HOMOMORPHISMS OF CERTAIN α -LIPSCHITZ OPERATOR ALGEBRAS

Abbas Ali Shokri and Ali Shokri

ABSTRACT. In a recent paper by A.A. Shokri, A. Ebadian and A.R. Medghalchi [7], a α -Lipschitz operator from a compact metric space X into a unital commutative Banach algebra B is defined. Let (X, d) be a compact metric space in \mathbb{C} , $0 < \alpha \leq 1$ and $(B, \| \cdot \|)$ be a unital commutative Banach algebra. Let $L^{\alpha}(X, B)$ be the algebra of all bounded continuous operators $f: X \to B$ such that

$$p_{\alpha}(f) := \sup\left\{\frac{\parallel f(x) - f(y) \parallel}{d^{\alpha}(x, y)} : x, y \in X, x \neq y\right\} < \infty .$$

Now in this work, we characterize homomorphisms of $L^{\alpha}(X, B)$.

2000 Mathematics Subject Classification: 47B48, 46J10.

Key words: Homomorphism, Automorphism, Banach algebra, Lipschitz operator algebras.

1. INTRODUCTION

Let (X, d) be a compact metric space with at least two elements in \mathbb{C} and (B, ||. ||) be a Banach space over the scaler field \mathbb{F} (= \mathbb{R} or \mathbb{C}). For a constant $0 < \alpha \leq 1$ and an operator $f : X \to B$, set

$$p_{\alpha}(f) := \sup_{s \neq t} \frac{\| f(t) - f(s) \|}{d^{\alpha}(s, t)} , \quad (s, t \in X),$$

which is called the Lipschitz constant of f. Define

$$L^{\alpha}(X,B) := \{f: X \to B \quad : \quad p_{\alpha}(f) < \infty\},\$$

and

$$l^{\alpha}(X,B) := \left\{ f: X \to B \quad : \quad \frac{\parallel f(t) - f(s) \parallel}{d^{\alpha}(s,t)} \to 0 \quad as \quad d(s,t) \to 0 \right\}.$$

The elements of $L^{\alpha}(X, B)$ and $l^{\alpha}(X, B)$ are called big and little α -Lipschitz operators, respectively [7]. Let C(X, B) be the set of all continuous operators from X into B and for each $f \in C(X, B)$, define

$$\parallel f \parallel_{\infty} := \sup_{x \in X} \parallel f(x) \parallel.$$

For f, g in C(X, B) and λ in \mathbb{F} , define

$$(f+g)(x) := f(x) + g(x), \quad (\lambda f)(x) := \lambda f(x), \quad (x \in X).$$

It is easy to see that $(C(X, B), \| . \|_{\infty})$ becomes a Banach space over \mathbb{F} and $L^{\alpha}(X, B)$ is a linear subspace of C(X, B). For each element f of $L^{\alpha}(X, B)$, define

$$\parallel f \parallel_{\alpha} := \parallel f \parallel_{\infty} + p_{\alpha}(f).$$

When $(B, \| . \|)$ is a Banach space, Cao, Zhang and Xu [2] proved that $(L^{\alpha}(X, B), \| . \|_{\alpha})$ is a Banach space over \mathbb{F} and $l^{\alpha}(X, B)$ is a closed linear subspace of $(L^{\alpha}(X, B), \| . \|_{\alpha})$, and when $(B, \| . \|)$ is a unital commutative Banach algebra, A.A. Shokri, A. Ebadian and A.R. Medghalchi [7] proved that $(L^{\alpha}(X, B), \| . \|_{\alpha})$ is a Banach algebra over \mathbb{F} under pointwise multiplication and $l^{\alpha}(X, B)$ is a closed linear subalgebra of $(L^{\alpha}(X, B), \| . \|_{\alpha})$. Furthermore, Sherbert [5,6], Weaver [8,9], Jimenez-Vargas [3], Johnson [4], Cao, Zhang and Xu [2], Bade, Curtis and Dales [1] studied some properties of Lipschitz algebras.

Finally, in this paper, we will study the homomorphisms on the $L^{\alpha}(X, B)$.

2. Homomorphisms on the α -Lipschitz operator algebras

In this section, let us use (X, d) to denote a compact metric space in \mathbb{C} which has at least two elements and $(B, \| . \|)$ to denote a unital commutative Banach algebra with unit **e** over the scalar field $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$. Now, we characterize homomorphisms on the $L^{\alpha}(X, B)$ where $0 < \alpha \leq 1$.

