cot(ξ) in (63), after some
straightforward computations, we obtain

u22(x, t) = ± 6b√
10ka

(1 + cot2(µ(x− 4b2

25k t)))

(1 + cot(µ(x− 4b2

25k t)))2
, (86)

u23(x, t) = ± 3b√
10ka

sec2(µ(x− 4b2

25k
t)), (87)

where µ = 1
2

√
−b
5k , b

k < 0.
The solution (86) is same Eq. (21) and Eq. (31) in [25].
Case (12): By solving (64) for α = −1, γ = −2, and β = −2 we obtain unknown
variable. By Substituting resulting solutions and Y = cot(ξ)

1−cot(ξ) in (63), after some
simplifications, we get

u24(x, t) = ± 6b√
10ka

(1 + cot2(µ(x− 4b2

25k t)))

(cot(µ(x− 4b2

25k t))− 1)2
, (88)

u25(x, t) = ± 3b√
10ka

sec2(µ(x− 4b2

25k
t)), (89)
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where µ = 1
2

√
−b
5k . b

k < 0.
The solution (88) is same Eq. (21) and Eq. (31) in [25].
Not only our solutions for the modified Kawahara equation (59) cover all results
obtained by Wazwaz in [25], but also other solutions appear.

5.Conclusions

In this article, the modified tanh-coth method has been successfully implemented to
find new traveling wave solutions for two nonlinear PDEs, namely, the Kawahara and
the modified Kawahara equations. The results show that this method is a powerful
Mathematical tool for obtaining exact solutions for the Kawahara and modified
Kawahara equations. It is also a promising method to solve other nonlinear partial
differential equations.
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