SUBORDINATION RESULTS FOR A CLASS OF NON-BAZILEVIČ FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS

C. Selvaraj, K. A. Selvakumaran

ABSTRACT. In this article, we investigate a new class of non-Bazilevič functions with respect to k-symmetric points defined by a generalized differential operator. Several interesting subordination results are derived for the functions belonging to this class in the open unit disk.

2000 Mathematics Subject Classification: 30C45, 30C50.

Keywords: Multivalent function, convex univalent function, starlike with respect to symmetric points, subordination, differential operator.

1. INTRODUCTION AND PRELIMINARIES

Let $\mathcal{H}(a, n)$ denote the class of functions f(z) of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots, \quad (z \in \mathcal{U}),$$
(1)

which are analytic in the unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$. In particular, let \mathcal{A} be the subclass of $\mathcal{H}(0, 1)$ containing functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
(2)

We denote by S, S^*, K and C, the classes of all functions in \mathcal{A} which are, respectively, univalent, starlike, convex and close-to-convex in \mathcal{U} . Let f(z) and g(z) be analytic in \mathcal{U} . Then we say that the function f(z) is subordinate to g(z) in \mathcal{U} , if there exists an analytic function w(z) in \mathcal{U} with w(0) = 0, |w(z)| < 1 $(z \in \mathcal{U})$, such that f(z) = g(w(z)) $(z \in \mathcal{U})$.

We denote this subordination by $f(z) \prec g(z)$. Furthermore, if the function g(z) is univalent in \mathcal{U} , then $f(z) \prec g(z)$ $(z \in \mathcal{U}) \iff f(0) = g(0)$ and $f(\mathcal{U}) \subset g(\mathcal{U})$.

Let k be a positive integer and let $\varepsilon_k = \exp(\frac{2\pi i}{k})$. For $f \in \mathcal{A}$ let

$$f_k(z) = \frac{1}{k} \sum_{j=0}^{k-1} \varepsilon_k^{-j} f(\varepsilon_k^j z).$$
(3)

The function f is said to be starlike with respect to k-symmetric points if it satisfies

$$Re\left(\frac{zf'(z)}{f_k(z)}\right) > 0, \quad z \in \mathcal{U}.$$
 (4)

We denote by $S_s^{(k)}$ the subclass of \mathcal{A} consisting of all functions starlike with respect to k-symmetric points in \mathcal{U} . The class $S_s^{(2)}$ was introduced and studied by K. Sakaguchi [8]. If j is an integer, then the following identities follow directly from (3).

$$f_k(\varepsilon^j z) = \varepsilon^j f_k(z),$$

$$f'_k(\varepsilon^j z) = f'_k(z) = \frac{1}{k} \sum_{j=0}^{k-1} f'(\varepsilon^j_k z),$$

$$\varepsilon^j f''_k(\varepsilon^j z) = f''_k(z) = \frac{1}{k} \sum_{j=0}^{k-1} \varepsilon^j f''(\varepsilon^j_k z).$$
(5)

If we replace z by $\varepsilon^j z$ in (4) and take the sum with respect to j from 0 to k-1, then we obtain

$$Re\left(\frac{zf'_k(z)}{f_k(z)}\right) > 0, \quad z \in \mathcal{U}.$$

This shows that if $f \in S_s^{(k)}$, then $f_k \in S^*$. Using this together with the condition (4) we see that functions in $S_s^{(k)}$ are close-to-convex. We also note that different subclasses of $S_s^{(k)}$ can be obtained by replacing condition (4) by

$$Re\left(\frac{zf'(z)}{f_k(z)}\right) \prec h(z),$$

where h(z) is a given convex function, with h(0) = 1 and $\operatorname{Re} h(z) > 0$. We will make use of the following definition of fractional derivatives by S. Owa [6]. The fractional derivative of order δ is defined, for a function f, by

$$D_{z}^{\delta}f(z) = \frac{1}{\Gamma(1-\delta)} \frac{d}{dz} \int_{0}^{z} \frac{f(\xi)}{(z-\xi)^{\delta}} d\xi, \quad (0 \le \delta < 1)$$
(6)

where the function f is analytic in a simply connected region of the complex zplane containing the origin, and the multiplicity of $(z-\xi)^{-\delta}$ is removed by requiring $log(z-\xi)$ to be real when $(z-\xi) > 0$. It follows from (6) that

$$D_{z}^{\delta} z^{n} = \frac{\Gamma(n+1)}{\Gamma(n+1-\delta)} z^{n-\delta} \quad (0 \le \delta < 1, \ n \in \mathbb{N} = \{1, 2, \ldots\}).$$

Using $D_z^{\delta} f$, S. Owa and H. M. Srivastava [7] introduced the operator $\Omega^{\delta} : \mathcal{A} \longrightarrow \mathcal{A}$, which is known as an extension of fractional derivative and fractional integral as follows: $\Omega^{\delta} f(z) = \Gamma(2-\delta) z^{\delta} D_z^{\delta} f(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\delta)}{\Gamma(n+1-\delta)} a_n z^n$. Here we note that $\Omega^0 f(z) = f(z)$.

