GENERALIZED SEQUENCE SPACES ON SEMINORMED SPACES

ÇIĞDEM A. BEKTAŞ

ABSTRACT. In this paper we define the sequence space $\ell_M(u, p, q, s)$ on a seminormed complex linear space by using Orlicz function and we give various properties and some inclusion relations on this space. This study generalized some results of Bektaş and Altın [1].

Keywords: Orlicz functions, sequence spaces, convex function.

2000 Mathematics Subject Classification: 40C05, 46A45.

1. INTRODUCTION

Let ω be the set of all sequences $x = (x_k)$ with complex terms.

Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to construct the sequence space $\ell_M = \{x \in \omega : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) < \infty \text{ for some } \rho > 0\}$. The space ℓ_M with the norm $||x|| = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) \leq 1\}$ becomes a Banach space which is called an Orlicz sequence space. The space ℓ_M is closely related to the space ℓ_p which is an Orlicz sequence space with $M(x) = x^p$ for $1 \leq p < \infty$. An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$. **Remark 1.1.** If M is a convex function and M(0) = 0, then $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 \leq \lambda \leq 1$. Let X be a complex linear space with zero element θ and (X, q) be a seminormed space with the seminorm q. By S(X) we denote the linear space of all sequences $x = (x_k)$ with $(x_k) \in X$ and the usual coordinatewise operations:

$$\alpha x = (\alpha x_k)$$
 and $x + y = (x_k + y_k)$

for each $\alpha \in C$ where C denotes the set of all complex numbers. If $\lambda = (\lambda_k)$ is a scalar sequence and $x \in S(X)$ then we shall write $\lambda x = (\lambda_k x_k)$. Let U be the set of all sequences $u = (u_k)$ such that $u_k \neq 0$ and complex for all $k = 1, 2, \ldots$ Let $p = (p_k)$ be a sequence of positive real numbers and M be an Orlicz function. Given $u \in U$. Let $s \geq 0$. Then we define the sequence space

$$\ell_M(u, p, q, s) = \{ x \in S(X) : \sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{\rho}))]^{p_k} < \infty, \text{ for some } \rho > 0 \}.$$

The following inequality and $p = (p_k)$ sequence will be used frequently throughout this paper.

$$|a_k + b_k|^{p_k} \le D\{|a_k|^{p_k} + |b_k|^{p_k}\},\$$

where $a_k, b_k \in C$, $0 < p_k \le \sup_k p_k = G$, $D = \max(1, 2^{G-1})[4]$.

A sequence space E is said to be solid (or normal) if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$.

2. Main Results

Theorem 2.1. The sequence space $\ell_M(u, p, q, s)$ is a linear space over the field C complex numbers.

Proof. Let $x, y \in \ell_M(u, p, q, s)$ and $\alpha, \beta \in C$. Then there exist some positive numbers ρ_1 and ρ_2 such that

$$\sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{\rho_1}))]^{p_k} < \infty$$

and

$$\sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k y_k}{\rho_2}))]^{p_k} < \infty.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since *M* is non-decreasing and convex, and since *q* is a seminorm, we have

$$\sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k(\alpha x_k + \beta y_k)}{\rho_3}))]^{p_k} \le \sum_{k=1}^{\infty} k^{-s} [M(q(\frac{\alpha u_k x_k}{\rho_3}) + q(\frac{\beta u_k y_k}{\rho_3})]^{p_k}$$

$$\leq \sum_{k=1}^{\infty} \frac{1}{2^{p_k}} k^{-s} [M(q(\frac{u_k x_k}{\rho_1})) + M(q(\frac{u_k y_k}{\rho_2}))]^{p_k}$$
(1')
$$\leq \sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{\rho_1})) + M(q(\frac{u_k y_k}{\rho_2}))]^{p_k}$$
(1')
$$\leq D \sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{\rho_1}))]^{p_k} + D \sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k y_k}{\rho_2}))]^{p_k}$$
(1')

This proves that $\ell_M(u, p, q, s)$ is a linear space.

Theorem 2.2. The space $\ell_M(u, p, q, s)$ is paranormed (not necessarily totaly paranormed) with

$$g_u(x) = \inf\{\rho^{p_n/H} : (\sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{\rho}))]^{p_k})^{1/H} \le 1, \quad n = 1, 2, 3, \dots\}$$

where $H = \max(1, \sup_k p_k)$.

