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INTEGRAL REPRESENTATION FORMULA FOR MAXIMAL
SURFACES IN THE GROUP OF RIGID MOTIONS E(1, 1)
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Abstract. In this paper, we describe a method to derive a Weierstrass-type
representation formula for simply connected immersed maximal surfaces in E(1, 1).
We consider the left invariant metric and use some results of Levi-Civita connection.
Furthermore, we show that any harmonic map of a simply connected coordinate
region D into E(1, 1) can be represented a form.
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1. Introduction

For the first time Weierstrass representation for conformal immersion of surface
into R3 appeared in the result of variational problem on search of minimal surface
restricted by the some curve [19]. Generalization of Weierstrass formulae for surfaces
with mean curvature H 6= 0 was proposed by Eisenhart in 1909 [7].

It has been shown [12] that Weierstrass representations are very useful and suit-
able tools for the systematic study of minimal surfaces immersed in n-dimensional
spaces. This subject has a long and rich history. It has been extensively inves-
tigated since the initial works of Weierstrass [19]. In the literature there exists a
great number of applications of the Weierstrass representation to various domains
of Mathematics, Physics, Chemistry and Biology. In particular in such areas as
quantum field theory [8], chemical physics, fluid dynamics and membranes [16],
minimal surfaces play an essential role. More recently it is worth mentioning that
works by Kenmotsu [10], Hoffmann [9], Osserman [15], Budinich [5], Konopelchenko
[6,11] and Bobenko [3, 4] have made very significant contributions to constructing
minimal surfaces in a systematic way and to understanding their intrinsic geomet-
ric properties as well as their integrable dynamics. The type of extension of the
Weierstrass representation which has been useful in three-dimensional applications
to multidimensional spaces will continue to generate many additional applications to
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physics and mathematics. According to [13] integrable deformations of surfaces are
generated by the Davey–Stewartson hierarchy of 2+1 dimensional soliton equations.
These deformations of surfaces inherit all the remarkable properties of soliton equa-
tions. Geometrically such deformations are characterised by the invariance of an
infinite set of functionals over surfaces, the simplest being the Willmore functional.

Direct approaches to describe surfaces always have been of great interest. The
classical Weierstrass formulae for minimal surfaces immersed in the three-dimensional
Euclidean space R3 is the best known example of such an approach. Recently the
Weierstrass formulae have been generalized to the case of generic surfaces in R3. Dur-
ing the last two years the generalized Weierstrass formulae have been used intensively
to study both global properties of surfaces in R3 and their integrable deformations.
Analytic methods to study surfaces and their properties are of great interest both
in mathematics and in physics. A classical example of such an approach is given by
the Weierstrass representation for minimal surfaces [7]. This representation allows
us to construct any minimal surface in the three-dimensional Euclidean space R3 via
two holomorphic functions. It is the most powerful tool for the analysis of minimal
surfaces.

D. A. Berdinski and I. A. Taimanov gave a representation formula for minimal
surfaces in 3-dimensional Lie groups in terms of spinors and Dirac operators [1].

In this paper, we describe a method to derive a Weierstrass-type representation
formula for simply connected immersed minimal surfaces in E(1, 1). We consider the
left invariant metric and use some results of Levi-Civita connection. Furthermore,
we show that any harmonic map of a simply connected coordinate region D into
E(1, 1) can be represented a form.

2. Preliminaries

Let E(1, 1) be the group of rigid motions of Euclidean 2-space. This consists of
all matrices of the form  coshx sinhx y

sinhx coshx z
0 0 1

 .

Topologically, E(1, 1) is diffeomorphic to R3 under the map

E(1, 1) −→ R3 :

 coshx sinhx y
sinhx coshx z

0 0 1

 −→ (x, y, z) ,

It’s Lie algebra has a basis consisting of

X1 =
∂

∂x
, X2 = cosh x

∂

∂y
+ sinhx

∂

∂z
, X3 = sinh x

∂

∂y
+ coshx

∂

∂z
,
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for which
[X1,X2] = X3, [X2,X3] = 0, [X1,X3] = X2.

Put
x1 = x, x2 =

1
2

(y + z) , x3 =
1
2

(y − z) .

Then,

X1 =
∂

∂x1
, X2 =

1
2

(
ex1 ∂

∂x2
+ e−x1 ∂

∂x3

)
, X3 =

1
2

(
ex1 ∂

∂x2
− e−x1 ∂

∂x3

)
. (2.1)

The bracket relations are

[X1,X2] = X3, [X2,X3] = 0, [X1,X3] = X2. (2.2)

We consider left-invariant Lorentzian metricswhich has a pseudo-orthonormal basis
{X1,X2,X3} . We consider left-invariant Lorentzian metric, given by

g = −
(
dx1

)2 +
(
e−x1

dx2 + ex1
dx3

)2
+

(
e−x1

dx2 − ex1
dx3

)2
. (2.3)

Let coframe of our frame be defined by

θ1 = dx1, θ2 = e−x1
dx2 + ex1

dx3, θ3 = e−x1
dx2 − ex1

dx3.

