SOME PROPERTIES FOR CERTAIN INTEGRAL OPERATORS

Aabed Mohammed, Maslina Darus and Daniel Breaz

Abstract. Recently Breaz and Breaz [4] and Breaz et.al[5] introduced two general integral operators F_{n} and $F_{\alpha_{1}, \ldots, \alpha_{n}}$. Considering the classes $\mathcal{N}(\gamma), \mathcal{M T}(\mu, \beta)$ and $K D(\mu, \beta)$ we derived some properties for F_{n} and $F_{\alpha_{1}, \ldots, \alpha_{n}}$. Two new subclasses $K D F_{n}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ and $K D F_{\alpha_{1}, \ldots, \alpha_{n}}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ are defined. Necessary and sufficient conditions for a family of functions f_{j} to be in the $K D F_{n}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ and $K D F_{\alpha_{1}, \ldots, \alpha_{n}}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ are determined.

AMS Subject Classification: 30C45
Keywords and phrases: Analytic and univalent functions, convex functions, integral operators.

1. Introduction.

Let \mathcal{A} denote the class of functions of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the open unite disc $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$. We also denote by \mathcal{S} the subclass of \mathcal{A} consisting of functions which are also univalent in \mathcal{U}. Furthermore, we denote by \mathcal{T} the subclass of \mathcal{S} consisting of functions whose nonzero coefficients, from the second one, are negative and has the form:

$$
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0 .
$$

A function $f \in \mathcal{A}$ is the convex function of order $\alpha, 0 \leq \alpha<1$, if f satisfies the following inequality

$$
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)>\alpha, z \in \mathcal{U}
$$

and we denote this class by $\mathcal{K}(\alpha)$.
Similarly, if $f \in \mathcal{A}$ satisfies the following inequality:
A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in \mathcal{U}
$$

for some $\alpha, 0 \leq \alpha<1$, then f is said to be starlike of order α and we denote this class by $\mathcal{S}^{*}(\alpha)$.

Let $\mathcal{N}(\gamma)$ be the subclass of \mathcal{A} consisting of the functions f which satisfy the inequality

$$
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)<\gamma, z \in \mathcal{U}, \gamma>1
$$

This class was studied by Owa and Srivastava [8].
Let $\mathcal{M T}(\mu, \beta)$ be the subclass of \mathcal{A} consisting of the functions f which satisfy the analytic characterization

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\beta\left|\mu \frac{z f^{\prime}(z)}{f(z)}+1\right|
$$

for some $0<\beta \leq 1$, and $0 \leq \mu<1$,
Definition 1.([9])A function f is said to be in the class $K D(\mu, \beta)$, if satisfies the following inequality:

$$
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right) \geq \mu\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+\beta
$$

for some $\mu \geq 0$ and $0 \leq \beta<1$.
For $f_{j}(z) \in A$ and $\alpha_{j}>0$ for all $j \in\{1,2,3, \ldots, n\}$, D. Breaz and N. Breaz [4] introduced the following integral operator

$$
\begin{equation*}
F_{n}(z)=\int_{0}^{z} \prod_{j=1}^{n}\left(\frac{f_{j}(t)}{t}\right)^{\alpha_{j}} d t \tag{1}
\end{equation*}
$$

Recently Breaz et.al [5] introduced the following integral operator

$$
\begin{equation*}
F_{\alpha_{1}, \ldots, \alpha_{n}}(z)=\int_{0}^{z} \prod_{j=1}^{n}\left[f_{j}^{\prime}(t)\right]^{\alpha_{j}} d t \tag{2}
\end{equation*}
$$

where $f_{j} \in \mathcal{A}$ and $\alpha_{j}>0$, for all $j \in\{1,2,3, \ldots, n\}$.
A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

For univalence, starlike and convexity of these integral operators see ([4]-[7]), see also ([1]-[3]) for several properties.

Now by using the equations (1) and (2) and the Definition 1, we introduce the following two new subclasses of $K D(\mu, \beta)$.