Theorem 2.1. Let (X, d_1) and (Y, d_2) be compact metric spaces in \mathbb{C} , $0 < \alpha \leq 1$ and $(B, \| . \|)$ be a unital commutative Banach algebra with unit e. Then the map $T : L^{\alpha}(X, B) \to L^{\alpha}(Y, B)$ is a homomorphism if and only if there is a map $\varphi : Y \to X$ such that

$$Tf = fo\varphi \quad (f \in L^{\alpha}(X, B)) ,$$

and there is a positive number M such that for every $x, y \in Y$

$$d_1(\varphi(x),\varphi(y)) \leq M \ d_2^{\alpha}(x,y)$$
.

Proof. Let $T : L^{\alpha}(X, B) \to L^{\alpha}(Y, B)$ be a homomorphism and $\Lambda \in B^*$ (B^* is dual space of B) be fixed (if $B = \mathbb{C}$ then $\Lambda = I$ is the identity map). Let $M_{L^{\alpha}(X,B)}$ be the maximal ideal space of $L^{\alpha}(X, B)$. For $x \in X$, define

$$\delta_x : L^{\alpha}(X, B) \to \mathbb{C}$$

 $\delta_x(f) := (\Lambda of)(x) .$

Then $\delta_x \in M_{L^{\alpha}(X,B)}$. We define

$$F_1: X \longrightarrow M_{L^{\alpha}(X,B)}$$
$$F_1(x) = \delta_x ,$$

and

$$F_2: Y \longrightarrow M_{L^{\alpha}(Y,B)}$$
$$F_2(y) = \delta_y ,$$

also

$$\psi: M_{L^{\alpha}(Y,B)} \longrightarrow M_{L^{\alpha}(X,B)}$$
$$h \longmapsto \psi(h)$$

where

$$\psi(h): L^{\alpha}(X, B) \longrightarrow \mathbb{C}$$
$$\psi(h)(f) := h(Tf).$$

Set

$$\varphi := F_1^{-1} o \psi o F_2 \; .$$

Then φ is a map from Y into X such that $F_1 o \varphi = \psi o F_2$, and for every $y \in Y$ we have

$$(F_1 o \varphi)(y) = (\psi o F_2)(y)$$
 or $F_1(\varphi(y)) = \psi(F_2(y))$

Then $\delta_{\varphi(y)} = \psi(\delta_y)$. This implies that $\delta_{\varphi(y)}(f) = \psi(\delta_y)(f)$ for every $f \in L^{\alpha}(X, B)$ and $y \in Y$. Therefore $(\Lambda of)(\varphi(y)) = \delta_y(Tf)$. Then

$$\Lambda\Big(f(\varphi(y))\Big) = (\Lambda oTf)(y) = \Lambda\Big((Tf)(y)\Big)$$

Since Λ is arbitrary, $(fo\varphi)(y) = (Tf)(y)$ $(y \in Y)$. Therefore $Tf = fo\varphi$ for every $f \in L^{\alpha}(X, B)$. T is continuous, because if $\{f_n\}_{n \geq 1} \subset L^{\alpha}(X, B)$ be a sequence such that $f_n \to f$ $(f \in L^{\alpha}(X, B))$ then $f_n o\varphi \to fo\varphi$ and so $Tf_n \to Tf$.

Now we show that there is a positive number M such that for every $x,y\in Y$ we have

$$d_1(\varphi(x),\varphi(y)) \le M d_2^{\alpha}(x,y)$$
.

Let $s \in X$. Define $f_s : X \to B$ with $f_s(t) := d_1(t, s)$.e $(t \in X)$. Then $f_s \in L^{\alpha}(X, B)$ and $\{f_s : s \in X\}$ is a bounded set in $L^{\alpha}(X, B)$. Since T is continuous, $\{Tf_s : s \in X\}$ is a bounded set in $L^{\alpha}(Y, B)$. Thus there is a positive number M such that for every $s \in X$, $\|Tf_s\|_{\alpha} \leq M$. Hence for every $s \in X$, $p_{\alpha}(Tf_s) \leq M$ and so for every $x, y \in Y$ such that $x \neq y$ we have

$$\frac{\| (Tf_s)(x) - (Tf_s)(y) \|}{d_2^{\alpha}(x, y)} \le M .$$

With a simple calculation we have

$$\frac{d_1(\varphi(x),\varphi(y))}{d_2^{\alpha}(x,y)} \le M$$

and so for every $x, y \in Y$ we have $d_1(\varphi(x), \varphi(y)) \leq M d_2^{\alpha}(x, y)$. So one half of the theorem is proved.