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of
the left-invariant metric g, defined above the following is true:

∇ =

 0 0 0
−X3 0 −X1

−X2 −X1 0

 , (2.4)

where the (i, j)-element in the table above equals ∇XiXj for our basis

{Xk, k = 1, 2, 3} = {X1,X2,X3}.

Its Ricci tensor vanishes except R11 = −2. Obviously, the Lorentzian metric g
is not Einstein [14].
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3.Integral Representation Formula in E(1,1)

In this section, we obtain an integral representation formula for spacelike maxi-
mal surfaces in E(1, 1).

We denote with Ω ⊆ C ∼= R2 a simply connected domain with a complex coor-
dinate z = u + iv, u, v ∈ R. Also we will use the standard notations for complex
derivatives:

∂

∂z
:=

1
2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂z
:=

1
2

(
∂

∂u
+ i

∂

∂v

)
. (3.1)

For X, denote by ad(X)∗ the adjoint operator of ad(X), i.e., it satisfies the
equation

g ([X, Y ] , Z) = g (Y, ad(X)∗ (Z)) , (3.2)

for any Y, Z. Let U be the symmetric bilinear operator on Lie algebra of E(2)
defined by

U (X, Y ) :=
1
2
{ad(X)∗ (Y ) + ad(Y )∗ (X)} . (3.3)

Lemma 3.1. Let {X1,X2,X3} be the orthonormal basis for an orthonormal
basis for Lie algebra of E(1, 1) defined in (2.3). Then

U (X1,X3) = U (X3,X1) =
1
2
X2,

U (X2,X1) = U (X1,X2) =
1
2
X3,

U (X3,X2) = U (X2,X3) = −X1,

U (X1,X1) = U (X3,X3) = U (X2,X2) = 0.

Proof. Using (3.2) and (3.3), we have

2g (U (X, Y ) , Z) = g ([X, Z] , Y ) + g ([Y, Z] , X) .

Thus, direct computations lead to the table of U above. Lemma 3.1 is proved.

Lemma 3.2. (see [10]) Let D be a simply connected domain. A smooth map
ϕ : D −→ E(1.1) is harmonic if and only if(

ϕ−1ϕu

)
u

+
(
ϕ−1ϕv

)
v
− ad

(
ϕ−1ϕu

)∗ (
ϕ−1ϕu

)
− ad

(
ϕ−1ϕv

)∗ (
ϕ−1ϕv

)
= 0 (3.4)

holds.
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Let z = u + iv. Then in terms of complex coordinates z, z̄, the harmonic map
equation (3.4) can be written as

∂

∂z̄

(
ϕ−1 ∂ϕ

∂z

)
+

∂

∂z

(
ϕ−1 ∂ϕ

∂z̄

)
− 2U

(
ϕ−1 ∂ϕ

∂z
, ϕ−1 ∂ϕ

∂z̄

)
= 0. (3.5)

Let ϕ−1dϕ = Adz + Ādz̄. Then, (3.5) is equivalent to

Az̄ + Āz = 2U
(
A, Ā

)
. (3.6)

The Maurer–Cartan equation is given by

Az̄ − Āz =
[
A, Ā

]
. (3.7)

(3.6) and (3.7) can be combined to a single equation

Az̄ = U
(
A, Ā

)
+

1
2

[
A, Ā

]
. (3.8)

(3.8) is both the integrability condition for the differential equation ϕ−1dϕ =
Adz + Ādz̄ and the condition for ϕ to be a harmonic map.

Let D(z, z̄) be a simply connected domain and ϕ : D −→ E(1, 1) a smooth map.
If we write ϕ (z) =

(
x1 (z) , x2 (z) , x3 (z)

)
, then by direct calculation

A = −x1
zX1 +

[
e−x1

x2
z + ex1

x3
z

]
X2 +

[
e−x1

x2
z − ex1

x3
z

]
X3. (3.9)

Theorem 3.3. ϕ : D −→ E(1, 1) is harmonic if and only if the following
equations hold:

−x1
zz̄ +

[
e−x1

x2
z + ex1

x3
z

] [
e−x1

x2
z̄ − ex1

x3
z̄

]
(3.10)

