SUBORDINATION RESULTS FOR A CLASS OF NON-BAZILEVIČ FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS

C. Selvaraj, K. A. Selvakumaran

Abstract. In this article, we investigate a new class of non-Bazilevič functions with respect to k -symmetric points defined by a generalized differential operator. Several interesting subordination results are derived for the functions belonging to this class in the open unit disk.

2000 Mathematics Subject Classification: 30C45, 30C50.
Keywords: Multivalent function, convex univalent function, starlike with respect to symmetric points, subordination, differential operator.

1. Introduction and preliminaries

Let $\mathcal{H}(a, n)$ denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots, \quad(z \in \mathcal{U}), \tag{1}
\end{equation*}
$$

which are analytic in the unit disk $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$. In particular, let \mathcal{A} be the subclass of $\mathcal{H}(0,1)$ containing functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{2}
\end{equation*}
$$

We denote by S, S^{*}, K and C, the classes of all functions in \mathcal{A} which are, respectively, univalent, starlike, convex and close-to-convex in \mathcal{U}. Let $f(z)$ and $g(z)$ be analytic in \mathcal{U}. Then we say that the function $f(z)$ is subordinate to $g(z)$ in \mathcal{U}, if there exists an analytic function $w(z)$ in \mathcal{U} with $w(0)=0, \quad|w(z)|<1 \quad(z \in \mathcal{U})$, such that $f(z)=g(w(z)) \quad(z \in \mathcal{U})$.

We denote this subordination by $f(z) \prec g(z)$. Furthermore, if the function $g(z)$ is univalent in \mathcal{U}, then $f(z) \prec g(z) \quad(z \in \mathcal{U}) \Longleftrightarrow f(0)=g(0)$ and $f(\mathcal{U}) \subset g(\mathcal{U})$.

Let k be a positive integer and let $\varepsilon_{k}=\exp \left(\frac{2 \pi i}{k}\right)$. For $f \in \mathcal{A}$ let

$$
\begin{equation*}
f_{k}(z)=\frac{1}{k} \sum_{j=0}^{k-1} \varepsilon_{k}^{-j} f\left(\varepsilon_{k}^{j} z\right) . \tag{3}
\end{equation*}
$$

The function f is said to be starlike with respect to k -symmetric points if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f_{k}(z)}\right)>0, \quad z \in \mathcal{U} . \tag{4}
\end{equation*}
$$

We denote by $S_{s}^{(k)}$ the subclass of \mathcal{A} consisting of all functions starlike with respect to k-symmetric points in \mathcal{U}. The class $S_{s}^{(2)}$ was introduced and studied by K. Sakaguchi [8]. If j is an integer, then the following identities follow directly from (3).

$$
\begin{align*}
& f_{k}\left(\varepsilon^{j} z\right)=\varepsilon^{j} f_{k}(z), \\
& f_{k}^{\prime}\left(\varepsilon^{j} z\right)=f_{k}^{\prime}(z)=\frac{1}{k} \sum_{j=0}^{k-1} f^{\prime}\left(\varepsilon_{k}^{j} z\right), \tag{5}\\
& \varepsilon^{j} f_{k}^{\prime \prime}\left(\varepsilon^{j} z\right)=f_{k}^{\prime \prime}(z)=\frac{1}{k} \sum_{j=0}^{k-1} \varepsilon^{j} f^{\prime \prime}\left(\varepsilon_{k}^{j} z\right) .
\end{align*}
$$

If we replace z by $\varepsilon^{j} z$ in (4) and take the sum with respect to j from 0 to $k-1$, then we obtain

$$
\operatorname{Re}\left(\frac{z f_{k}^{\prime}(z)}{f_{k}(z)}\right)>0, \quad z \in \mathcal{U}
$$

This shows that if $f \in S_{s}^{(k)}$, then $f_{k} \in S^{*}$. Using this together with the condition (4) we see that functions in $S_{s}^{(k)}$ are close-to-convex. We also note that different subclasses of $S_{s}^{(k)}$ can be obtained by replacing condition (4) by