In [2] F. M. Al-Oboudi and K. A. Al-Amoudi defined the linear multiplier fractional differential operator $D_{\lambda}^{m,\delta}$ as follows:

$$\begin{split} D^{0,0}_{\lambda}f(z) &= f(z), \\ D^{1,\delta}_{\lambda}f(z) &= (1-\lambda)\Omega^{\delta}f(z) + \lambda \, z(\Omega^{\delta}f(z))' \\ &= D^{\delta}_{\lambda}(f(z)), \quad (0 \leq \delta < 0, \ \lambda \geq 0), \\ D^{2,\delta}_{\lambda}f(z) &= D^{\delta}_{\lambda}(D^{1,\delta}_{\lambda}f(z)), \\ &\vdots \end{split}$$

$$D_{\lambda}^{m,\delta}f(z) = D_{\lambda}^{1,\delta}(D_{\lambda}^{m-1,\delta}f(z)), \qquad m \in \mathbb{N}.$$
(7)

If f(z) is given by (2), then by (7), we have

$$D_{\lambda}^{m,\delta}f(z) = z + \sum_{n=2}^{\infty} \left(\frac{\Gamma(n+1)\Gamma(2-\delta)}{\Gamma(n+1-\delta)} \left[1 + (n-1)\lambda\right]\right)^m a_n z^n.$$

It can be seen that, by specializing the parameters the operator $D_{\lambda}^{m,\delta}f(z)$ reduces to many known and new integral and differential operators. In particular, when $\delta = 0$ the operator $D_{\lambda}^{m,\delta}$ reduces to the operator introduced by F. AL-Oboudi [1] and for $\delta = 0, \lambda = 1$ it reduces to the operator introduced by G. S. Sălăgean [9]. Further we remark that, when $m = 1, \lambda = 0$ the operator $D_{\lambda}^{m,\delta}f(z)$ reduces to Owa-Srivastava fractional differential operator [7].

Throughout this paper, we assume that

$$f_k^m(\lambda,\delta;z) = \frac{1}{k} \sum_{j=0}^{k-1} \varepsilon_k^{-j} (D_\lambda^{m,\delta} f(\varepsilon_k^j z)) = z + \cdots, \qquad (f \in \mathcal{A})$$

Clearly, for k = 1, we have $f_1^m(\lambda, \delta; z) = D_{\lambda}^{m,\delta} f(z)$. Let \mathcal{P} denote the class of analytic functions h(z) with h(0) = 1, which are convex and univalent in \mathcal{U} and for which $Re\{h(z)\} > 0$, $(z \in \mathcal{U})$.

We now introduce the following subclass of \mathcal{A} :

Definition 1.1. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{N}_k^m(\lambda, \delta, \gamma; \phi)$ if and only if

$$\left(D_{\lambda}^{m,\delta}f(z)\right)'\left(\frac{z}{f_{k}^{m}(\lambda,\delta;z)}\right)^{1+\gamma} \prec \phi(z), \qquad (z \in \mathcal{U}).$$
(8)

where $0 \leq \gamma \leq 1$, $\phi \in \mathcal{P}$ and $f_k^m(\lambda, \delta; z) \neq 0$ for all $z \in \mathcal{U} \setminus \{0\}$.

We remark that for the choice of $\phi(z) = \frac{1+z}{1-z}$, m = 0, k = 1 the class $\mathcal{N}_k^m(\lambda, \delta, \gamma; \phi)$ reduces to $\mathcal{N}(\gamma)$, $(0 < \gamma < 1)$ introduced by Obradović in [5]. He named this class of functions as non-Bazilevič type.

In this paper, we derive some sufficient conditions for functions belonging to the class $\mathcal{N}_k^m(\lambda, \delta, \gamma; \phi)$. In order to prove our results we need the following lemmas.

