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Abstract In this note, we present a short trigonometric proof to the Steiner -
Lehmus Theorem in hyperbolic geometry.
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1. Introduction

Hyperbolic Geometry appeared in the first half of the 19th century as an attempt
to understand Euclid’s axiomatic basis of Geometry. It is also known as a type of
non-Euclidean Geometry, being in many respects similar to Euclidean Geometry.
Hyperbolic Geometry includes similar concepts as distance and angle. Both these
geometries have many results in common but many are different.

There are known many models for Hyperbolic Geometry, such as: Poincaré disc
model, Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc.
In this note we choose the Poincaré disc model in order to present the hyperbolic
version of the Steiner-Lehmus theorem. We mention that N.Sonmez[9] has presented
a trigonometric proof for the Poincaré half plane model but his approach is different
than ours. The Euclidean version of this well-known theorem states that if the inter-
nal angle bisectors of two angles of a triangle are equal, then the triangle is isosceles
(see the book of H.S.M.Coxeter and S.L.Greitzer [2,pp.14-16]). This result has a sim-
ple statement but it is of great interest. We just mention here few different proofs
given by O.A.AbuArqob, H.E.Rabadi, J.S.Khitan[1], G.Gilbert, D.MacDonnell[3],
H.Hajja[4], M.Levin[5], J.V.Malesevic[6] and A.P.Pargeter[8].
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We begin with the recall of some basic geometric notions and properties in the
Poincaré disc. Let D denote the unit disc in the complex z - plane, i.e.

D = {z ∈ C : |z| < 1}

The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the Möbius transformation of
the disc to be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the complex
conjugate of z0. Let Aut(D,⊕) be the automorphism group of the grupoid (D,⊕).
If we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then is true gyro-commutative law

a⊕ b = gyr[a, b](b⊕ a).

A gyro-vector space (G,⊕,⊗) is a gyro-commutative gyro-group (G,⊕) that
obeys the following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.
(2) G admits a scalar multiplication, ⊗, possessing the following properties. For

all real numbers r, r1, r2 ∈ R and all points a ∈G:
(G1) 1⊗ a = a
(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a
(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a)
(G4) |r|⊗a

‖r⊗a‖ = a
‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1
(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of one-dimensional

”vectors”
‖G‖ = {±‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R and
a,b ∈ G,
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(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖

Lemma. Let ABC be a gyro-triangle in a Möbius gyro-vector space (Vs,⊕,⊗),with
vertices A,B, C, corresponding gyro-angles α, β, γ, 0 < α + β + γ < π, and side
gyro-lengths (or, simply, sides) a, b, c. The gyro-angles of the gyro-triangle ABC are
determined by its sides :

cos α =
−a2

s + b2
s + c2

s − a2
sb

2
sc

2
s

2bscs
· 1
1− a2

s

,

cos β =
a2

s − b2
s + c2

s − a2
sb

2
sc

2
s

2ascs
· 1
1− b2

s

,

cos γ =
a2

s + b2
s − c2

s − a2
sb

2
sc

2
s

2bsas
· 1
1− c2

s

,

with as = a
s (see [10, pp.259]).

For further details we refer to the recent book of A.Ungar [10].

2.Main result

The hyperbolic version of the classical Steiner-Lehmus Theorem is the following.
Theorem. If the internal angle bisectors of two angles of a triangle are equal,

then the triangle is not isosceles.
Proof. Let ∆ABC be a hyperbolic triangle in the Poincaré disc, whose vertices

are the points A,B and C of the disc whose sides (directed counterclockwise) are
a = −B ⊕ C,b = −C ⊕ A and c = −A ⊕ B. Let BB′ and CC ′ be the respective
internal angle bisectors of angles B and C in triangle ABC (See Figure 1).

Figure 1
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We take a := |−B ⊕ C| , b := |−c⊕A| , c := |−A⊕B| , x := d(B,B′) = d(C,C ′), u :=
d(C,B′), v := d(B,C ′), B = 2β, C = 2γ . Let B > C ( ı̂.e. β > γ). Then,
cos β < cos γ (β, γ ∈ (0, π

2 )). If we use the result contained in the previous Lemma
in triangles BB′C and CC ′B then we get:

cos β =
−u2 + x2 + a2 − u2x2a2

2xa
· 1
1− u2

,

cos γ =
−v2 + x2 + a2 − v2x2a2

2xa
· 1
1− v2

.

This implies

cos β − cos γ =
1

2xa

[
−u2 + x2 + a2 − u2x2a2

1− u2
− −v2 + x2 + a2 − v2x2a2

1− v2

]
=

(v2 − u2)(1 + a2x2 − x2 − a2)
2xa(1− u2)(1− v2)

=
(v − u)(v + u)(1− x2)(1− a2)

2xa(1− u2)(1− v2)
< 0

Now we use the following theorem: If triangles ABC and A′B′C ′ have AB =
A′B′ and AC = A′C ′,then BC < B′C ′ if and only if ^A < ^A′ . E.Moise [7,
p.121] calls this the ”Hinge Theorem” and the result is valid in Absolute Geometry.
Applying this result in triangles BCB′ and BCC ′ it follows v < u , hence the
relation (v−u)(v+u)(1−x2)(1−a2)

2xa(1−u2)(1−v2)
< 0 is true. Consequently, the case B > C is satisfied

while d(B,B′) = d(C,C ′), therefore the triangle ABC cannot be isosceles. �
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