AN APPLICATION OF SALAGEAN DERIVATIVE ON PARTIAL SUMS OF CERTAIN ANALYTIC AND UNIVALENT FUNCTIONS

S. Porwal, K.K. Dixit

Abstract. Let $\phi(z)$ be a fixed analytic and univalent function of the form $\phi(z)=z+\sum_{k=2}^{\infty} c_{k} z^{k}$ and $H_{\phi}\left(c_{k}, \delta\right)$ be the subclass consisting of analytic and univalent functions f of the form $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ which satisfy the inequality $\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq \delta$. In this paper, we determine the sharp lower bounds for $\operatorname{Re}\left\{\frac{D^{p} f(z)}{D^{p} f_{n}(z)}\right\}$ and $\operatorname{Re}\left\{\frac{D^{p} f_{n}(z)}{D^{p} f(z)}\right\}$, where $f_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}$ be the sequence of partial sums of a function $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ belonging to the class $H_{\phi}\left(c_{k}, \delta\right)$ and D^{p} stands for the Salagean derivative. In this paper, we extend the results of ([1], [2], [3], [6]) and we point out that some conditions on the results of Frasin (([1],Theorem 2), ([2],Theorem 2.7)) are incorrect and we correct them.

2010 Mathematics Subject Classification: 30C45.

1. Introduction

Let A denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z:|z|<1\}$. Further, by S we shall denote the class of all functions in A which are univalent in U. A function $f(z)$ in S is said to be starlike of order $\alpha(0 \leq \alpha<1)$, denoted by $S^{*}(\alpha)$, if it satisfies $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha,(z \in U)$, and is said to be convex of order $\alpha(0 \leq \alpha<1)$, denoted by $K(\alpha)$, if it satisfies $R e\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, \quad(z \in U)$.

Let $T^{*}(\alpha)$ and $C(\alpha)$ be subclasses of $S^{*}(\alpha)$ and $K(\alpha)$, respectively, whose functions are of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, a_{k} \geq 0 \tag{2}
\end{equation*}
$$

A sufficient condition for a function of the form (1) to be in $S^{*}(\alpha)$ is that

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha)\left|a_{k}\right| \leq 1-\alpha \tag{3}
\end{equation*}
$$

and to be in $K(\alpha)$ is that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k(k-\alpha)\left|a_{k}\right| \leq 1-\alpha \tag{4}
\end{equation*}
$$

For the functions of the form (2), Silverman [5] proved that the above sufficient conditions are also necessary.

Let $\phi(z) \in S$ be a fixed function of the form

$$
\begin{equation*}
\phi(z)=z+\sum_{k=2}^{\infty} c_{k} z^{k},\left(c_{k} \geq c_{2}>0, k \geq 2\right) \tag{5}
\end{equation*}
$$

Very recently, Frasin [2] defined the class $H_{\phi}\left(c_{k}, \delta\right)$ consisting of functions $f(z)$ of the form (1) which satisfy the inequality

$$
\begin{equation*}
\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq \delta \tag{6}
\end{equation*}
$$

where $\delta>0$. He shows that for suitable choices of c_{k} and $\delta, H_{\phi}\left(c_{k}, \delta\right)$ reduces to various known subclasses of S studied by various authors (for detailed study see [2] and references therein).

In the present paper, we determine sharp lower bounds for $\operatorname{Re}\left\{\frac{D^{p} f(z)}{D^{p} f_{n}(z)}\right\}$ and $\operatorname{Re}\left\{\frac{D^{p} f_{n}(z)}{D^{p} f(z)}\right\}$, where $f_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}$ be the sequence of partial sums of a function $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ belonging to the class $H_{\phi}\left(c_{k}, \delta\right)$ and the operator D^{p} stands for the Salagean derivative introduced by Salagean in [4]. In this paper, we extend the results of Frasin ([1], [2]), Rosy et al. [3] and Silverman [6]. Further, we point out that some condition on the results of Frasin ([[1], Theorem 2], [[2], Theorem 2.7]) are incorrect and we correct them.