Lemma 1.2. [10] Let h be convex in \mathcal{U} , with $h(0) = a, \delta \neq 0$ and $\operatorname{Re} \delta \geq 0$. If $p \in \mathcal{H}(a,n)$ and

$$p(z) + \frac{zp'(z)}{\delta} \prec h(z),$$

then

$$p(z) \prec q(z) \prec h(z),$$

where

$$q(z) = \frac{\delta}{n \, z^{\delta/n}} \int_0^z h(t) \, t^{(\delta/n)-1} \, dt.$$

The function q is convex and is the best (a, n)-dominant. Lemma 1.3. [3] Let h be starlike in \mathcal{U} , with h(0) = 0. If $p \in \mathcal{H}(a, n)$ satisfies

$$zp'(z) \prec h(z),$$

then

$$p(z) \prec q(z) = a + n^{-1} \int_0^z h(t) t^{-1} dt.$$

The function q is convex and is the best (a, n)-dominant. **Lemma 1.4.** [4] Let q(z) be univalent in the unit disc \mathcal{U} and let $\theta(z)$ be analytic in a domain D containing $q(\mathcal{U})$. If $zq'(z)\theta(q(z))$ is starlike in \mathcal{U} and

$$zp'(z)\theta(p(z)) \prec zq'(z)\theta(q(z))$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

2. Main results

Theorem 2.1. Let $f \in \mathcal{A}$ with f(z) and $f'(z) \neq 0$ for all $z \in \mathcal{U} \setminus \{0\}$ and let h be convex in \mathcal{U} , with h(0) = 1 and Re h(z) > 0. If

$$\left\{ \left(D_{\lambda}^{m,\delta} f(z) \right)' \left(\frac{z}{f_{k}^{m}(\lambda,\delta;z)} \right)^{1+\gamma} \right\}^{2} \left[3 + 2\gamma + \frac{2z \left(D_{\lambda}^{m,\delta} f(z) \right)''}{\left(D_{\lambda}^{m,\delta} f(z) \right)'} - 2(1+\gamma) \frac{z \left(f_{k}^{m}(\lambda,\delta;z) \right)'}{f_{k}^{m}(\lambda,\delta;z)} \right] \prec h(z),$$
(9)

then

$$\left(D_{\lambda}^{m,\delta}f(z)\right)'\left(\frac{z}{f_k^m(\lambda,\delta;z)}\right)^{1+\gamma} \prec q(z) = \sqrt{Q(z)},\tag{10}$$

where

$$Q(z) = \frac{1}{z} \int_0^z h(t) dt,$$

4 .

and the function q is the best dominant.

Proof. Let
$$p(z) = (D_{\lambda}^{m,\delta}f(z))' \left(\frac{z}{f_k^m(\lambda,\delta;z)}\right)^{1+\gamma}$$
 $(z \in \mathcal{U}; z \neq 0; f \in \mathcal{A}).$
Then $p(z) \in \mathcal{H}(1,1)$ with $p(z) \neq 0$ in \mathcal{U} . Since *h* is convex, it can be easily

Then $p(z) \in \mathcal{H}(1, 1)$ with $p(z) \neq 0$ in \mathcal{U} . Since *h* is convex, it can be easily verified that *Q* is convex and univalent. We now set $P(z) = p^2(z)$. Then $P(z) \in \mathcal{H}(1, 1)$ with $P(z) \neq 0$ in \mathcal{U} . By logarithmic differentiation we have,

$$\frac{zP'(z)}{P(z)} = 2\left[\frac{z(D_{\lambda}^{m,\delta}f(z))''}{(D_{\lambda}^{m,\delta}f(z))'} + (1+\gamma)\left(1 - \frac{z(f_k^m(\lambda,\delta;z))'}{f_k^m(\lambda,\delta;z)}\right)\right].$$

Therefore, by (9) we have

$$P(z) + zP'(z) \prec h(z). \tag{11}$$

Now, by Lemma 1.2 with $\delta = 1$, we deduce that

$$P(z) \prec Q(z) \prec h(z),$$

and Q is the best dominant of (11). Since $\operatorname{Re} h(z) > 0$ and $Q(z) \prec h(z)$ we also have $\operatorname{Re} Q(z) > 0$. Hence, the univalence of Q implies the univalence of $q(z) = \sqrt{Q(z)}$, and

$$p^2(z) = P(z) \prec Q(z) = q^2(z),$$

which implies that $p(z) \prec q(z)$. Since Q is the best dominant of (11), we deduce that q is the best dominant of (10). This completes the proof.

