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ON THE UNIVALENCE OF CERTAIN INTEGRAL OPERATORS
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Abstract. In this note we shall study the analyticity and the univalence of
some integral operators if the functions involved belongs to some special subclasses
of univalent functions.
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1. Introduction

Let A be the class of functions f which are analytic in the unit disk
U = { z ∈ C : |z| < 1 } such that f(0) = 0, f ′(0) = 1.

Let S denote the class of functions f ∈ A, f univalent in U .
We recall here the well known integral operators due to Kim and Merkes [1],

Pfaltzgraff [4], Moldoveanu and N. N. Pascu [3] and the recently generalization of
these results obtained by the author in [6].

Theorem 1.[1]. Let f ∈ S, β ∈ C. If |β| ≤ 1/4, then the function

F (z) =
∫ z

0

(
f(u)
u

)β
du (1)

is univalent in U.

Theorem 2.[4]. Let f ∈ S, γ ∈ C. If |γ| ≤ 1/4, then the function

F (z) =
∫ z

0

(
f ′(u)

)γ
du (2)

is univalent in U.

Theorem 3.[3]. Let f ∈ S, α ∈ C. If |α− 1| ≤ 1/4, then the function

F (z) =
(
α

∫ z

0
fα−1(u)du

)1/α

(3)
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is analytic and univalent in U, where the principal branch is intended.

Theorem 4.[6]. Let f, g ∈ S and α, β, γ be complex numbers. If

4|α− 1| + 4|β| + 4|γ| ≤ 1 (4)

then the function

H(z) =

(
α

∫ z

0
gα−1(u)

(
f(u)
u

)β (
f ′(u)

)γ
du

)1/α

(5)

is analytic and univalent in U , where the principal branch is intended.

The usual subclasses of the class S consisting of starlike and convex functions
will be denoted by S∗ , respectively CV . Also we consider the subclasses of ϕ-spiral
and convex ϕ-spiral functions of order ρ defined as follows

S∗(ϕ, ρ) =
{
f ∈ S : Re

(
eiϕ

zf ′(z)
f(z)

)
> ρ cosϕ, z ∈ U

}
and

C(ϕ, ρ) =
{
f ∈ S : Re

[
eiϕ
(

1 +
zf ′′(z)
f ′(z)

)]
> ρ cosϕ, z ∈ U

}
,

where ϕ ∈ (−π/2, π/2), ρ ∈ [0, 1).
We observe that S∗ = S∗(0, 0) and CV = C(0, 0).

2. Preliminaries

We first recall here some results which will be used in the sequel.
Theorem 5.[2]. If f ∈ S∗(ϕ, ρ) and a is a fixed point from the unit disk U , then

the function h,

h(z) =
a · z

f(a)(z + a)(1 + āz)ψ
· f
(

z + a

1 + āz

)
(6)

where
ψ = e−2iϕ − 2ρ cosϕe−iϕ (7)

is a function of the class S∗(ϕ, ρ).

The results obtained are proved by using the following univalence criteria:
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Theorem 6.[5]. Let α, c be complex numbers, |α− 1| < 1, |c| < 1, g ∈ A and h
an analytic function in U , h(z) = 1 + c1z + . . .. If the inequality∣∣∣∣ c|z|2 + (1 − |z|2)

[
(α− 1)

zg′(z)
g(z)

+
zh′(z)
h(z)

] ∣∣∣∣ ≤ 1 (8)

is true for all z ∈ U , then the function

H(z) =
(
α

∫ z

0
gα−1(u)h(u)du

)1/α

(9)

is analytic and univalent in U , where the principal branch is intended.
In the next section we will consider the case when the functions f and g belongs

to some subsets of S and we expect that the hypothesis (4) of the Theorem 4 becomes
larger.