Definition 2. A family of functions $f_{j}, j \in\{1, \ldots, n\}$ is said to be in the class $K D F_{n}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$, if satisfies the inequality:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}+1\right) \geq \mu\left|\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right|+\beta, \tag{3}
\end{equation*}
$$

for some $\mu \geq 0$ and $0 \leq \beta<1$, where F_{n} is defined in (1).
Definition 3. A family of functions $f_{j}, j \in\{1, \ldots, n\}$ is said to be in the class $K D F_{\alpha_{1}, \ldots, \alpha_{n}}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ if satisfies the inequality:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}+1\right) \geq \mu\left|\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right|+\beta \tag{4}
\end{equation*}
$$

for some $\mu \geq 0$ and $0 \leq \beta<1$, where $F_{\alpha_{1}, \ldots, \alpha_{n}}$ is defined as in (2).

2. Main Results

Our first result is the following:
Theorem 1. Let $\alpha_{j} \in \mathbb{R}, \alpha_{j}>0$ for $j \in\{1, \ldots, n\}$ and $f_{j} \in \mathcal{A}$ and suppose that $\left|\frac{f_{j}^{\prime}(z)}{f_{j}(z)}\right|<M_{j}$.If $f_{j} \in M T\left(\mu_{j}, \beta_{j}\right)$ then $F_{n} \in N(\sigma)$, where $\sigma=\sum_{j=1}^{n} \alpha_{j} \beta_{j}\left(\mu_{j} M_{j}+1\right)+1$.

Proof. From (1), we observe that $F_{n} \in A$. On the other hand, it is easy to see that

$$
\begin{equation*}
F_{n}^{\prime}(z)=\prod_{j=1}^{n}\left(\frac{f_{j}(z)}{z}\right)^{\alpha_{j}} \tag{5}
\end{equation*}
$$

Differentiating (5) logarithmically and multiply by z, we obtain

$$
\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}=\sum_{j=1}^{n} \alpha_{j}\left[\frac{z f_{j}^{\prime}(z)}{f_{j}(z)}-1\right] .
$$

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

Thus we have

$$
\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}+1=\sum_{j=1}^{n} \alpha_{j}\left[\frac{z f_{j}^{\prime}(z)}{f_{j}(z)}-1\right]+1
$$

We calculate the real part from both terms of the above expression and obtain

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}+1\right)=\sum_{j=1}^{n} \alpha_{j} \operatorname{Re}\left[\frac{z f_{j}^{\prime}(z)}{f_{j}(z)}-1\right]+1 \tag{6}
\end{equation*}
$$

Since $\Re w \leq|w|$, then

$$
\operatorname{Re}\left(\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}+1\right) \leq \sum_{j=1}^{n} \alpha_{j}\left|\frac{z f_{j}^{\prime}(z)}{f_{j}(z)}-1\right|+1
$$

Since $f_{j} \in \mathcal{N} T\left(\mu_{j}, \beta_{j}\right)$ for $j \in\{1, \ldots, n\}$, we have

$$
\begin{aligned}
\operatorname{Re}\left(\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right. & +1) \leq \sum_{j=1}^{n} \alpha_{j} \beta_{j}\left|\mu_{j} \frac{z f_{j}^{\prime}(z)}{f_{j}(z)}+1\right|+1 \leq \sum_{j=1}^{n} \alpha_{j} \beta_{j} \mu_{j}\left|\frac{f_{j}^{\prime}(z)}{f_{j}(z)}\right|+\sum_{j=1}^{n} \alpha_{j} \beta_{j}+1 \\
& <\sum_{j=1}^{n} \alpha_{j} \beta_{j} \mu_{j} M_{j}+\sum_{j=1}^{n} \alpha_{j} \beta_{j}+1=\sum_{j=1}^{n} \alpha_{j} \beta_{j}\left(\mu_{j} M_{j}+1\right)+1
\end{aligned}
$$

