TURN-TYPE INEQUALITIES FOR THE GAMMA AND POLYGAMMA FUNCTIONS

Cristinel Mortici

Abstract. The aim of this paper is to establish new Turán-type inequalities involving the polygamma functions, which are stronger than the inequalities established by A. Laforgia and P. Natalini [J. Inequal. Pure Appl. Math., 27 (2006), Issue 1, Art. 32].

2000 Mathematics Subject Classification: 26D07, 33B15.

1.Introduction

The inequalities of the type

$$
f_{n}(x) f_{n+2}(x)-f_{n+1}^{2}(x) \leq 0
$$

have many applications in pure mathematics as in other branches of science. They are named by Karlin and Szegö [3], Turán-type inequalities because the first of these type of inequalities was introduced by Turán [6]. More precisely, he used some results of Szegö [5] to prove the previous inequality for $x \in(-1,1)$, where f_{n} is the Legendre polynomial of degree n. This classical result has been extended in many directions, as ultraspherical polynomials, Lagguere and Hermite polynomials, or Bessel functions, and so forth. There is today a huge literature on Turán inequalities, since they have important applications in complex analysis, number theory, combinatorics, theory of mean-values, or statistics and control theory.

Recently, Laforgia and Natalini [4] proved some Turán-type inequalities for some special functions as well as the polygamma functions, by using the following inequality:

$$
\begin{equation*}
\int_{a}^{b} g(t) f^{m}(t) d t \cdot \int_{a}^{b} g(t) f^{n}(t) d t \geq\left(\int_{a}^{b} g(t) f^{\frac{m+n}{2}}(t) d t\right)^{2} \tag{1.1}
\end{equation*}
$$

where f, g are non-negative functions such that these integrals exist.
This inequality is considered in [4] as a generalization of the Cauchy-Schwarz inequality, but it can be also viewed as a particular case of the Cauchy-Schwarz inequality, for $t \mapsto\left(g(t) f^{m}(t)\right)^{1 / 2}$ and $t \mapsto\left(g(t) f^{n}(t)\right)^{1 / 2}$.

2.Applying HÖLDER INEQUALITY

We use here the Hölder inequality

$$
\left(\int_{a}^{b} u^{p}(t) d t\right)^{1 / p}\left(\int_{a}^{b} v^{q}(t) d t\right)^{1 / q} \geq \int_{a}^{b} u(t) v(t) d t
$$

where $p, q>0$ are such that $p^{-1}+q^{-1}=1$ and u, v are non-negative functions such that these integrals exist. Case $p=q=2$ is the Cauchy-Schwarz inequality.

By taking $u(x)=g(t)^{1 / p} f^{m / p}(t)$ and $v(x)=g(t)^{1 / q} f^{n / q}(t)$, we can state the following extension of the inequality (1.1):

$$
\begin{equation*}
\left(\int_{a}^{b} g(t) f^{m}(t) d t\right)^{1 / p}\left(\int_{a}^{b} g(t) f^{n}(t) d t\right)^{1 / q} \geq \int_{a}^{b} g(t) f^{\frac{m}{p}+\frac{n}{q}}(t) d t \tag{2.1}
\end{equation*}
$$

In what follows, we use the integral representations, for $x>0$ and $n=1,2, \ldots$

$$
\begin{gather*}
\Gamma^{(n)}(x)=\int_{0}^{\infty} e^{-t} t^{x-1} \log ^{n} t d t \tag{2.2}\\
\psi^{(n)}(x)=(-1)^{n+1} \int_{0}^{\infty} \frac{t^{n} e^{-t x}}{1-e^{-t}} d t \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\zeta(x)=\frac{1}{\Gamma(x)} \int_{0}^{\infty} \frac{t^{x-1}}{e^{t}-1} d t, \quad x>1 \tag{2.4}
\end{equation*}
$$

where Γ is the gamma function, $\psi^{(n)}$ is the n-th polygamma function and ζ is the Riemann-zeta function. See, for instance, [1, p. 260].

In this section, we first give an extension of the main result of Laforgia and Natalini [4, Theorem 2.1].