2. Main Results

Theorem 2.1. If $f \in H_{\phi}\left(c_{k}, \delta\right)$, then

$$
\begin{equation*}
\text { (i) } \operatorname{Re}\left\{\frac{D^{p} f(z)}{D^{p} f_{n}(z)}\right\} \geq \frac{c_{n+1}-(n+1)^{p} \delta}{c_{n+1}}, \quad(z \in U) \tag{7}
\end{equation*}
$$

and
(ii) $\operatorname{Re}\left\{\frac{D^{p} f_{n}(z)}{D^{p} f(z)}\right\} \geq \frac{c_{n+1}}{c_{n+1}+(n+1)^{p} \delta}, \quad(z \in U)$
where $c_{k} \geq\left\{\begin{array}{cc}k^{p} \delta & \text { if } \quad k=2,3, \ldots, n \\ \frac{k^{p} c_{n+1}}{(n+1)^{p}} & \text { if } \quad k=n+1, n+2 \ldots\end{array}\right.$.
The results (7) and (8) are sharp with the function given by

$$
\begin{equation*}
f(z)=z+\frac{\delta}{c_{n+1}} z^{n+1} \tag{9}
\end{equation*}
$$

where $0<\delta \leq \frac{c_{n+1}}{(n+1)^{p}}$.
Proof. To prove (i) part, we define the function $\omega(z)$ by

$$
\begin{align*}
\frac{1+\omega(z)}{1-\omega(z)} & =\frac{c_{n+1}}{(n+1)^{p} \delta}\left[\frac{D^{p} f(z)}{D^{p} f_{n}(z)}-\left(\frac{c_{n+1}-(n+1)^{p} \delta}{c_{n+1}}\right)\right] \\
& =\frac{1+\sum_{k=2}^{n} k^{p} a_{k} z^{k-1}+\frac{c_{n+1}}{(n+1)^{p} \delta} \sum_{k=n+1}^{\infty} k^{p} a_{k} z^{k-1}}{1+\sum_{k=2}^{n} k^{p} a_{k} z^{k-1}} \tag{10}
\end{align*}
$$

It suffices to show that $|\omega(z)| \leq 1$. Now, from (10) we can write

$$
\begin{aligned}
& \omega(z)=\frac{\frac{c_{n+1}}{(n+1)^{p} \delta} \sum_{k=n+1}^{\infty} k^{p} a_{k} z^{k-1}}{2+2 \sum_{k=2}^{n} k^{p} a_{k} z^{k-1}+\frac{c_{n+1}}{(n+1)^{p} \delta} \sum_{k=n+1}^{\infty} k^{p} a_{k} z^{k-1}} \\
& \text { Hence we obtain }|\omega(z)| \leq \frac{\frac{c_{n+1}}{(n+1)^{p} \delta} \sum_{k=n+1}^{\infty} k^{p}\left|a_{k}\right|}{2-2 \sum_{k=2}^{n} k^{p}\left|a_{k}\right|-\frac{c_{n+1}}{(n+1)^{p} \delta} \sum_{k=n+1}^{\infty} k^{p}\left|a_{k}\right|}
\end{aligned}
$$

$$
\begin{align*}
& \text { Now }|\omega(z)| \leq 1 \text { if } 2 \frac{c_{n+1}}{(n+1)^{p} \delta} \sum_{k=n+1}^{\infty} k^{p}\left|a_{k}\right| \leq 2-2 \sum_{k=2}^{n} k^{p}\left|a_{k}\right| \text { or, equivalently, } \\
& \qquad \sum_{k=2}^{n} k^{p}\left|a_{k}\right|+\frac{c_{n+1}}{(n+1)^{p} \delta} \sum_{k=n+1}^{\infty} k^{p}\left|a_{k}\right| \leq 1 \tag{11}
\end{align*}
$$

It suffices to show that the L.H.S. of (11) is bounded above by $\sum_{k=2}^{\infty} \frac{c_{k}}{\delta}\left|a_{k}\right|$, which is equivalent to

$$
\begin{equation*}
\sum_{k=2}^{n}\left(\frac{c_{k}-\delta k^{p}}{\delta}\right)\left|a_{k}\right|+\sum_{k=n+1}^{\infty}\left(\frac{(n+1)^{p} c_{k}-c_{n+1} k^{p}}{(n+1)^{p} \delta}\right)\left|a_{k}\right| \geq 0 \tag{12}
\end{equation*}
$$