Hence $F_{n} \in N(\sigma), \sigma=\sum_{j=1}^{n} \alpha_{j} \beta_{j}\left(\mu_{j} M_{j}+1\right)+1$.
Letting $n=1, \alpha_{1}=\alpha, \alpha_{2}=\ldots=\alpha_{n}=0, M_{1}=M$ and $f_{1}=f$, in the Theorem 1, we have

Corollary 1. Let $\alpha \in R, \alpha>0, f \in A$ and suppose that $\left|\frac{f^{\prime}(z)}{f(z)}\right|<M, M$ fixed.
If $f \in M T(\mu, \beta)$ then $F_{1}(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\alpha} d t \in \mathrm{~N}(\sigma), \sigma=\alpha \beta(\mu M+1)+1$.
Letting $\alpha=1$ in Corollary 1, we have
Corollary 2. Let $f \in A$ and suppose that $\left|\frac{f^{\prime}(z)}{f(z)}\right|<M, M$ fixed. If $f \in M T(\mu, \beta)$ then $F_{1}(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right) d t \in \mathrm{~N}(\sigma), \sigma=\beta(\mu M+1)+1$.

Theorem 2. Let $\alpha_{j}>0$ for $j \in\{1, \ldots, n\}$, let $\beta_{j}>0$ be real number with the
property $0 \leq \beta_{j}<1$ and let $f_{j} \in K D\left(\mu_{j}, \beta_{j}\right)$ for $j \in\{1, \ldots, n\}, \mu_{j} \geq 0$. If $0<\sum_{j=1}^{n} \alpha_{j}\left(1-\beta_{j}\right) \leq 1$ then the functions $F_{\alpha_{1}, \ldots, \alpha_{n}}$ given by (2) is convex of or$\operatorname{der} \rho=1-\sum_{j=1}^{n} \alpha_{j}\left(1-\beta_{j}\right)$.
Proof. From (2), we observe that $F_{\alpha_{1}, \ldots, \alpha_{n}} \in A$ and

$$
\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}+1=\sum_{j=1}^{n} \alpha_{j}\left(z \frac{f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}+1\right)-\sum_{j=1}^{n}+1
$$

We calculate the real part from both terms of the above expression and obtain

$$
\operatorname{Re}\left(\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}+1\right)=\sum_{j=1}^{n} \alpha_{j} \operatorname{Re}\left(z \frac{f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}+1\right)-\sum_{j=1}^{n} \alpha_{j}+1
$$

Since $f_{j} \in K D\left(\mu_{j}, \beta_{j}\right)$ for $j=\{1, \ldots, n\}$, we have

$$
\operatorname{Re}\left(\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}+1\right)>\sum_{j=1}^{n} \alpha_{j}\left(\mu_{j}\left|z \frac{f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}\right|+\beta_{j}\right)-\sum_{j=1}^{n} \alpha_{j}+1
$$

This relation is equivalent to

$$
\operatorname{Re}\left(\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}+1\right)>\sum_{j=1}^{n} \alpha_{j} \mu_{j}\left|z \frac{f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}\right|+\sum_{j=1}^{n} \alpha_{j}\left(\beta_{j}-1\right)+1
$$

Since $\alpha_{j} \mu_{j}\left|z \frac{f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}\right|>0$ we obtain

$$
\operatorname{Re}\left(\frac{z F_{\alpha_{1}, \ldots \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots \alpha_{n}}^{\prime}(z)}+1\right) \geq 1-\sum_{j=1}^{n} \alpha_{j}\left(1-\beta_{j}\right)
$$

which implies that $F_{\alpha_{1}, \ldots, \alpha_{n}}$ is convex of order $\rho=1-\sum_{j=1}^{n} \alpha_{j}\left(1-\beta_{j}\right)$.
Letting $n=1, \alpha_{1}=\alpha, \alpha_{2}=\ldots=\alpha_{n}=0$ and $f_{1}=f$, in the Theorem 2, we have
Corollary 3. Let α be a real number, $\alpha>0$. Suppose that the function $f_{j} \in$
$K D(\mu, \beta)$ and $o \leq \alpha(1-\beta)<1$. In these conditions the function $F_{\alpha}(z)=$ $\int_{0}^{z}\left(f^{\prime}(t)\right)^{\alpha} d t$ is convex of order $1-(1-\beta) \alpha$.
Letting $\alpha=1$ in Corollary 3, we have
Corollary 4. Let $f \in K D(\mu, \beta)$ and consider the integral operator $F_{1}(z)=\int_{0}^{z} f^{\prime}(t) d t$. In this condition F_{1} is convex of order β.

