DIFFERENTIAL SUBORDINATION RESULTS FOR CLASSES OF THE FAMILY $\xi(\varphi,\vartheta)$

Maslina Darus and Imran Faisal

ABSTRACT. In this paper we introduce two new classes of family of complex valued function in a unit disk corresponding to particular proper rational numbers. Then by using the Hadamard product we deduced some interesting differential subordination results.

Keywords: Differential subordination, Hadamard product.

2000 Mathematics Subject Classification: 30C45

1. Introduction and Preliminaries

Let \mathcal{E}_{α}^+ denotes the family of all functions F(z) in the unit disk $U = \{z : |z| < 1\}$ satisfying F'(0) = 1 of the form

$$F(z) = z + \sum_{n=2}^{\infty} a_n z^{n-n/\alpha} \quad \alpha \in \mathcal{N} - \{1\} = \{2, 3, 4...\}$$
 (1)

Similarly \mathcal{E}_{α}^- denotes the family of all functions F(z) in the unit disk $U=\{z:|z|<1\}$ of the form

$$F(z) = z - \sum_{n=2}^{\infty} a_n z^{n-n/\alpha} \quad \alpha \in \mathcal{N} - \{1\} = \{2, 3, 4...\}$$
 (2)

satisfying F'(0) = 1.

Acta Universitatis Apulensis

ISSN: 1582-5329

If two functions f and g analytic in U then f is called subordinate to g if there exist a Schwarz function w(z) analytic in U such that f(z)=g(w(z)) and $z \in U = \{z : |z| < 1\}$. Then we denote this subordination by $f(z) \prec g(z)$ or simply $f \prec g$ but in a special case if g is univalent in U then the above subordination is equivalent to f(0) = g(0) and $f(U) \subset g(U)$.

Let $\phi: C^3 \times U \rightarrow C$ and let h analytic in U. Assume that p, ϕ are analytic and univalent in U and p satisfies the differential superordination

$$h(z) \prec \phi(p(z), zp'(z), z^2p''(z); z)$$
 (3)

Then p is called a solution of the differential superordination. An analytic function q is called a subordinant if $q \prec p$ for all p satisfying equation (3). A univalent function q such that $p \prec q$ for all subordinants p of equaction (3) is said to be the best subordinant.

Let \mathcal{E}^+ be the class of analytic functions of the form

$$f(z) = 1 + \sum_{1}^{\infty} a_n z^n \quad z \in U, a_n \ge 0.$$
 (4)

Let $f, g \in \mathcal{E}^+$ where

$$f(z) = 1 + \sum_{1}^{\infty} a_n z^n$$
 and $g(z) = 1 + \sum_{1}^{\infty} b_n z^n$

then their convolution or Hadamard product f(z) * g(z) is defined by

$$f(z) * g(z) = 1 + \sum_{n=1}^{\infty} a_n b_n z^n, \quad a_n \ge 0, b_n \ge 0, z \in U$$

Juneja et al. [1] define the family $\epsilon(\phi, \psi)$, so that

$$R\left(\frac{f(z)*\phi(z)}{f(z)*\psi(z)}\right) > 0, \ z \in U,$$

where

$$\phi(z) = 1 + \sum_{1}^{\infty} \phi_n z^n, \psi(z) = 1 + \sum_{1}^{\infty} \psi_n z^n$$

are analytic in U with the conditions $\phi_n > 0$, $\psi_n > 0$, $\phi_n > \psi_n$, $f(z) * \psi(z) \neq 0$. During our study of convolution or Hadamard product, we have seen that many different authors investigated this functional for various types of classes of univalent functions, namely Barnard and Kellogg [4], Liu and Srivastava [5].

Definition 1. Let $\xi_{\alpha}^{+}(\varphi, \vartheta)$ be the class of family of all $F(z) \in \mathcal{E}_{\alpha}^{+}$ such that

$$R\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right) > 0, \ z \in U,$$

where

$$\varphi(z) = 1 + \sum_{1}^{\infty} \varphi_n z^{n-n/\alpha}, \vartheta(z) = 1 + \sum_{1}^{\infty} \vartheta_n z^{n-n/\alpha}$$

are analytic in U with specific conditions, $\varphi_n \geq 0$, $\vartheta_n \geq 0$, $\varphi_n \geq \vartheta_n$, $F(z) * \vartheta(z) \neq 0$ and for all $n \geq 0$.

Definition 2. Let $\xi_{\alpha}^{-}(\varphi, \vartheta)$ be the class of family of all $F(z) \in \mathcal{E}_{\alpha}^{+}$ such that

$$R\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right) > 0, \ z \in U,$$

where

$$\varphi(z) = 1 - \sum_{1}^{\infty} \varphi_n z^{n-n/\alpha}, \vartheta(z) = 1 - \sum_{1}^{\infty} \vartheta_n z^{n-n/\alpha}$$

are analytic in U with specific conditions, $\varphi_n \geq 0$, $\vartheta_n \geq 0$, $\varphi_n \geq \vartheta_n$, $F(z) * \vartheta(z) \neq 0$ and for all $n \geq 0$.