To see that the function given by (9) gives the sharp result we observe that for $z=r e^{i \pi / n}$
$\frac{D^{p} f(z)}{D^{p} f_{n}(z)}=1+\frac{\delta}{c_{n+1}}(n+1)^{p} z^{n} \rightarrow 1-\frac{\delta}{c_{n+1}}(n+1)^{p}=\frac{c_{n+1}-\delta(n+1)^{p}}{c_{n+1}}$, when $r \rightarrow 1^{-}$. To prove the (ii) part of this theorem, we write

$$
\begin{gathered}
\left.\qquad \begin{array}{c}
\frac{1+\omega(z)}{1-\omega(z)}=\frac{c_{n+1}+(n+1)^{p} \delta}{(n+1)^{p} \delta}\left[\frac{D^{p} f(z)}{D^{p} f_{n}(z)}-\left(\frac{c_{n+1}}{c_{n+1}+(n+1)^{p} \delta}\right)\right] \\
= \\
1+\sum_{k=2}^{n} k^{p} a_{k} z^{k-1}-\frac{c_{n+1}}{(n+1)^{p} \delta} \sum_{k=n+1}^{\infty} k^{p} a_{k} z^{k-1} \\
\text { where }|\omega(z)| \leq \frac{\sum_{k=2}^{p} k^{p} a_{k} z^{k-1}}{2-2 \sum_{k=2}^{n} k^{p}\left|a_{k}\right|-\frac{c_{n+1}-(n+1)^{p} \delta}{(n+1)^{p} \delta} \sum_{k=n+1}^{\infty} k^{p}\left|a_{k}\right|}
\end{array}\right] \text { 1. This last in- }
\end{gathered}
$$ equality is equivalent to $\sum_{k=2}^{n} k^{p}\left|a_{k}\right|+\frac{c_{n+1}}{(n+1)^{p} \delta} \sum_{k=n+1}^{\infty} k^{p}\left|a_{k}\right| \leq 1$. Making use of (6) to get (12). Finally, equality holds in (8) for the function $f(z)$ given by (9). This completes the proof of Theorem 2.1.

Taking $p=0$ in Theorem 2.1, we obtain the following result given by Frasin in [2].
Corollary 2.2. If $f \in H_{\phi}\left(c_{k}, \delta\right)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\} \geq \frac{c_{n+1}-\delta}{c_{n+1}}, \quad(z \in U) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}(z)}{f(z)}\right\} \geq \frac{c_{n+1}}{c_{n+1}+\delta}, \quad(z \in U) \tag{14}
\end{equation*}
$$

where $c_{k} \geq\left\{\begin{array}{ccc}\delta & \text { if } & k=2,3, \ldots, n \\ c_{n+1} & \text { if } & k=n+1, n+2 \ldots\end{array}\right.$. The results (13) and (14) are sharp with the function given by (9).
Taking $p=1$ in Theorem 2.1, we obtain
Corollary 2.3. If $f \in H_{\phi}\left(c_{k}, \delta\right)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}\right\} \geq \frac{c_{n+1}-(n+1) \delta}{c_{n+1}}, \quad(z \in U) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{c_{n+1}}{c_{n+1}+(n+1) \delta}, \quad(z \in U) \tag{16}
\end{equation*}
$$

where

$$
c_{k} \geq\left\{\begin{array}{ccc}
k \delta & \text { if } & k=2,3, \ldots, n \tag{17}\\
\frac{k c_{n+1}}{n+1} & \text { if } & k=n+1, n+2 \ldots
\end{array}\right.
$$

The results (15) and (16) are sharp with the function given by (9).
Remark 2.1. Frasin has shown in Theorem 2.7 of [2] that for $f \in H_{\phi}\left(c_{k}, \delta\right)$, inequalities (15) and (16) hold with the condition

$$
c_{k} \geq\left\{\begin{array}{cc}
k \delta & \text { if } \quad k=2,3, \ldots, n \tag{18}\\
k \delta\left(1+\frac{c_{n+1}}{n+1}\right) & \text { if } \quad k=n+1, n+2 \ldots
\end{array}\right.
$$

But it can be easily seen that the condition (18) for $k=n+1$ gives $c_{n+1} \geq$ $(n+1) \delta\left(1+\frac{c_{n+1}}{(n+1) \delta}\right)$ or, equivalently $\delta \leq 0$, which contradicts the initial assumption $\delta>0$. So Theorem 2.7 of [2] does not seem suitable with the condition (18) and our condition (17) remedies this problem.