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f_{k}(z)}\right) \prec h(z),
$$

where $h(z)$ is a given convex function, with $h(0)=1$ and $\operatorname{Re} h(z)>0$.
We will make use of the following definition of fractional derivatives by S. Owa [6]. The fractional derivative of order δ is defined, for a function f, by

$$
\begin{equation*}
D_{z}^{\delta} f(z)=\frac{1}{\Gamma(1-\delta)} \frac{d}{d z} \int_{0}^{z} \frac{f(\xi)}{(z-\xi)^{\delta}} d \xi, \quad(0 \leq \delta<1) \tag{6}
\end{equation*}
$$

where the function f is analytic in a simply connected region of the complex z plane containing the origin, and the multiplicity of $(z-\xi)^{-\delta}$ is removed by requiring $\log (z-\xi)$ to be real when $(z-\xi)>0$. It follows from (6) that

$$
D_{z}^{\delta} z^{n}=\frac{\Gamma(n+1)}{\Gamma(n+1-\delta)} z^{n-\delta} \quad(0 \leq \delta<1, n \in \mathbb{N}=\{1,2, \ldots\})
$$

Using $D_{z}^{\delta} f$, S. Owa and H. M. Srivastava [7] introduced the operator $\Omega^{\delta}: \mathcal{A} \longrightarrow \mathcal{A}$, which is known as an extension of fractional derivative and fractional integral as follows: $\Omega^{\delta} f(z)=\Gamma(2-\delta) z^{\delta} D_{z}^{\delta} f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\delta)}{\Gamma(n+1-\delta)} a_{n} z^{n}$. Here we note that $\Omega^{0} f(z)=f(z)$.
In [2] F. M. Al-Oboudi and K. A. Al-Amoudi defined the linear multiplier fractional differential operator $D_{\lambda}^{m, \delta}$ as follows:

$$
\begin{align*}
D_{\lambda}^{0,0} f(z) & =f(z) \\
D_{\lambda}^{1, \delta} f(z) & =(1-\lambda) \Omega^{\delta} f(z)+\lambda z\left(\Omega^{\delta} f(z)\right)^{\prime} \\
& =D_{\lambda}^{\delta}(f(z)), \quad(0 \leq \delta<0, \lambda \geq 0) \\
D_{\lambda}^{2, \delta} f(z) & =D_{\lambda}^{\delta}\left(D_{\lambda}^{1, \delta} f(z)\right) \\
& \vdots \\
D_{\lambda}^{m, \delta} f(z) & =D_{\lambda}^{1, \delta}\left(D_{\lambda}^{m-1, \delta} f(z)\right), \quad m \in \mathbb{N} \tag{7}
\end{align*}
$$

If $f(z)$ is given by (2), then by (7), we have

$$
D_{\lambda}^{m, \delta} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{\Gamma(n+1) \Gamma(2-\delta)}{\Gamma(n+1-\delta)}[1+(n-1) \lambda]\right)^{m} a_{n} z^{n}
$$

It can be seen that, by specializing the parameters the operator $D_{\lambda}^{m, \delta} f(z)$ reduces to many known and new integral and differential operators. In particular, when $\delta=0$ the operator $D_{\lambda}^{m, \delta}$ reduces to the operator introduced by F. AL-Oboudi [1] and for $\delta=0, \lambda=1$ it reduces to the operator introduced by G. S. Sălăgean [9]. Further we remark that, when $m=1, \lambda=0$ the operator $D_{\lambda}^{m, \delta} f(z)$ reduces to Owa-Srivastava fractional differential operator [7].
Throughout this paper, we assume that

$$
f_{k}^{m}(\lambda, \delta ; z)=\frac{1}{k} \sum_{j=0}^{k-1} \varepsilon_{k}^{-j}\left(D_{\lambda}^{m, \delta} f\left(\varepsilon_{k}^{j} z\right)\right)=z+\cdots, \quad(f \in \mathcal{A})
$$

Clearly, for $k=1$, we have $f_{1}^{m}(\lambda, \delta ; z)=D_{\lambda}^{m, \delta} f(z)$. Let \mathcal{P} denote the class of analytic functions $h(z)$ with $h(0)=1$, which are convex and univalent in \mathcal{U} and for which $\operatorname{Re}\{h(z)\}>0, \quad(z \in \mathcal{U})$.
We now introduce the following subclass of \mathcal{A} :
Definition 1.1. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{N}_{k}^{m}(\lambda, \delta, \gamma ; \phi)$ if and only if

$$
\begin{equation*}
\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}\left(\frac{z}{f_{k}^{m}(\lambda, \delta ; z)}\right)^{1+\gamma} \prec \phi(z), \quad(z \in \mathcal{U}) \tag{8}
\end{equation*}
$$