The aim of the present paper is to propose some sufficient conditions for all functions F(z) belongs to the new classes \mathcal{E}_{α}^{+} and \mathcal{E}_{α}^{-} to satisfy

$$\frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)} \prec h(z), \ z \in U$$

where q(z) is a given univalent function in U such that q(0) = 1.

The classes \mathcal{E}_{α}^{+} and \mathcal{E}_{α}^{-} defined in above exhibits contains some interesting properties. To prove our main results we need the following lemmas.

Lemma 1 [3]. Let q(z) be univalent in the unit disk U and $\theta(z)$ be analytic in a domain D containing q(U). If $zq'(z)\theta(z)$ is starlike in U, and

$$zp'(z)\theta(p(z)) \prec zq(z)\theta(q(z))$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Theorem 1. Let the function q(z) be univalent in the unit disk U such that $q'(z) \neq 0$ and $\frac{zq'(z)}{q(z)} \neq 0$ is starlike in U if $F(z) \in \mathcal{E}^+_{\alpha}$ satisfies the subordination

$$b\left(\frac{(F(z)*\varphi(z))'}{(F(z)*\varphi(z))} - \frac{(F(z)*\vartheta(z))'}{(F(z)*\vartheta(z))}\right) \prec \frac{bzq'(z)}{q(z)},$$

then

$$\frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)} \prec q(z),$$

then q(z) is the best dominant.

Proof. First we defined the function p(z) that is

$$P(z) = \frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)},$$

then

$$\frac{zP'(z)}{P(z)} = \frac{z(F(z)*\vartheta(z)((F(z)*\varphi(z))' - ((F(z)*\varphi(z))(F(z)*\vartheta(z))'}{((F(z)*\vartheta(z))((F(z)*\varphi(z))}$$

and

$$b\left(\frac{zP'(z)}{P(z)}\right) = b\left(\frac{(F(z) * \varphi(z))'}{F(z) * \varphi(z)} - \frac{(F(z) * \vartheta(z))'}{F(z) * \vartheta(z)}\right). \tag{5}$$

By setting $\theta(\omega) = b/\omega$ it can easily be observed that $\theta(\omega)$ is analytic in $C - \{0\}$. Then we obtain that

$$\theta(p(z)) = b/p(z)$$
, and $\theta(q(z)) = b/q(z)$.

So from equation (5) we have

$$b\left(\frac{zP'(z)}{P(z)}\right) = zp'(z)\theta(p(z)) = b\left(\frac{(F(z) * \varphi(z))'}{F(z) * \varphi(z)} - \frac{(F(z) * \vartheta(z))'}{F(z) * \vartheta(z)}\right) \prec \frac{zq'(z)}{q(z)}$$
(6)

so we have

$$zp'(z)\theta(p(z)) \prec \frac{bzq'(z)}{q(z)} \prec zq'(z)\theta(q(z))$$

this implies

$$\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)} \prec q(z)$$

Corollary 1. If $F(z) \in \mathcal{E}_{\alpha}^+$ satisfies the subordination

$$b\left(\frac{(F(z)*\varphi(z))'}{(F(z)*\varphi(z))} - \frac{(F(z)*\vartheta(z))'}{(F(z)*\vartheta(z))}\right) \prec \frac{b(A-B)z}{(1+Az)(1+Bz)}$$

then

$$\frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)} \prec \frac{(1 + Az)}{(1 + Bz)}$$

and $\frac{(1+Az)}{(1+Bz)}$ is the best dominant.

Corollary 2. If $F(z) \in \mathcal{E}_{\alpha}^+$ satisfies the subordination

$$b\left(\frac{(F(z)*\varphi(z))'}{(F(z)*\varphi(z))} - \frac{(F(z)*\vartheta(z))'}{(F(z)*\vartheta(z))}\right) \prec \frac{2bz}{(1-z)(1+z)}$$

then

$$\frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)} \prec \frac{(1+z)}{(1-z)},$$

and $\frac{(1+z)}{(1-z)}$ is the best dominant.

Lemma 2 [2]. Let q(z) be convex in the unit disk U with q(0) = 1 and $R(q(z)) > 1/2, z \in U$. If $0 \le U < 1$, p is analytic function in U with p(0) = 1 and if

$$(1-u)p^{2}(z) + (2u-1)p(z) - u + (1-u)zp'(z)$$

$$\prec (1-u)q^{2}(z) + (2u-1)q(z) - u + (1-u)zq'(z)$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Theorem 2. Let q(z) be convex in the unit disk U with q(0) = 1 and R(q(z)) > 1/2. If $F(z) \in \mathcal{E}^+_{\alpha}$ and $\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}$ is an analytic function in U satisfies the subordination

$$(1-u)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right)^{2}(z) + (2u-1)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right) - u$$

$$+(1-u)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right)\left(\frac{z(F(z)*\varphi(z))'}{(F(z)*\varphi(z))} - \frac{z(F(z)*\vartheta(z))'}{(F(z)*\vartheta(z))}\right)$$