Taking $p=0, c_{k}=\frac{[(1+\beta) k-(\alpha+\beta)]}{1-\alpha}\binom{k+\lambda-1}{k}$, where $\lambda \geq 0, \beta \geq 0$, $-1 \leq \alpha<1$ and $\delta=1$ in Theorem 2.1, we obtain the following result given by Rosy et al. in [3].

Corollary 2.4. If f of the form (1) and satisfy the condition $\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1$, where $c_{k}=\frac{[(1+\beta) k-(\alpha+\beta)]}{1-\alpha}\binom{k+\lambda-1}{k}$, where $\lambda \geq 0, \beta \geq 0,-1 \leq \alpha<1$.

Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\} \geq \frac{c_{n+1}-1}{c_{n+1}}, \quad(z \in U) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}(z)}{f(z)}\right\} \geq \frac{c_{n+1}}{c_{n+1}+1}, \quad(z \in U) \tag{20}
\end{equation*}
$$

The results (19) and (20) are sharp with the function given by

$$
\begin{equation*}
f(z)=z+\frac{1}{c_{n+1}} z^{n+1} \tag{21}
\end{equation*}
$$

. Taking $p=1, c_{k}=\frac{[(1+\beta) k-(\alpha+\beta)]}{1-\alpha}\binom{k+\lambda-1}{k}$, where $\lambda \geq 0, \beta \geq 0,-1 \leq \alpha<$ 1 and $\delta=1$ in Theorem 2.1, we obtain
Corollary 2.5. If f of the form (1) and satisfy the condition $\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1$, where $c_{k}=\frac{[(1+\beta) k-(\alpha+\beta)]}{1-\alpha}\binom{k+\lambda-1}{k}, \quad(\lambda \geq 0, \beta \geq 0,-1 \leq \alpha<1)$.
Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}\right\} \geq \frac{c_{n+1}-(n+1)}{c_{n+1}}, \quad(z \in U) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{c_{n+1}}{c_{n+1}+(n+1)}, \quad(z \in U) \tag{23}
\end{equation*}
$$

where

$$
c_{k} \geq\left\{\begin{array}{ccc}
k & \text { if } & k=2,3, \ldots, n \tag{24}\\
\frac{k c_{n+1}}{n+1} & \text { if } & k=n+1, n+2 \ldots
\end{array}\right.
$$

The results (22) and (23) are sharp with the function given by (21).
Taking $p=0, c_{k}=\lambda_{k}-\alpha \mu_{k}, \delta=1-\alpha$,where $0 \leq \alpha<1, \lambda_{k} \geq 0, \mu_{k} \geq 0$, and $\lambda_{k} \geq \mu_{k}(k \geq 2)$ in Theorem 2.1, we obtain the following result given by Frasin in [1]. Corollary 2.6. If f of the form (1) and satisfies the condition $\sum_{k=2}^{\infty}\left(\lambda_{k}-\alpha \mu_{k}\right)\left|a_{k}\right| \leq$ $1-\alpha$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\} \geq \frac{\lambda_{n+1}-\alpha \mu_{n+1}-1+\alpha}{\lambda_{n+1}-\alpha \mu_{n+1}}, \quad(z \in U) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}(z)}{f(z)}\right\} \geq \frac{\lambda_{n+1}-\alpha \mu_{n+1}}{\lambda_{n+1}-\alpha \mu_{n+1}+1-\alpha}, \quad(z \in U) \tag{26}
\end{equation*}
$$

where

$$
\lambda_{k}-\alpha \mu_{k} \geq\left\{\begin{array}{ccc}
1-\alpha & \text { if } & k=2,3, \ldots, n \\
\lambda_{n+1}-\alpha \mu_{n+1} & \text { if } \quad k=n+1, n+2 \ldots
\end{array}\right.
$$

The results (25) and (26) are sharp with the function given by

$$
\begin{equation*}
f(z)=z+\frac{1-\alpha}{\lambda_{n+1}-\alpha \mu_{n+1}} z^{n+1} \tag{27}
\end{equation*}
$$