where $0 \leq \gamma \leq 1, \phi \in \mathcal{P}$ and $f_{k}^{m}(\lambda, \delta ; z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$.
We remark that for the choice of $\quad \phi(z)=\frac{1+z}{1-z}, \quad m=0, k=1 \quad$ the class
$\mathcal{N}_{k}^{m}(\lambda, \delta, \gamma ; \phi)$ reduces to $\mathcal{N}(\gamma),(0<\gamma<1)$ introduced by Obradović in [5]. He named this class of functions as non-Bazilevič type.
In this paper, we derive some sufficient conditions for functions belonging to the class $\mathcal{N}_{k}^{m}(\lambda, \delta, \gamma ; \phi)$. In order to prove our results we need the following lemmas.
Lemma 1.2. [10] Let h be convex in \mathcal{U}, with $h(0)=a, \delta \neq 0$ and Re $\delta \geq 0$. If $p \in \mathcal{H}(a, n)$ and

$$
p(z)+\frac{z p^{\prime}(z)}{\delta} \prec h(z),
$$

then

$$
p(z) \prec q(z) \prec h(z),
$$

where

$$
q(z)=\frac{\delta}{n z^{\delta / n}} \int_{0}^{z} h(t) t^{(\delta / n)-1} d t
$$

The function q is convex and is the best (a, n)-dominant.
Lemma 1.3. [3] Let h be starlike in \mathcal{U}, with $h(0)=0$. If $p \in \mathcal{H}(a, n)$ satisfies

$$
z p^{\prime}(z) \prec h(z),
$$

then

$$
p(z) \prec q(z)=a+n^{-1} \int_{0}^{z} h(t) t^{-1} d t .
$$

The function q is convex and is the best (a, n)-dominant.
Lemma 1.4. [4] Let $q(z)$ be univalent in the unit disc \mathcal{U} and let $\theta(z)$ be analytic in a domain D containing $q(\mathcal{U})$. If $z q^{\prime}(z) \theta(q(z))$ is starlike in \mathcal{U} and

$$
z p^{\prime}(z) \theta(p(z)) \prec z q^{\prime}(z) \theta(q(z))
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

2. MAIN RESULTS

Theorem 2.1. Let $f \in \mathcal{A}$ with $f(z)$ and $f^{\prime}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$ and let h be convex in \mathcal{U}, with $h(0)=1$ and $\operatorname{Re} h(z)>0$. If

$$
\begin{align*}
\left\{\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}\left(\frac{z}{f_{k}^{m}(\lambda, \delta ; z)}\right)^{1+\gamma}\right\}^{2} & {\left[3+2 \gamma+\frac{2 z\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime \prime}}{\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}}\right.} \tag{9}\\
& \left.-2(1+\gamma) \frac{z\left(f_{k}^{m}(\lambda, \delta ; z)\right)^{\prime}}{f_{k}^{m}(\lambda, \delta ; z)}\right] \prec h(z),
\end{align*}
$$

then

$$
\begin{equation*}
\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}\left(\frac{z}{f_{k}^{m}(\lambda, \delta ; z)}\right)^{1+\gamma} \prec q(z)=\sqrt{Q(z)} \tag{10}
\end{equation*}
$$

where

$$
Q(z)=\frac{1}{z} \int_{0}^{z} h(t) d t
$$

and the function q is the best dominant.
Proof. Let $p(z)=\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}\left(\frac{z}{f_{k}^{m}(\lambda, \delta ; z)}\right)^{1+\gamma} \quad(z \in \mathcal{U} ; z \neq 0 ; f \in \mathcal{A})$.
Then $p(z) \in \mathcal{H}(1,1)$ with $p(z) \neq 0$ in \mathcal{U}. Since h is convex, it can be easily verified that Q is convex and univalent. We now set $P(z)=p^{2}(z)$. Then $P(z) \in \mathcal{H}(1,1)$ with $P(z) \neq 0$ in \mathcal{U}. By logarithmic differentiation we have,

$$
\frac{z P^{\prime}(z)}{P(z)}=2\left[\frac{z\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime \prime}}{\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}}+(1+\gamma)\left(1-\frac{z\left(f_{k}^{m}(\lambda, \delta ; z)\right)^{\prime}}{f_{k}^{m}(\lambda, \delta ; z)}\right)\right]
$$

Therefore, by (9) we have

$$
\begin{equation*}
P(z)+z P^{\prime}(z) \prec h(z) . \tag{11}
\end{equation*}
$$

Now, by Lemma 1.2 with $\delta=1$, we deduce that

$$
P(z) \prec Q(z) \prec h(z),
$$

and Q is the best dominant of (11). Since $\operatorname{Re} h(z)>0$ and $Q(z) \prec h(z)$ we also have $\operatorname{Re} Q(z)>0$. Hence, the univalence of Q implies the univalence of $q(z)=\sqrt{Q(z)}$, and

$$
p^{2}(z)=P(z) \prec Q(z)=q^{2}(z)
$$

which implies that $p(z) \prec q(z)$. Since Q is the best dominant of (11), we deduce that q is the best dominant of (10). This completes the proof.