Theorem 2.1. For every $p, q>0$ with $p^{-1}+q^{-1}=1$ and for every integers $m, n \geq 1$ such that $\frac{m}{p}+\frac{n}{q}$ is an integer, we have:

$$
\left|\psi^{(m)}(x)\right|^{1 / p} \cdot\left|\psi^{(n)}(x)\right|^{1 / q} \geq\left|\psi^{\left(\frac{m}{p}+\frac{n}{q}\right)}(x)\right|
$$

Proof. We choose $g(t)=\frac{e^{-t x}}{1-e^{-t}}, f(t)=t$, and $a=0, b=+\infty$ in (2.1) to get

$$
\left(\int_{0}^{\infty} \frac{t^{m} e^{-t x}}{1-e^{-t}} d t\right)^{1 / p}\left(\int_{0}^{\infty} \frac{t^{n} e^{-t x}}{1-e^{-t}} d t\right)^{1 / q} \geq \int_{0}^{\infty} \frac{t^{\frac{m}{p}+\frac{n}{q}} e^{-t x}}{1-e^{-t}} d t
$$

and the conclusion follows using (2.3).

C. Mortici - Turn-type inequalities for the Gamma and Polygamma functions

The next result extends Theorem 2.2 from Laforgia and Natalini [4].
Theorem 2.2. For every $x, y, p, q>0$ such that $p^{-1}+q^{-1}=1$, we have:

$$
\zeta^{1 / p}(x) \zeta^{1 / q}(y) \geq \frac{\Gamma\left(\frac{x}{p}+\frac{y}{q}\right)}{\Gamma^{1 / p}(x) \Gamma^{1 / q}(y)} \zeta\left(\frac{x}{p}+\frac{y}{q}\right) .
$$

Proof. We choose $g(t)=\frac{1}{1-e^{-t}}, f(t)=t$, and $a=0, b=+\infty$ in (2.1) to get

$$
\left(\int_{0}^{\infty} \frac{t^{x-1}}{e^{t}-1} d t\right)^{1 / p}\left(\int_{0}^{\infty} \frac{t^{y-1}}{e^{t}-1} d t\right)^{1 / q} \geq \int_{0}^{\infty} \frac{t^{\frac{x-1}{p}+\frac{y-1}{q}}}{e^{t}-1} d t
$$

or

$$
(\Gamma(x) \zeta(x))^{1 / p}(\Gamma(y) \zeta(y))^{1 / q} \geq \Gamma\left(\frac{x}{p}+\frac{y}{q}\right) \zeta\left(\frac{x}{p}+\frac{y}{q}\right),
$$

which is the conclusion
Particular case $p=q=2, x=s, y=s+2$ is the object of Theorem 2.3 from [4].

3.TurÁn type inequalities for $\exp \Gamma^{(n)}(x)$ and $\exp \psi^{(n)}(x)$

Very recently, Alzer and Felder [2] proved the following sharp inequality for Euler's gamma function,

$$
\alpha \leq \Gamma^{(n-1)}(x) \Gamma^{(n+1)}(x)-\left(\Gamma^{(n)}(x)\right)^{2}
$$

for odd $n \geq 1$, and $x>0$, where $\alpha=\min _{1.5 \leq x \leq 2}\left(\psi^{\prime}(x) \Gamma^{2}(x)\right)=0.6359 \ldots$.
We prove similar results about the sequences $\exp \Gamma^{(n)}(x)$, and $\exp \psi^{(n)}(x)$.
Theorem 3.1. For every $x>0$ and even integers $n \geq k \geq 0$, we have

$$
\left(\exp \Gamma^{(n)}(x)\right)^{2} \leq \exp \Gamma^{(n+k)}(x) \cdot \exp \Gamma^{(n-k)}(x)
$$

Proof. We use (2.2) to estimate the expression

$$
\begin{gathered}
\frac{\Gamma^{(n-k)}(x)+\Gamma^{(n+k)}(x)}{2}-\Gamma^{(n)}(x)= \\
=\frac{1}{2}\left(\int_{0}^{\infty} e^{-t} t^{x-1} \log ^{n-k} t d t+\int_{0}^{\infty} e^{-t} t^{x-1} \log ^{n+k} t d t\right)-\int_{0}^{\infty} e^{-t} t^{x-1} \log ^{n} t d t= \\
=\frac{1}{2} \int_{0}^{\infty}\left(\frac{1}{\log ^{k} t}+\log ^{k} t-2\right) e^{-t} t^{x-1} \log ^{n} t d t \geq 0 .
\end{gathered}
$$