A necessary and sufficient condition for a family of analytic functions

 $f_{j} \in K D F_{n}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$In this section, we give a necessary and sufficient condition for a family of functions $f_{j} \in K D F_{n}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$. Before embarking on the proof of our result, let us calculate the expression $\frac{z F^{\prime \prime}(z)}{F_{n}^{\prime}(z)}$, required for proving our result.
Recall that, from (1), we have

$$
F_{j}^{\prime}(z)=\prod_{j=1}^{n}\left(\frac{f_{j}(z)}{z}\right)^{\alpha_{j}}, z \in \mathcal{U}
$$

After some calculation, we obtain that

$$
\frac{F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}=\sum_{j=1}^{n} \alpha_{j}\left(\frac{f_{j}^{\prime}(z)}{f_{j}(z)}-\frac{1}{z}\right),
$$

that is equivalent to

$$
\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}=\sum_{j=1}^{n} \alpha_{j}\left(\frac{z f_{j}^{\prime}(z)}{f_{j}(z)}-1\right)
$$

Let $f_{j}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n}$. Then $f_{j}^{\prime}(z)=1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}$ and we get

$$
\begin{gather*}
\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}=\sum_{j=1}^{n} \alpha_{j}\left[\frac{z-\sum_{n=2}^{\infty} n a_{n, j} z^{n}}{z-\sum_{n=2}^{\infty} a_{n, j} z^{n}}-1\right]= \\
=\sum_{j=1}^{n} \alpha_{j}\left[\frac{1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}-1+\sum_{n=2}^{\infty} a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n, j} z^{n-1}}\right]=-\sum_{j=1}^{n} \alpha_{j}\left[\frac{\sum_{n=2}^{\infty}(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n, j} z^{n-1}}\right] . \tag{7}
\end{gather*}
$$

Theorem 3. Let the function $f_{j} \in \mathcal{T}$ for $j \in\{1, \ldots, n\}$. Then the functions $f_{j} \in$ $K D F_{n}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ for $j \in\{1, \ldots, n\}$ if and only if

$$
\begin{equation*}
\sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j}(n-1)(\mu+1) a_{n, j}}{1-\sum_{n=2}^{\infty} a_{n, j}}\right] \leq 1-\beta . \tag{8}
\end{equation*}
$$

Proof. First consider

$$
\mu\left|\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right|-\operatorname{Re}\left(1+\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right) \leq(\mu+1)\left|\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right|
$$

From (7) we obtain

$$
\begin{aligned}
& (\mu+1)\left|\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right|=(\mu+1)\left|\sum_{n=2}^{\infty} \alpha_{j}\left[\frac{\sum_{n=2}^{\infty}(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n, j} z^{n-1}}\right]\right| \leq \\
& \leq(\mu+1) \sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j}(n-1)\left|a_{n, j}\right||z|^{n-1}}{1-\sum_{n=2}^{\infty}\left|a_{n, j}\right||z|^{n-1}}\right] \leq(\mu+1) \sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j}(n-1) a_{n, j}}{1-\sum_{n=2}^{\infty} a_{n, j}}\right] .
\end{aligned}
$$

If (8) holds then the above expression is bounded by $1-\beta$, and consequently

$$
\mu\left|\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right|-\operatorname{Re}\left(1+\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right)<-\beta
$$

which equivalent to

$$
\operatorname{Re}\left(1+\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right) \geq \mu\left|\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right|+\beta
$$