Corollary 2.2. Let $f \in \mathcal{A}$ with f(z) and $f'(z) \neq 0$ for all $z \in \mathcal{U} \setminus \{0\}$. If $Re(\Psi(z)) > \alpha$, $(0 \leq \alpha < 1)$, where

$$\Psi(z) = \left\{ \left(D_{\lambda}^{m,\delta} f(z) \right)' \left(\frac{z}{f_k^m(\lambda,\delta;z)} \right)^{1+\gamma} \right\}^2 \left[3 + 2\gamma + \frac{2z \left(D_{\lambda}^{m,\delta} f(z) \right)''}{\left(D_{\lambda}^{m,\delta} f(z) \right)'} - 2(1+\gamma) \frac{z \left(f_k^m(\lambda,\delta;z) \right)'}{f_k^m(\lambda,\delta;z)} \right],$$

then

$$Re\left\{\left(D_{\lambda}^{m,\delta}f(z)\right)'\left(\frac{z}{f_{k}^{m}(\lambda,\delta;z)}\right)^{1+\gamma}\right\} > \mu(\alpha),$$

where $\mu(\alpha) = [2(1-\alpha), \log 2 + (2\alpha - 1)]^{\frac{1}{2}}$, and this result is sharp. *Proof.* Let $h(z) = \frac{1+(2\alpha - 1)z}{1+z}$ with $0 \le \alpha < 1$. Then from Theorem 2.1, it follows that Q(z) is convex and $\operatorname{Re} Q(z) > 0$. Also we have,

$$\min_{|z| \le 1} \operatorname{Re} q(z) = \min_{|z| \le 1} \operatorname{Re} \sqrt{Q(z)} = \sqrt{Q(1)} = \left[2(1-\alpha) \cdot \log 2 + (2\alpha - 1) \right]^{\frac{1}{2}}.$$

This completes the proof the corollary.

By setting m = 0, and $\gamma = 0$ in Corollary 2.2, we have the following corollary. **Corollary 2.3.** Let $f \in \mathcal{A}$ with f(z) and $f'(z) \neq 0$ for all $z \in \mathcal{U} \setminus \{0\}$. If $Re\left\{\left(\frac{zf'(z)}{f_k(z)}\right)^2 \left[3 + 2\frac{zf''(z)}{f'(z)} - 2\frac{zf'_k(z)}{f_k(z)}\right]\right\} > \alpha$, $(0 \leq \alpha < 1)$, then $Re\left\{\frac{zf'(z)}{f_k(z)}\right\} > \mu(\alpha)$, where $\mu(\alpha) = \left[2(1-\alpha), \log 2 + (2\alpha-1)\right]^{\frac{1}{2}}$, and this result is sharp.

Theorem 2.4. Let $f \in \mathcal{A}$ with f(z) and $f'(z) \neq 0$ for all $z \in \mathcal{U} \setminus \{0\}$ and h be starlike in \mathcal{U} , with h(0) = 0. If

$$\frac{z(D_{\lambda}^{m,\delta}f(z))''}{(D_{\lambda}^{m,\delta}f(z))'} + (1+\gamma)\left(1 - \frac{z\left(f_k^m(\lambda,\delta;z)\right)'}{f_k^m(\lambda,\delta;z)}\right) \prec h(z) \qquad (z \in \mathcal{U}; \, \gamma \ge 0), \quad (12)$$

then

$$\left(D_{\lambda}^{m,\delta}f(z)\right)'\left(\frac{z}{f_{k}^{m}(\lambda,\delta;z)}\right)^{1+\gamma} \prec q(z) = \exp\left(\int_{0}^{z}\frac{h(t)}{t}\,dt\right),\tag{13}$$

and q is the best dominant.

Proof. Let $p(z) = (D_{\lambda}^{m,\delta}f(z))' \left(\frac{z}{f_k^m(\lambda,\delta;z)}\right)^{1+\gamma}$ $(z \in \mathcal{U}; z \neq 0; f \in \mathcal{A}).$ Then $p(z) \in \mathcal{H}(1,1)$ with $p(z) \neq 0$ in \mathcal{U} . Thus we can define an analytic f

Then $p(z) \in \mathcal{H}(1,1)$ with $p(z) \neq 0$ in \mathcal{U} . Thus we can define an analytic function $P(z) = \log p(z)$. Clearly $P \in \mathcal{H}(0,1)$, and by (12) we obtain

$$zP'(z) \prec h(z). \tag{14}$$

Now by using Lemma 1.3 we deduce that $P(z) \prec Q(z) = \int_0^z \frac{h(t)}{t} dt$, and Q is the best dominant of (14). Converting back we obtain $p(z) = \exp P(z) \prec \exp Q(z) = q(z)$, and since Q is the best dominant of (14), we deduce that q is the best dominant of (13). This completes the proof.

By setting m = 0 in Theorem 2.4, we have the following corollary.