C. Mortici - Turn-type inequalities for the Gamma and Polygamma functions

The conclusion follows by exponentiating the inequality

$$
\frac{\Gamma^{(n-k)}(x)+\Gamma^{(n+k)}(x)}{2} \geq \Gamma^{(n)}(x)
$$

Theorem 3.2. For every $x>0$ and integers $n \geq 1$, we have:
(i) If n is odd, then $\left(\exp \psi^{(n)}(x)\right)^{2} \geq \exp \psi^{(n+1)}(x) \cdot \exp \psi^{(n-1)}(x)$.
(ii) If n is even, then $\left(\exp \psi^{(n)}(x)\right)^{2} \leq \exp \psi^{(n+1)}(x) \cdot \exp \psi^{(n-1)}(x)$.

Proof. We use (2.3) to estimate the expression

$$
\begin{gathered}
\psi^{(n)}(x)-\frac{\psi^{(n+1)}(x)+\psi^{(n-1)}(x)}{2}= \\
=(-1)^{n+1}\left(\int_{0}^{\infty} \frac{t^{n} e^{-t x}}{1-e^{-t}} d t+\frac{1}{2} \int_{0}^{\infty} \frac{t^{n+1} e^{-t x}}{1-e^{-t}} d t+\frac{1}{2} \int_{0}^{\infty} \frac{t^{n-1} e^{-t x}}{1-e^{-t}} d t\right)= \\
=\frac{(-1)^{n+1}}{2} \int_{0}^{\infty} \frac{t^{n-1} e^{-t x}}{1-e^{-t}}(t+1)^{2} d t
\end{gathered}
$$

Now, the conclusion follows by exponentiating the inequality

$$
\psi^{(n)}(x) \geq(\leq) \frac{\psi^{(n+1)}(x)+\psi^{(n-1)}(x)}{2}
$$

as n is odd, respective even.

4.CONCLUDING REMARKS

It is mentioned in the final part of the paper [4] that many other Turán-type inequalities can be obtained for the functions which admit integral representations of the type (2.2)-(2.4). As an example, for the exponential integral function $[1, \mathrm{p}$. 228, Rel. 5.1.4]

$$
E_{n}(x)=\int_{0}^{\infty} e^{-t x} t^{n} d t, \quad x>0, \quad n=0,1,2, \ldots
$$

and using the inequality (1.1), we deduce that for $x>0$ and positive integers m, n such that $\frac{m+n}{2}$ is an integer,

$$
\begin{equation*}
E_{n}(x) E_{m}(x) \geq E_{\frac{n+m}{2}}(x) \tag{4.1}
\end{equation*}
$$

Using again (2.1), we can establish the following extension:
C. Mortici - Turn-type inequalities for the Gamma and Polygamma functions

Theorem 4.1. For every $p, q, x>0$ with $p^{-1}+q^{-1}=1$ and for every integers $m, n \geq 1$ such that $\frac{m}{p}+\frac{n}{q}$ is an integer, it holds

$$
\left(E_{m}(x)\right)^{1 / p}\left(E_{n}(x)\right)^{1 / q} \geq E_{\frac{m}{p}+\frac{n}{q}}(x) .
$$

This follows from (2.1), with $g(t)=e^{-t x}, f(t)=t, a=0, b=+\infty$. The particular case (4.1) is obtained for $p=q=2$.

References

[1] M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Tables, Dover, New York, 1965.
[2] H. Alzer, G. Felder, A Turán-type inequality for the gamma function, J. Math. Anal. Appl., 350 (2009), 276-282.
[3] S. Karlin and G. Szegö, On certain determinants whose elements are orthogonal polynomials, J. Anal. Math., 8 (1961), 1-157.
[4] A. Laforgia and P. Natalini, Turán-type inequalities for some special functions, J. Inequal. Pure Appl. Math., 27 (2006), Issue 1, Art. 32.
[5] G. Szegö, Orthogonal Polynomials, 4th ed., Colloquium Publications, vol. 23, American Mathematical Society, Rhode Island, 1975.
[6] P. Turán, On the zeros of the polynomials of Legendre, Časopis Pro Péstování Matematiky 75 (1950), 113-122.

Cristinel Mortici
Department of Mathematics
Valahia University of Târgovişte
Bd. Unirii 18, 130082 Târgovişte, Romania
email: cmortici@valahia.ro