On the other hand, suppose that $T: L^{\alpha}(X, B) \to L^{\alpha}(Y, B)$ is a linear map and there is a map $\varphi: Y \to X$ such that

$$Tf = fo\varphi$$
, $(f \in L^{\alpha}(X, B))$,

and a positive number M such that for every $x, y \in Y$

$$d_1(\varphi(x),\varphi(y)) \leq M d_2^{\alpha}(x,y)$$
.

Firstly, we show that for every $f \in L^{\alpha}(X, B)$, we have $f \circ \varphi \in L^{\alpha}(Y, B)$. Let $f \in L^{\alpha}(X, B)$. Then $f \circ \varphi \in C(Y, B)$ and

$$p_{\alpha}(fo\varphi) = \sup_{x \neq y} \frac{\| (fo\varphi)(x) - (fo\varphi)(y) \|}{d_{2}^{\alpha}(x,y)} = \sup_{x \neq y} \frac{\| f(\varphi(x)) - f(\varphi(y)) \|}{d_{2}^{\alpha}(x,y)}$$
$$= M \sup_{x \neq y} \frac{\| f(\varphi(x)) - f(\varphi(y)) \|}{M d_{2}^{\alpha}(x,y)}$$
$$\leq M \sup_{x \neq y} \frac{\| f(\varphi(x)) - f(\varphi(y)) \|}{d_{1}(\varphi(x),\varphi(y))} = M p_{1}(f) < \infty.$$

So $f \circ \varphi \in L^{\alpha}(Y, B)$. Now, if $f, g \in L^{\alpha}(X, B)$ is arbitrary, then

$$T(fg) = (fg)o\varphi = (fo\varphi)(go\varphi) = (Tf)(Tg).$$

Therefore T is a homomorphism. The proof is complete.

Corollary 2.2 Let (X, d) be a compact metric space, and $(B, \| . \|)$ be a unital commutative Banach algebra. Then the map $T : L^{\alpha}(X, B) \to L^{\alpha}(X, B)$ is a non-zero automorphism if and only if there is a map $\varphi : X \to X$ such that for every

 $f \in L^{\alpha}(X,B), Tf = fo\varphi$, and there is a positive number M such that for every $x, y \in X$

 $d(\varphi(x),\varphi(y)) \le M d^{\alpha}(x,y)$.

References

[1] Bade, W. G., Curtis, P. C. and Dales, H. G., *Amenability and weak amenability for Berurling and Lipschitz algebras*, Proc. London. Math. Soc. (3) 55 (1987), 359-377.

[2] Cao, H. X., Zhang, J. H. and Xu, Z. B., *Characterizations and extensions of Lipschitz-\alpha operators*. Acta Mathematica Sinica, English Series, 22 (3) (2006), 671-678.

[3] Jimenez-Vargas, A., Disjointness preserving operators between little Lipschitz algebras. J. Math. Anal. Appl. 337 (2008), 984-993.

[4] Johnson, B. E., Lipschitz spaces, Pacific J. Math, 51 (1975), 177-186.

[5] Sherbert, D. R., Banach algebras of Lipschitz functions, Pacific J. Math, 13 (1963), 1387-1399.

[6] Sherbert, D. R., The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc., 111 (1964), 240-272.

[7] Shokri, A.A., Ebadian, A. and Medghalchi, A.R., *Amenability and weak amenability of Lipschitz operator algebras*, ACTA Universitatis Apulensis, 18 (2009), 87-96.

[8] Weaver, N., Subalgebras of little Lipschitz algebras. Pacific J. Math., 173 (1996), 283-293.

[9] Weaver, N., *Lipschitz algebras*. World Scientific Publishing Co., Inc., River Edge, NJ, 1999.

Abbas Ali Shokri Department of Mathematics

Ahar Branch, Islamic Azad University Ahar, Iran

email:a-shokri@iau-ahar.ac.ir

Ali Shokri Department of Mathematics University of Maragheh Maragheh, Iran email: shokri@maragheh.ac.ir