Corollary 2.2. Let $f \in \mathcal{A}$ with $f(z)$ and $f^{\prime}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$. If $\operatorname{Re}(\Psi(z))>$ $\alpha, \quad(0 \leq \alpha<1)$, where
$\Psi(z)=\left\{\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}\left(\frac{z}{f_{k}^{m}(\lambda, \delta ; z)}\right)^{1+\gamma}\right\}^{2}\left[3+2 \gamma+\frac{2 z\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime \prime}}{\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}}-2(1+\gamma) \frac{z\left(f_{k}^{m}(\lambda, \delta ; z)\right)^{\prime}}{f_{k}^{m}(\lambda, \delta ; z)}\right]$,
then

$$
\operatorname{Re}\left\{\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}\left(\frac{z}{f_{k}^{m}(\lambda, \delta ; z)}\right)^{1+\gamma}\right\}>\mu(\alpha)
$$

where $\mu(\alpha)=[2(1-\alpha) . \log 2+(2 \alpha-1)]^{\frac{1}{2}}$, and this result is sharp.
Proof. Let $h(z)=\frac{1+(2 \alpha-1) z}{1+z}$ with $0 \leq \alpha<1$. Then from Theorem 2.1, it follows that $Q(z)$ ia convex and $\operatorname{Re} Q(z)>0$. Also we have,

$$
\min _{|z| \leq 1} \operatorname{Re} q(z)=\min _{|z| \leq 1} \operatorname{Re} \sqrt{Q(z)}=\sqrt{Q(1)}=[2(1-\alpha) \cdot \log 2+(2 \alpha-1)]^{\frac{1}{2}}
$$

This completes the proof the corollary.
By setting $m=0$, and $\gamma=0$ in Corollary 2.2, we have the following corollary.
Corollary 2.3. Let $f \in \mathcal{A}$ with $f(z)$ and $f^{\prime}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$. If $\operatorname{Re}\left\{\left(\frac{z f^{\prime}(z)}{f_{k}(z)}\right)^{2}\left[3+2 \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-2 \frac{z f_{k}^{\prime}(z)}{f_{k}(z)}\right]\right\}>\alpha, \quad(0 \leq \alpha<1)$, then $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f_{k}(z)}\right\}>\mu(\alpha)$, where $\mu(\alpha)=[2(1-\alpha) . \log 2+(2 \alpha-1)]^{\frac{1}{2}}$, and this result is sharp.
Theorem 2.4. Let $f \in \mathcal{A}$ with $f(z)$ and $f^{\prime}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$ and h be starlike in \mathcal{U}, with $h(0)=0$. If

$$
\begin{equation*}
\frac{z\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime \prime}}{\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}}+(1+\gamma)\left(1-\frac{z\left(f_{k}^{m}(\lambda, \delta ; z)\right)^{\prime}}{f_{k}^{m}(\lambda, \delta ; z)}\right) \prec h(z) \quad(z \in \mathcal{U} ; \gamma \geq 0) \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}\left(\frac{z}{f_{k}^{m}(\lambda, \delta ; z)}\right)^{1+\gamma} \prec q(z)=\exp \left(\int_{0}^{z} \frac{h(t)}{t} d t\right) \tag{13}
\end{equation*}
$$

and q is the best dominant.
Proof. Let $p(z)=\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}\left(\frac{z}{f_{k}^{m}(\lambda, \delta ; z)}\right)^{1+\gamma} \quad(z \in \mathcal{U} ; z \neq 0 ; f \in \mathcal{A})$.
Then $p(z) \in \mathcal{H}(1,1)$ with $p(z) \neq 0$ in \mathcal{U}. Thus we can define an analytic function $P(z)=\log p(z)$. Clearly $P \in \mathcal{H}(0,1)$, and by (12) we obtain

$$
\begin{equation*}
z P^{\prime}(z) \prec h(z) . \tag{14}
\end{equation*}
$$

Now by using Lemma 1.3 we deduce that $P(z) \prec Q(z)=\int_{0}^{z} \frac{h(t)}{t} d t$, and Q is the best dominant of (14). Converting back we obtain $p(z)=\exp P(z) \prec \exp Q(z)=q(z)$, and since Q is the best dominant of (14), we deduce that q is the best dominant of (13). This completes the proof.