Hence $f_{j} \in K D F_{n}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ for $j \in\{1, \ldots, n\}$.
Conversely. Let $f_{j} \in K D F_{n}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ for $j \in\{1, \ldots, n\}$ and prove that (8) holds. If $f_{j} \in K D F_{n}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ for $j \in\{1, \ldots, n\}$ and z is real, we get from (3) and (7)

$$
1-\sum_{j=1}^{n} \alpha_{j}\left[\frac{\sum_{n=2}^{\infty}(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n, j} z^{n-1}}\right] \geq \mu\left|\sum_{j=1}^{\infty} \alpha_{j}\left[\frac{\sum_{n=2}^{\infty}(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n, j} z^{n-1}}\right]\right|+\beta \geq
$$

$$
\mu \sum_{j=1}^{n} \alpha_{j}\left[\frac{\sum_{n=2}^{\infty}(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n, j} z^{n-1}}\right]+\beta
$$

That is equivalent to

$$
\sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j} \mu(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n, j} z^{n-1}}\right]+\sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j}(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n, j} z^{n-1}}\right] \leq 1-\beta .
$$

The above inequality reduce to

$$
\sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j}(\mu+1)(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n, j} z^{n-1}}\right] \leq 1-\beta .
$$

Let $z \rightarrow 1^{-}$along the real axis, then we get

$$
\sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j}(\mu+1)(n-1) a_{n, j}}{1-\sum_{n=2}^{\infty} a_{n, j}}\right] \leq 1-\beta .
$$

Which give the required result.
A necessary and sufficient condition for a family of analytic functions $f_{j} \in K D F_{\alpha_{1}, \ldots, \alpha_{n}}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$

In this section, we give a necessary and sufficient condition for a family of analytic functions $f_{j} \in K D F_{\alpha_{1}, \ldots, \alpha_{n}}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$. Let us first calculate the expression, $\frac{z F_{\alpha_{1}}^{\prime \prime}, \ldots, \alpha_{n}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}$, required for proving our result. From (2) we obtain

$$
F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)=\prod_{j=1}^{n}\left[f_{j}^{\prime}(z)\right]^{\alpha_{j}}
$$

After some calculus, we obtain

$$
\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}=\sum_{j=1}^{n} \alpha_{j} \frac{z f_{j}^{\prime}(z)}{f_{j}^{\prime}(z)} .
$$

Let $f_{j}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n}, f_{j}^{\prime}(z)=1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}$ and $f_{j}^{\prime \prime}(z)=-\sum_{n=2}^{\infty} n(n-$ 1) $a_{n, j} z^{n-2}$ we get

$$
\begin{equation*}
\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}=-\sum_{j=1}^{n} \alpha_{j}\left[\frac{\sum_{n=2}^{\infty} n(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}}\right] . \tag{9}
\end{equation*}
$$

Theorem 4. Let the functions $f_{j} \in \mathcal{T}$ for $j \in\{1, \ldots, n\}$. Then the functions $f_{j} \in K D F_{\alpha_{1}, \ldots, \alpha_{n}}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ for $j \in\{1, \ldots, n\}$ if and only if

$$
\begin{equation*}
\sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j} n(n-1)(\mu+1) a_{n, j}}{1-\sum_{n=2}^{\infty} n a_{n, j}}\right] \leq 1-\beta \tag{10}
\end{equation*}
$$

Proof. First consider

$$
\mu\left|\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right|-\operatorname{Re}\left(1+\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right) \leq(\mu+1)\left|\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right| .
$$

From (9) we obtain

$$
\begin{aligned}
& \quad(\mu+1)\left|\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right|=(\mu+1)\left|\sum_{n=2}^{\infty} \alpha_{j}\left[\frac{\sum_{n=2}^{\infty} n(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}}\right]\right| \leq \\
& \leq(\mu+1) \sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j} n(n-1)\left|a_{n, j}\right||z|^{n-1}}{1-\sum_{n=2}^{\infty} n\left|a_{n, j}\right||z|^{n-1}}\right] \leq(\mu+1) \sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j} n(n-1) a_{n, j}}{1-\sum_{n=2}^{\infty} n a_{n, j}}\right] .
\end{aligned}
$$