Proof. Clearly $g_u(x) = g_u(-x)$. The subadditivity of g_u follows from (1'), on taking $\alpha = 1$ and $\beta = 1$. Since $q(\theta) = 0$ and M(0) = 0, we get $\inf\{\rho^{p_n/H}\} = 0$ for $x = \theta$. Finally, we prove that the scalar multiplication is continuous. Let λ be any number. By definition,

$$g_u(\lambda x) = \inf\{\rho^{p_n/H} : (\sum_{k=1}^{\infty} k^{-s} [M(q(\frac{\lambda u_k x_k}{\rho}))]^{p_k})^{1/H} \le 1, \quad n = 1, 2, 3, \dots\}.$$

Then

$$g_u(\lambda x) = \inf\{(\lambda r)^{p_n/H} : (\sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{r}))]^{p_k})^{1/H} \le 1, \quad n = 1, 2, 3, \dots\}$$

where $r = \rho/\lambda$. Since $|\lambda|^{p_k} \leq \max(1, |\lambda|^H)$, then $|\lambda|^{p_k/H} \leq (\max(1, |\lambda|^H))^{1/H}$. Hence

$$g_u(\lambda x) \le (\max(1, |\lambda|^H))^{1/H} \inf\{(r)^{p_n/H} : (\sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{r}))]^{p_k})^{1/H} \le 1, \quad n = 1, 2, 3, \dots\}$$

and therefore $g_u(\lambda x)$ converges to zero when $g_u(x)$ converges to zero in $\ell_M(u, p, q, s)$. Now suppose that $\lambda_n \to 0$ and x is in $\ell_M(u, p, q, s)$. For arbitrary $\varepsilon > 0$, let N be a positive integer such that

$$\sum_{k=N+1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{\rho}))]^{p_k} < (\frac{\varepsilon}{2})^H$$

for some $\rho > 0$. This implies that

$$\left(\sum_{k=N+1}^{\infty} k^{-s} \left[M\left(q\left(\frac{u_k x_k}{\rho}\right)\right)\right]^{p_k}\right)^{1/H} \le \frac{\varepsilon}{2}$$

Let $0 < |\lambda| < 1$, then using Remark 1.1 we get

$$\sum_{k=N+1}^{\infty} k^{-s} [M(q(\frac{\lambda u_k x_k}{\rho}))]^{p_k} < \sum_{k=N+1}^{\infty} k^{-s} [|\lambda| M(q(\frac{u_k x_k}{\rho}))]^{p_k} < (\frac{\varepsilon}{2})^H.$$

Since M is continuous everywhere in $[0, \infty)$, then

$$f(t) = \sum_{k=1}^{N} k^{-s} \left[M(q(\frac{tu_k x_k}{\rho})) \right]^{p_k}$$

is continuous at 0. So there is $1 > \delta > 0$ such that $|f(t)| < \frac{\varepsilon}{2}$ for $0 < t < \delta$. Let K be such that $|\lambda_n| < \delta$ for n > K, then for n > K we have

$$\left(\sum_{k=1}^{N} k^{-s} [M(q(\frac{\lambda_n u_k x_k}{\rho}))]^{p_k})^{1/H} < \frac{\varepsilon}{2}.$$

Since $0 < \varepsilon < 1$ we have

$$(\sum_{k=1}^{\infty} k^{-s} [M(q(\frac{\lambda_n u_k x_k}{\rho}))]^{p_k})^{1/H} < 1, \text{ for } n > K.$$

If we take limit on $\inf\{\rho^{p_n/H}\}$ we get $g_u(\lambda x) \to 0$.

3. Some Particular Cases

We get the following sequence spaces from $\ell_M(u, p, q, s)$ on giving particular values to p and s. Taking $p_k = 1$ for all $k \in N$, we have

$$\ell_M(u,q,s) = \{ x \in S(X) : \sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{\rho}))] < \infty, s \ge 0, \text{ for some } \rho > 0 \}.$$

If we take s = 0, then we have

$$\ell_M(u, p, q) = \{ x \in S(X) : \sum_{k=1}^{\infty} [M(q(\frac{u_k x_k}{\rho}))]^{p_k} < \infty, \text{ for some } \rho > 0 \}.$$

If we take $p_k = 1$ for all $k \in N$ and s = 0, then we have

$$\ell_M(u,q) = \{ x \in S(X) : \sum_{k=1}^{\infty} [M(q(\frac{u_k x_k}{\rho}))] < \infty, \text{ for some } \rho > 0 \}.$$

If we take s = 0, q(x) = |x| and X = C, then we have

$$\ell_M(u,p) = \{ x \in S(X) : \sum_{k=1}^{\infty} [M(\frac{|u_k x_k|}{\rho})]^{p_k} < \infty, \text{ for some } \rho > 0 \}.$$

In addition to the above sequence spaces, we write $\ell_M(u, p, q, s) = \ell_M(p)$ due to Parashar and Choudhary [5], on taking $u_k = 1$ for all $k \in N$, s = 0, q(x) = |x| and X = C. If we take $u_k = 1$ for all $k \in N$, we have $\ell_M(u, p, q, s) = \ell_M(p, q, s)$ [1]. **Theorem 3.1. (i)** Let $0 < p_k \leq t_k < \infty$ for each $k \in N$. Then $\ell_M(u, p, q) \subseteq \ell_M(u, t, q)$.