$$\prec (1-u)q^{2}(z) + (2u-1)q(z) - u + (1-u)zq'(z)$$

then

$$\frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)} \prec q(z).$$

Proof. Let the function p(z) be defined by

$$p(z) = \frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)}, z \in U$$

since p(0) = 1 therefore

$$(1-u)p^2(z) + (2u-1)p(z) - u + (1-u)zp'(z)$$

$$=(1-u)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right)^2(z)+(2u-1)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right)-u+(1-u)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right)'$$

$$= (1-u) \left(\frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)}\right)^2(z) + (2u-1) \left(\frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)}\right) - u + (1-u) \left(\frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)}\right)$$

$$\left(\frac{z(F(z) * \varphi(z))'}{(F(z) * \varphi(z))} - \frac{z(F(z) * \vartheta(z))'}{(F(z) * \vartheta(z))}\right)$$

 $\prec (1-u)q^2(z) + (2u-1)q(z) - u + (1-u)zq'(z)$

Now by using the lemma (2) we have

 $p(z) \prec q(z)$ this implies that

$$\frac{F(z) * \varphi(z)}{F(z) * \vartheta(z)} \prec q(z)$$

and q(z) is the best dominant.

Corollary 3. If $F(z) \in \mathcal{E}^+_{\alpha}$ and and $\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}$ is an analytic function in satisfying the subordination

$$(1-u)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right)^2(z) + (2u-1)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right) - u$$

$$+ (1-u)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right)\left(\frac{z(F(z)*\varphi(z))'}{(F(z)*\varphi(z))} - \frac{z(F(z)*\vartheta(z))'}{(F(z)*\vartheta(z))}\right)$$

$$\prec (1-u)\left(\frac{1+Az}{1+Bz}\right)^2(z) + (2u-1)\left(\frac{1+Az}{1+Bz}\right) - u + (1-u)\left(\frac{1+Az}{1+Bz}\right)\left(\frac{(A-B)z}{(1+Az)(1+Bz)}\right)$$
 then
$$\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)} \prec \left(\frac{1+Az}{1+Bz}\right), -1 \leq B \leq A \leq 1$$

and $\left(\frac{1+Az}{1+Bz}\right)$ is the best dominant.

Proof. Let the function q(z) be defined by

$$q(z) = \left(\frac{(1+Az)}{(1+Bz)}, z \in U\right)$$

this implies that q(0) = 1 and R(q(z)) > 1/2 for arbitrary $A, B, z \in U$ where

$$\frac{zq'(z)}{q(z)} = \left(\frac{(A-B)z}{(1+Az)(1+Bz)}\right)$$

Then applying Theorem 2, we obtain the result.

Corollary 4. If $F(z) \in \mathcal{E}^+_{\alpha}$ and $\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}$ is an analytic function in satisfying the subordination

$$(1-u)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right)^2(z) + (2u-1)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right) - u$$

$$+ (1-u)\left(\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)}\right)\left(\frac{z(F(z)*\varphi(z))'}{(F(z)*\varphi(z))} - \frac{z(F(z)*\vartheta(z))'}{(F(z)*\vartheta(z))}\right)$$

$$\prec (1-u)\left(\frac{1+z}{1-z}\right)^2(z) + (2u-1)\left(\frac{1+z}{1-z}\right) - u + (1-u)\left(\frac{1+z}{1-z}\right)\left(\frac{2z}{(1-z)(1+z)}\right)$$
 then
$$\frac{F(z)*\varphi(z)}{F(z)*\vartheta(z)} \prec \left(\frac{1+z}{1-z}\right),$$

and $\left(\frac{1+z}{1-z}\right)$ is the best dominant.

Proof. Let the function q(z) be defined by

$$q(z) = \left(\frac{1+z}{1-z}\right), z \in U$$

then in view of Theorem 2 we obtain the result.

Other interesting results on differential subordination and superordination can be seen in [6].

Acknowledgement: The work here is fully supported by UKM-ST-06-FRGS0107-2009, MOHE, Malaysia.

References

- [1] O. P. Juneja, T. R. Reddy and M. L. Mogra, A convolution Approach for analytic functions with negative coefficients, Soochow J. of Math, 11(1985), 69-81.
- [2] M. Obradovic, T. Yaguchi and H. Saitoh, On some conditions for univalence and starlikeness in the unit disk, Rendiconti di Math.Series VII,12(1992), 869-877.
- [3] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and applications, Pure and Applied Mathematics, No. 225, Marcel Dekker, New York, (2000).

- [4] R. W. Barnard and D. Kellogg, Applications of convolution operators to problems in univalent function theory, Michigan Math. J. 27 (1980), no. 1, 8194.
 - [5] J. L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259 (2001), 566-581.
 - [6] A. A. Lupas, A note on differential superordinations using Salagean and Rucsheweyh operators, Acta Universitatis Apulensis, 24 (2010), 201-209.

Maslina Darus School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi 43600 Selangor D. Ehsan, Malaysia email:maslina@ukm.my

Imran Faisal School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi 43600 Selangor D. Ehsan, Malaysia email:faisalmath@gmail.com