If (10) holds then the above expression is bounded by $1-\beta$ and consequently

$$
\mu\left|\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right|-\operatorname{Re}\left(1+\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right)<-\beta,
$$

which equivalent to

$$
\operatorname{Re}\left(1+\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right) \geq \mu\left|\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right|+\beta
$$

Hence $f_{j} \in K D F_{\alpha_{1}, \ldots, \alpha_{n}}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ for $j \in\{1, \ldots, n\}$.
Conversely,Let $f_{j} \in K D F_{\alpha_{1}, \ldots, \alpha_{n}}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ and prove that (10) holds. If $f_{j} \in$ $K D F_{\alpha_{1}, \ldots, \alpha_{n}}\left(\mu, \beta, \alpha_{1}, \ldots, \alpha_{n}\right)$ and z is real we get from (4) and (9)

$$
\begin{gathered}
1-\sum_{j=1}^{n} \alpha_{j}\left[\frac{\sum_{n=2}^{\infty} n(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}}\right] \geq \mu\left|\sum_{j=1}^{n} \alpha_{j}\left[\frac{\sum_{n=2}^{\infty} n(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}}\right]\right|+\beta \geq \\
\geq \mu \sum_{j=1}^{\infty} \alpha_{j}\left[\frac{\sum_{n=2}^{\infty} n(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}}\right]+\beta,
\end{gathered}
$$

which is equivalent to

$$
\sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j} \mu n(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}}\right]+\sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j} n(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}}\right] \leq 1-\beta
$$

The above inequality reduce to

$$
\sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j} n(\mu+1)(n-1) a_{n, j} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n, j} z^{n-1}}\right] \leq 1-\beta
$$

Let $z \rightarrow 1^{-}$along the real axis, then we get

$$
\sum_{j=1}^{n}\left[\frac{\sum_{n=2}^{\infty} \alpha_{j} n(\mu+1)(n-1) a_{n, j}}{1-\sum_{n=2}^{\infty} n a_{n, j}}\right] \leq 1-\beta,
$$

which give the required result.
Acknowledgement: The work here is supported by UKM-ST-06-FRGS0107-2009.

References

[1] A. Mohammed, M.Darus and D.Breaz, Fractional Calculus for Certain Integral Operator Involving Logarithmic Coefficients, Journal of Mathematics and Statistics, 5:2(2009), 118-122.
[2] A. Mohammed, M.Darus and D.Breaz, On close-to-convex for certain integral operators, Acta Universitatis Apulensis, No 19/2009, pp. 209-116.
[3] B.A. Frasin, Some sufficient conditions for certain integral operators, J. Math. Ineq., 2:4 (2008), 527-335.
[4] D. Breaz and N. Breaz, Two integral operators, Studia Universitatis BabesBolyai, Mathematica, 47:3(2002), 13-19.
[5] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Universitatis Apulensis, No 16/2008, pp. 11-16.
[6] D. Breaz, A convexity property for an integral operator on the class $S_{p}(\beta)$, Journal of Inequalities and Applications, vol. 2008, Article ID 143869.
[7] D. Breaz, Certain Integral Operators On the Classes $M\left(\beta_{i}\right)$ and $N\left(\beta_{i}\right)$, Journal of Inequalities and Applications, vol. 2008, Article ID 719354.
[8]S. Owa and H.M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, JIPAM, 3(3)(2003), 42: 1-13.
[9]S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, Internat. J. Math. Math. Sci., 55(2004), 2959-2961.

Aabed Mohammed and Maslina Darus
School of Mathematical Sciences, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia
43600 Bangi, Selangor D. Ehsan,
Malaysia
e-mails: aabedukm@yahoo.com, maslina@ukm.my
Daniel Breaz
Department of Mathematics
" 1 Decembrie 1918 " University
Alba Iulia, str. N. Iorga, 510009, No. 11-13
Alba, Romania
e-mail:dbreaz@uab.ro