Taking $p=1, c_{k}=\lambda_{k}-\alpha \mu_{k}, \delta=1-\alpha$ where $0 \leq \alpha<1, \lambda_{k} \geq 0, \mu_{k} \geq 0$, and $\lambda_{k} \geq \mu_{k}(k \geq 2)$ in Theorem 2.1, we obtain
Corollary 2.7. If f of the form (1) and satisfies the condition $\sum_{k=2}^{\infty}\left(\lambda_{k}-\alpha \mu_{k}\right)\left|a_{k}\right| \leq$ $1-\alpha$ then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}\right\} \geq \frac{\lambda_{n+1}-\alpha \mu_{n+1}-(n+1)(1-\alpha)}{\lambda_{n+1}-\alpha \mu_{n+1}}, \quad(z \in U) \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{\lambda_{n+1}-\alpha \mu_{n+1}}{\lambda_{n+1}-\alpha \mu_{n+1}+(n+1)(1-\alpha)}, \quad(z \in U) \tag{29}
\end{equation*}
$$

where

$$
\lambda_{k}-\alpha \mu_{k} \geq\left\{\begin{array}{clc}
k(1-\alpha) & \text { if } & k=2,3, \ldots, n \tag{30}\\
\frac{k\left(\lambda_{n+1}-\alpha \mu_{n+1}\right)}{n+1} & \text { if } & k=n+1, n+2 \ldots
\end{array}\right.
$$

The results (28) and (29) are sharp with the function given by (27).
Remark 2.2. Frasin has obtained inequalities (28) and (29) in Theorem 2 of [1] under condition

$$
\lambda_{k+1}-\alpha \mu_{k+1} \geq\left\{\begin{array}{clc}
k(1-\alpha) & \text { if } \quad k=2,3, \ldots, n \tag{31}\\
k(1-\alpha)+\frac{k\left(\lambda_{n+1}-\alpha \mu_{n+1}\right)}{n+1} & \text { if } \quad k=n+1, n+2 \ldots
\end{array}\right.
$$

But when we critically observe the proof of Theorem 2 of [1], we find that last inequality of this theorem

$$
\begin{equation*}
\sum_{k=2}^{n}\left(\frac{\lambda_{k}-\alpha \mu_{k}}{1-\alpha}-k\right)\left|a_{k}\right|+\sum_{k=n+1}^{\infty}\left(\frac{\lambda_{k}-\alpha \mu_{k}}{1-\alpha}-\left(1+\frac{\lambda_{n+1}-\alpha \mu_{n+1}}{(n+1)(1-\alpha)}\right) k\right)\left|a_{k}\right| \geq 0 \tag{32}
\end{equation*}
$$

We easily see that the inequality (32) of [[1] ,Theorem 2] can not be hold for the function given by (27) for supporting the sharpness of the results (28) and (29). So
the condition 2.25 of Theorem 2 in [1] is incorrect and correct results are mentioned in Corollary 2.7.

Remark 2.3. Taking $p=0, c_{k}=(k-\alpha), c_{k}=k(k-\alpha), \delta=1-\alpha, 0 \leq \alpha<1$ in Theorem 2.1, we obtain Theorem 1-3 given by Silverman in [6].

Remark 2.4. Taking $p=1, c_{k}=(k-\alpha), c_{k}=k(k-\alpha), \delta=1-\alpha, 0 \leq \alpha<1$ in Theorem 2.1, we obtain Theorem 4-5 given by Silverman in [6].

Acknowledgements. The present investigation was supported by the University grant commission under grant No. F. 11-12/2006(SA-I).

References

[1] B.A. Frasin, Partial sums of certain analytic and univalent functions, Acta Math. Acad. Paed. Nyir., 21, (2005), 135-145.
[2] B.A. Frasin, Generalization of partial sums of certain analytic and univalent functions, Appl. Math. Lett., 21, (7), (2008), 735-741.
[3] T. Rosy, K. G. Subramanian and G. Murugusundaramoorthy, Neighbourhoods and partial sums of starlike based on Ruscheweyh derivatives, J. Inequl. Pure Appl. Math., 4, (4), (2003), 1-8, Art. 64.
[4] G.S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1,(1983), 362-372.
[5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51, (1975), 109-116.
[6] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209, (1997), 221-227.
S. Porwal

Department of Mathematics
Janta College, Bakewar
Etawah-206124, (U.P.), INDIA
email:saurabh.840@rediffmail.com
K.K. Dixit

Department of Mathematics
Janta College, Bakewar Etawah-206124, (U.P.), INDIA
email:kk.dixit@rediffmail.com