+
[
e−x1

x2
z − ex1

x3
z

] [
e−x1

x2
z̄ + ex1

x3
z̄

]
= 0,

[
−x1

z̄e
−x1

x2
z + e−x1

x2
zz̄ + x1

z̄e
x1

x3
z + ex1

x3
zz̄

]
+

[
−x1

ze
−x1

x2
z̄ + e−x1

x2
z̄z + x1

ze
x1

x3
z̄

+ex1
x3

z̄z

]
+ x1

z

[
e−x1

x2
z̄ − ex1

x3
z̄

]
+ x1

z̄

[
e−x1

x2
z − ex1

x3
z

]
= 0, (3.11)

[
−x1

z̄e
−x1

x2
z + e−x1

x2
zz̄ − x1

z̄e
x1

x3
z − ex1

x3
zz̄

]
+

[
−x1

ze
−x1

x2
z̄ + e−x1

x2
z̄z − x1

ze
x1

x3
z̄

−ex1
x3

z̄z

]
+ x1

z

[
e−x1

x2
z̄ + ex1

x3
z̄

]
+ x1

z̄

[
e−x1

x2
z + ex1

x3
z

]
= 0. (3.12)
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Proof. From (3.9), we have

Ā = −x1
z̄X1 +

[
e−x1

x2
z̄ + ex1

x3
z̄

]
X2 +

[
e−x1

x2
z̄ − ex1

x3
z̄

]
X3. (3.13)

Using (3.9) and (3.13), we obtain

U
(
A, Ā

)
= −1

2
x1

z

[
e−x1

x2
z̄ + ex1

x3
z̄

]
X3 −

1
2
x1

z

[
e−x1

x2
z̄ − ex1

x3
z̄

]
X2

−1
2
x1

z̄

[
e−x1

x2
z + ex1

x3
z

]
X3 −

[
e−x1

x2
z + ex1

x3
z

] [
e−x1

x2
z̄ − ex1

x3
z̄

]
X1

−1
2
x1

z̄

[
e−x1

x2
z − ex1

x3
z

]
X2 −

[
e−x1

x2
z − ex1

x3
z

] [
e−x1

x2
z̄ + ex1

x3
z̄

]
X1.

On the other hand, we have

Az̄ = −x1
zz̄X1 +

[
−x1

z̄e
−x1

x2
z + e−x1

x2
zz̄ + x1

z̄e
x1

x3
z + ex1

x3
zz̄

]
X2

+
[
−x1

z̄e
−x1

x2
z + e−x1

x2
zz̄ −−x1

z̄e
x1

x3
z − ex1

x3
zz̄

]
X3,

Āz = −x1
z̄zX1 +

[
−x1

ze
−x1

x2
z̄ + e−x1

x2
z̄z + x1

ze
x1

x3
z̄ + ex1

x3
z̄z

]
X2

+
[
−x1

ze
−x1

x2
z̄ + e−x1

x2
z̄z − x1

ze
x1

x3
z̄ − ex1

x3
z̄z

]
X3.

Hence, using (3.6) we obtain (3.10)-(3.12). This completes the proof of the
Theorem.

The exterior derivative d is decomposed as

d = ∂ + ∂̄, ∂ =
∂

∂z
dz, ∂̄ =

∂

∂z̄
dz̄, (3.14)

with respect to the conformal structure of D.
Let

℘1 = x1
zdz, ℘2 =

[
e−x1

x2
z + ex1

x3
z

]
dz, (3.15)

℘3 =
[
e−x1

x2
z − ex1

x3
z

]
dz.

Theorem 3.4. The triplet {℘1, ℘2, ℘3} of (1, 0)-forms satisfies the following
differential system:

∂̄℘1 = ℘2 ∧ ℘3 + ℘2 ∧ ℘3, (3.16)
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∂̄℘2 + ∂℘2 = −℘1 ∧ ℘3 − ℘1 ∧ ℘3, (3.17)

∂̄℘3 + ∂℘3 = −℘1 ∧ ℘2 − ℘1 ∧ ℘2. (3.18)

Theorem 3.5. Let {℘1, ℘2, ℘3} be a solution to (3.16)-(3.18) on a simply con-
nected coordinate region D. Then

ϕ (z, z̄) = 2Re
∫ z

z0

(
℘1,

(
℘2 + ℘3

)
ex1

,
(
℘2 − ℘3

)
e−x1

)
(3.19)

is a harmonic map into E(1, 1).
Conversely, any harmonic map of D into E(1, 1) can be represented in this form.

Proof. By theorem (3.3) we see that ϕ (z, z̄) is a harmonic curve if and only if
ϕ (z, z̄) satisfy (3.10)-(3.12).

From (3.15), we have

x1 (z, z̄) = 2Re
∫ z

z0

℘1, x2 (z, z̄) = 2Re
∫ z

z0

(
℘2 + ℘3

)
ex1

,

x3 (z, z̄) = 2Re
∫ z

z0

(
℘2 − ℘3

)
e−x1

,

which proves the theorem.
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