3. Main results

Theorem 7. Let f, g ∈ S∗(ϕ, ρ), α, β be complex numbers. If

(1 + 2(1 − ρ) cosϕ) · |α− 1| + 2(1 − ρ) cosϕ · |β| < 1 (10)

then the function

H(z) =

(
α

∫ z

0
gα−1(u)

(
f(u)
u

)β
du

)1/α

(11)

is analytic and univalent in U , where the principal branch is intended.

Proof. Let f ∈ S∗(ϕ, ρ) , f(z) = z + b2z
2 + . . . and h be the function defined by

Theorem 5, h(z) = z + c2z
2 + . . . , h ∈ S∗(ϕ, ρ). From (6) we obtain

c2 =
h′′(0)

2
= (1 − |a|2) f

′(a)
f(a)

− 1 + ψ|a|2

a
,

where ψ is given by (7). It follows that

af ′(a)
f(a)

=
1 + a · c2 + ψ|a|2

1 − |a|2
(12)

It is known that if g ∈ S∗(ϕ, ρ), g(z) = z + a2z
2 + . . ., we have

| a2 | ≤ 2(1 − ρ) cosϕ (13)
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Since the function f is univalent in U we can choose the uniform branch of
(
f(u)
u

)β
equal to 1 at the origin. Then the function h,

h(z) =
(
f(u)
u

)β
(14)

is analytic in U , h(z) = 1 + c1z + . . .
From (12) and (14)we deduce

c|z|2 + (1 − |z|2)
[

(α− 1)
zg′(z)
g(z)

+
zh′(z)
h(z)

]
(15)

= c|z|2 + (α− 1)(1 + c2z + ψ|z|2) + β(b2z + ψ|z|2 + |z|2)

= [ c+ (α− 1)ψ + β(ψ + 1) ]|z|2 + (α− 1)(1 + c2z) + βb2z

If we take c = −[ (α− 1)ψ + β(ψ + 1) ], then

| c | ≤ |α− 1 | · | ψ + 1 | + |β| · | ψ + 1 | + |α− 1 |

and since |ψ+1| = 2(1−ρ) cosϕ, in view of (10), it is clear that |c| < 1. The relation
(15) becomes: ∣∣∣∣ c|z|2 + (1 − |z|2)

[
(α− 1)

zg′(z)
g(z)

+
zh′(z)
h(z)

] ∣∣∣∣
≤ [ 1 + | c2 | ] · |α− 1| + | b2 | · |β|

Taking into account (13), in view of assertion (10), the conditions of Theorem 6 are
satisfied. It follows that the function H defined by (11) is analytic and univalent in
U .

Corollary 1. Let f, g ∈ S∗ and α, β be complex numbers. If

3|α− 1| + 2|β| < 1 (16)

then the function

H(z) =

(
α

∫ z

0
gα−1(u)

(
f(u)
u

)β
du

)1/α

is analytic and univalent in U , where the principal branch is intended.
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Theorem 8. Let g ∈ S∗(ϕ, ρ), f ∈ C(ϕ, ρ), α, γ be complex numbers. If

(1 + 2(1 − ρ) cosϕ) · |α− 1| + 2(1 − ρ) cosϕ · |γ| < 1

then the function

H(z) =
(
α

∫ z

0
gα−1(u)

(
f ′(u)

)γ
du

)1/α

is analytic and univalent in U , where the principal branch is intended.

Proof. The proof of Theorem 8 is analogous to that of Theorem 7 and it uses
the relationship between the classes S∗(ϕ, ρ) and C(ϕ, ρ) : if f ∈ C(ϕ, ρ) then
h ∈ S∗(ϕ, ρ), where h(z) = zf ′(z).

Corollary 2. Let g ∈ S∗, f ∈ CV and α, γ be complex numbers. If

3|α− 1| + 2|γ| < 1 (17)

then the function

H(z) =
(
α

∫ z

0
gα−1(u)

(
f ′(u)

)γ
du

)1/α

is analytic and univalent in U , where the principal branch is intended.
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500091 Braşov, Romania
email: horianatudor@yahoo.com

157