Corollary 2.5. Let $f \in \mathcal{A}$ with f(z) and $f'(z) \neq 0$ for all $z \in \mathcal{U} \setminus \{0\}$ and h be starlike in \mathcal{U} , with h(0) = 0. If

$$\frac{zf''(z)}{f'(z)} + (1+\gamma)\left(1 - \frac{zf'_k(z)}{f_k(z)}\right) \prec h(z) \qquad (z \in \mathcal{U}; \, \gamma \ge 0)$$

then $f'(z)\left(\frac{z}{f_k(z)}\right)^{1+\gamma} \prec q(z) = \exp\left(\int_0^z \frac{h(t)}{t} dt\right)$, and q is the best dominant. **Theorem 2.6.** Let $f \in \mathcal{A}$ with f(z) and $f'(z) \neq 0$ for all $z \in \mathcal{U} \setminus \{0\}$ and q(z) be univalent in the unit disc \mathcal{U} with $q'(z) \neq 0$ in \mathcal{U} . If $\frac{zq'(z)}{q(z)}$ is starlike in \mathcal{U} and

$$\frac{z(D_{\lambda}^{m,\delta}f(z))''}{(D_{\lambda}^{m,\delta}f(z))'} + (1+\gamma)\left(1 - \frac{z\left(f_k^m(\lambda,\delta;z)\right)'}{f_k^m(\lambda,\delta;z)}\right) \prec \frac{z\,q'(z)}{q(z)} \qquad (z \in \mathcal{U}; \, \gamma \ge 0), \quad (15)$$

then $(D_{\lambda}^{m,\delta}f(z))'\left(\frac{z}{f_{k}^{m}(\lambda,\delta;z)}\right)^{1+\gamma} \prec q(z)$, and q(z) is the best dominant. Proof. Let $p(z) = (D_{\lambda}^{m,\delta}f(z))'\left(\frac{z}{f_{k}^{m}(\lambda,\delta;z)}\right)^{1+\gamma}$ $(z \in \mathcal{U}; z \neq 0; f \in \mathcal{A})$. By setting $\theta(\omega) = \frac{a}{\omega}$, $a \neq 0$, it can be easily verified that $\theta(\omega)$ is analytic in $\mathbb{C} - \{0\}$. Then we obtain $a\frac{z p'(z)}{p(z)} = a\left[\frac{z(D_{\lambda}^{m,\delta}f(z))''}{(D_{\lambda}^{m,\delta}f(z))'} + (1+\gamma)\left(1 - \frac{z\left(f_{k}^{m}(\lambda,\delta;z)\right)'}{f_{k}^{m}(\lambda,\delta;z)}\right)\right] \prec \mathbf{U}$

 $a \frac{z q'(z)}{q(z)}$. Now, the assertion of the theorem follows by an application of Lemma 1.4. By setting m = 0 in Theorem 2.6, we have the following corollary.

Corollary 2.7. Let $f \in \mathcal{A}$ with f(z) and $f'(z) \neq 0$ for all $z \in \mathcal{U} \setminus \{0\}$ and q(z) be univalent in the unit disc \mathcal{U} with $q'(z) \neq 0$ in \mathcal{U} . If $\frac{zq'(z)}{q(z)}$ is starlike in \mathcal{U} and

$$\frac{zf''(z)}{f'(z)} + (1+\gamma)\left(1 - \frac{zf'_k(z)}{f_k(z)}\right) \prec \frac{zq'(z)}{q(z)} \qquad (z \in \mathcal{U}; \, \gamma \ge 0),$$

then $f'(z)\left(\frac{z}{f_k(z)}\right)^{1+\gamma} \prec q(z)$, and q(z) is the best dominant.

References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci. 2004, no. 25-28, 1429–1436.

[2] F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl. 339 (2008), no. 1, 655–667.

 [3] D. J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191–195.

[4] S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications*, Series in Pure and Applied Mathematics, No. 225, Marcel Dekker, New York, (2000).

[5] M. Obradović, A class of univalent functions, Hokkaido Math. J. 27 (1998), no. 2, 329–335.

[6] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978), no. 1, 53–59.

[7] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), no. 5, 1057–1077.

[8] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72–75.

[9] G. Ş. Sălăgean, Subclasses of univalent functions, in Complex analysis—fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362–372, Lecture Notes in Math., 1013, Springer, Berlin.

[10] T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37 (1970), 775–777.

C. Selvaraj

Dept. of Mathematics Presidency College (Autonomous) Chennai-600 005, India. email: pamc9439@yahoo.co.in

K.A. Selvakumaran Dept. of Mathematics Presidency College (Autonomous) Chennai-600 005, India. email:selvaa1826@gmail.com