(ii)
$$\ell_M(u,q) \subseteq \ell_M(u,q,s)$$
.

(iii) $\ell_M(u, p, q) \subseteq \ell_M(u, p, q, s).$

Proof. (i) Let $x \in \ell_M(u, p, q)$. Then there exists some $\rho > 0$ such that

$$\sum_{k=1}^{\infty} [M(q(\frac{u_k x_k}{\rho}))]^{p_k} < \infty.$$

This implies that $M(q(\frac{u_i x_i}{\rho})) \leq 1$ for sufficiently large values of i, say $i \geq k_0$ for some fixed $k_0 \in N$.

Since M is non-decreasing, we get

$$\sum_{k=1}^{\infty} [M(q(\frac{u_k x_k}{\rho}))]^{t_k} < \infty,$$

since

$$\sum_{k\geq k_0}^{\infty} [M(q(\frac{u_k x_k}{\rho}))]^{t_k} \leq \sum_{k\geq k_0}^{\infty} [M(q(\frac{u_k x_k}{\rho}))]^{p_k} < \infty.$$

Hence $x \in \ell_M(u, t, q)$.

The proof of (ii) and (iii) is trivial.

Theorem 3.2. Let $0 < p_k \le t_k < \infty$ for each k. Then $\ell_M(u, p) \subseteq \ell_M(u, t)$. *Proof.* Proof can be proved by the same way as Theorem 3.1(i). **Theorem 3.3** (i) If $0 < p_k < 1$ for all $k \in N$, then $\ell_M(u, p, q) \subseteq \ell_M(u, q)$.

Theorem 3.3. (i) If $0 < p_k \leq 1$ for all $k \in N$, then $\ell_M(u, p, q) \subseteq \ell_M(u, q)$.

(ii) If $p_k \ge 1$ for all $k \in N$, then $\ell_M(u,q) \subseteq \ell_M(u,p,q)$.

Proof. (i) If we take $t_k = 1$ for all $k \in N$, in Theorem 3.1(i), then $\ell_M(u, p, q) \subseteq \ell_M(u, q)$.

(ii) If we take $p_k = 1$ for all $k \in N$, in Theorem 3.1(i), then $\ell_M(u,q) \subseteq \ell_M(u,p,q)$.

Proposition 3.4 For any two sequences $p = (p_k)$ and $t = (t_k)$ of positive real numbers and any two seminorms q_1 and q_2 we have $\ell_M(u, p, q_1, r) \cap \ell_M(u, t, q_2, s) \neq \emptyset$ for r, s > 0.

Proof. Since the zero element belongs to $\ell_M(u, p, q_1, r)$ and $\ell_M(u, t, q_2, s)$, thus the intersection is nonempty.

Theorem 3.5. The sequence space $\ell_M(u, p, q, s)$ is solid. Proof. Let $(x_k) \in \ell_M(u, p, q, s)$, i.e,

$$\sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{\rho}))]^{p_k} < \infty.$$

Let (α_k) be sequence of scalars such that $|\alpha_k| \leq 1$ for all $k \in N$. Then we have

$$\sum_{k=1}^{\infty} k^{-s} [M(q(\frac{\alpha_k u_k x_k}{\rho}))]^{p_k} \le \sum_{k=1}^{\infty} k^{-s} [M(q(\frac{u_k x_k}{\rho}))]^{p_k} < \infty.$$

Hence $(\alpha_k x_k) \in \ell_M(u, p, q, s)$ for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in N$, whenever $(x_k) \in \ell_M(u, p, q, s)$.

Therefore the space $\ell_M(u, p, q, s)$ is a solid sequence space.

Corollary 3.6. (i) Let $|u_k| \leq 1$ for all $k \in N$. Then $\ell_M(p,q,s) \subseteq \ell_M(u,p,q,s)$. (ii) Let $|u_k| \geq 1$ for all $k \in N$. Then $\ell_M(u,p,q,s) \subseteq \ell_M(p,q,s)$.

Proof. Proof is trivial.

References

[1] Ç. Bektaş and Y. Altın, The sequence space $\ell_M(p,q,s)$ on seminormed space, Indian J. Pure Appl. Math., 34 (4), (2003), 529-534.

[2] T. Bilgin, The sequence space $\ell(p, f, q, s)$ on seminormed spaces, Bull. Cal. Math. Soc., 86, (1994), 295-304.

[3] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10, (1971), 379-390.

[4] I. J. Maddox, *Elements of Functional Analysis*, Cambridge Univ. Press, (1970).

[5] S. D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure. Appl. Math., 25, (1994), 419-428.

Çiğdem A. Bektaş

Department of Mathematics

Firat University, Elazig, 23119, Turkey.

email: cigdemas78@hotmail.com