By setting $m=0$ in Theorem 2.4, we have the following corollary.
Corollary 2.5. Let $f \in \mathcal{A}$ with $f(z)$ and $f^{\prime}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$ and h be starlike in \mathcal{U}, with $h(0)=0$. If

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(1+\gamma)\left(1-\frac{z f_{k}^{\prime}(z)}{f_{k}(z)}\right) \prec h(z) \quad(z \in \mathcal{U} ; \gamma \geq 0)
$$

then $f^{\prime}(z)\left(\frac{z}{f_{k}(z)}\right)^{1+\gamma} \prec q(z)=\exp \left(\int_{0}^{z} \frac{h(t)}{t} d t\right)$, and q is the best dominant.
Theorem 2.6. Let $f \in \mathcal{A}$ with $f(z)$ and $f^{\prime}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$ and $q(z)$ be univalent in the unit disc \mathcal{U} with $q^{\prime}(z) \neq 0$ in \mathcal{U}. If $\frac{z q^{\prime}(z)}{q(z)}$ is starlike in \mathcal{U} and

$$
\begin{equation*}
\frac{z\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime \prime}}{\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}}+(1+\gamma)\left(1-\frac{z\left(f_{k}^{m}(\lambda, \delta ; z)\right)^{\prime}}{f_{k}^{m}(\lambda, \delta ; z)}\right) \prec \frac{z q^{\prime}(z)}{q(z)} \quad(z \in \mathcal{U} ; \gamma \geq 0) \tag{15}
\end{equation*}
$$

then $\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}\left(\frac{z}{f_{k}^{m}(\lambda, \delta ; z)}\right)^{1+\gamma} \prec q(z)$, and $q(z)$ is the best dominant.
Proof. Let $p(z)=\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}\left(\frac{z}{f_{k}^{m}(\lambda, \delta ; z)}\right)^{1+\gamma} \quad(z \in \mathcal{U} ; z \neq 0 ; f \in \mathcal{A})$.
By setting $\theta(\omega)=\frac{a}{\omega}, \quad a \neq 0$, it can be easily verified that $\theta(\omega)$ is analytic in $\mathbb{C}-\{0\}$. Then we obtain $a \frac{z p^{\prime}(z)}{p(z)}=a\left[\frac{z\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime \prime}}{\left(D_{\lambda}^{m, \delta} f(z)\right)^{\prime}}+(1+\gamma)\left(1-\frac{z\left(f_{k}^{m}(\lambda, \delta ; z)\right)^{\prime}}{f_{k}^{m}(\lambda, \delta ; z)}\right)\right] \prec$ $a \frac{z q^{\prime}(z)}{q(z)}$. Now, the assertion of the theorem follows by an application of Lemma 1.4. By setting $m=0$ in Theorem 2.6, we have the following corollary.
Corollary 2.7. Let $f \in \mathcal{A}$ with $f(z)$ and $f^{\prime}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$ and $q(z)$ be univalent in the unit disc \mathcal{U} with $q^{\prime}(z) \neq 0$ in \mathcal{U}. If $\frac{z q^{\prime}(z)}{q(z)}$ is starlike in \mathcal{U} and

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(1+\gamma)\left(1-\frac{z f_{k}^{\prime}(z)}{f_{k}(z)}\right) \prec \frac{z q^{\prime}(z)}{q(z)} \quad(z \in \mathcal{U} ; \gamma \geq 0)
$$

then $f^{\prime}(z)\left(\frac{z}{f_{k}(z)}\right)^{1+\gamma} \prec q(z)$, and $q(z)$ is the best dominant.

References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
[2] F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl. 339 (2008), no. 1, 655-667.
[3] D. J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195.
[4] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series in Pure and Applied Mathematics, No. 225, Marcel Dekker, New York,(2000).
[5] M. Obradović, A class of univalent functions, Hokkaido Math. J. 27 (1998), no. 2, 329-335.
[6] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978), no. 1, 53-59.
[7] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), no. 5, 1057-1077.
[8] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
[9] G. Ş. Sălăgean, Subclasses of univalent functions, in Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin.
[10] T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37 (1970), 775-777.
C. Selvaraj

Dept. of Mathematics
Presidency College (Autonomous)
Chennai-600 005, India.
email: pamc9439@yahoo.co.in
K.A. Selvakumaran

Dept. of Mathematics
Presidency College (Autonomous)
Chennai-600 005, India.
email:selvaa1826@gmail.com

