THE ROMAN DOMINATION NUMBER OF A DIGRAPH

S.M. Sheikholeslami and L. Volkmann

Abstract. Let $D=(V, A)$ be a finite and simple digraph. A Roman dominating function (RDF) on a digraph D is a labeling $f: V(D) \rightarrow\{0,1,2\}$ such that every vertex with label 0 has a in-neighbor with label 2 . The weight of an RDF f is the value $\omega(f)=\sum_{v \in V} f(v)$. The Roman domination number of a digraph D, denoted by $\gamma_{R}(D)$, equals the minimum weight of an RDF on D . In this paper we present some sharp bounds for $\gamma_{R}(D)$

2000 Mathematics Subject Classification: 05C69.

1. Introduction

Let D be a finite and simple digraph with vertex set $V(D)=V$ and arc set $A(D)=$ A. A digraph without directed cycles of length 2 is an oriented graph. The order $n=n(D)$ of a digraph D is the number of its vertices. We write $d_{D}^{+}(v)$ for the outdegree of a vertex v and $d_{D}^{-}(v)$ for its indegree. The minimum and maximum indegree and minimum and maximum outdegree of D are denoted by $\delta^{-}=\delta^{-}(D)$, $\Delta^{-}=\Delta^{-}(D), \delta^{+}=\delta^{+}(D)$ and $\Delta^{+}=\Delta^{+}(D)$, respectively. If $u v$ is an arc of D, then we also write $u \rightarrow v$, and we say that v is an out-neighbor of u and u is an in-neighbor of v. For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by $N^{-}(v)=N_{D}^{-}(v)$ and $N^{+}(v)=N_{D}^{+}(v)$, respectively. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. If $X \subseteq V(D)$ and $v \in V(D)$, then $E(X, v)$ is the set of arcs from X to v. Consult [10] for the notation and terminology which are not defined here. For a real-valued function $f: V(D) \longrightarrow \mathbf{R}$ the weight of f is $w(f)=\sum_{v \in V} f(v)$, and for $S \subseteq V$, we define $f(S)=\sum_{v \in S} f(v)$, so $w(f)=f(V)$.

A subset S of vertices of D is a dominating set if $N^{+}[S]=V$. The domination number $\gamma(D)$ is the minimum cardinality of a dominating set of D. The domination number was introduced by Lee [7].

A Roman dominating function (RDF) on a digraph $D=(V, A)$ is a function $f: V \longrightarrow\{0,1,2\}$ satisfying the condition that every vertex v for which $f(v)=0$
has a in-neighbor u for which $f(u)=2$. The weight of an RDF f is the value $\omega(f)=\sum_{v \in V} f(v)$. The Roman domination number of a digraph D, denoted by $\gamma_{R}(D)$, equals the minimum weight of an RDF on D . A $\gamma_{R}(D)$-function (or $\gamma_{R^{-}}$ function) is a Roman dominating function of D with weight $\gamma_{R}(D)$. The Roman domination for digraphs was introduced by Kamaraj and Jakkammal [6]. A Roman dominating function $f: V \longrightarrow\{0,1,2\}$ can be represented by the ordered partition $\left(V_{0}, V_{1}, V_{2}\right)$ (or $\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ to refer f) of V, where $V_{i}=\{v \in V \mid f(v)=i\}$. In this representation, its weight is $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|$. Since $V_{1}^{f} \cup V_{2}^{f}$ is a dominating set when f is an RDF, and since placing weight 2 at the vertices of a dominating set yields an RDF, we have

$$
\begin{equation*}
\gamma(D) \leq \gamma_{R}(D) \leq 2 \gamma(D) \tag{1}
\end{equation*}
$$

The definition of the Roman dominating function for undirected graphs was given multiplicity by Steward [9] and ReVelle and Rosing [8]. Cockayne, Dreyer Jr., Hedetniemi and Hedetniemi [2] as well as Chambers, Kinnersley, Prince and West [1] have given a lot of results on Roman domination.

Our purpose in this paper is to establish some bounds for the Roman domination number of a digraph.

We make use of the following results in this paper.
Proposition A. [7] Let D be a digraph with order n and minimum indegree $\delta^{-}(D) \geq$ 1. Then,

$$
\gamma(D) \leq \frac{2 n}{3}
$$

Proposition B. [6] Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any $\gamma_{R}(D)$-function of a digraph D. Then
(a) $\Delta^{+}\left(D\left[V_{1}\right]\right) \leq 1$.
(b) If $w \in V_{1}$, then $N_{D}^{-}(w) \cap V_{2}=\emptyset$.
(c) If $u \in V_{0}$, then $\left|V_{1} \cap N_{D}^{+}(u)\right| \leq 2$.
(d) V_{2} is a $\gamma(D)$-set of the induced subdigraph $D\left[V_{0} \cup V_{2}\right]$
(e) Let $H=D\left[V_{0} \cup V_{2}\right]$. Then each vertex $v \in V_{2}$ with $N^{-}(v) \cap V_{2} \neq \emptyset$, has at least two private neighbors relative to V_{2} in the subdigraph H.

Proposition C. [6] Let D be a digraph with order n. Then

$$
\gamma_{R}(D) \leq n-\Delta^{+}(D)+1
$$

2. Bounds on the Roman domination number of digraphs

Our first observation characterize the digraphs which attain the lower bound in (1).

Proposition 1. Let D be a digraph on n vertices. Then $\gamma(D)=\gamma_{R}(D)$ if and only if $\Delta^{+}(D)=0$.

Proof. Assume that $\gamma(D)=\gamma_{R}(D)$. If $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{R}(D)$-function of D, then the assumption implies that we have equality in $\gamma(D) \leq\left|V_{1}\right|+\left|V_{2}\right| \leq$ $\left|V_{1}\right|+2\left|V_{2}\right|=\gamma_{R}(D)$. This implies that $\left|V_{2}\right|=0$ and hence we deduce that $\left|V_{0}\right|=0$. Therefore $\gamma(D)=\gamma_{R}(D)=\left|V_{1}\right|=|V(D)|=n$. If follows that $\Delta^{+}(D)=0$.
Conversely, if $\Delta^{+}(D)=0$, then $A(D)=\emptyset$ and so $\gamma(D)=n$. Since $\gamma_{R}(D) \leq n$, the result follows by (1).

Proposition 2. If D is a digraph on n vertices, then

$$
\gamma_{R}(D) \geq \min \{n, \gamma(D)+1\}
$$

Proof. If $\gamma_{R}(D)=n$, then we are done. Assume now that $\gamma_{R}(D)<n$, and suppose on the contrary that $\gamma_{R}(D) \leq \gamma(D)$. If $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{R}(D)$-function of D, then $V_{1} \cup V_{2}$ is a dominating set of D and thus

$$
\begin{aligned}
\gamma(D) & \leq\left|V_{1}\right|+\left|V_{2}\right| \leq\left|V_{1}\right|+2\left|V_{2}\right| \\
& =\gamma_{R}(D) \leq \gamma(D) \\
& \leq\left|V_{1}\right|+\left|V_{2}\right|
\end{aligned}
$$

This implies $\left|V_{2}\right|=0$ and hence $\left|V_{0}\right|=0$. Therefore we arrive at the contradiction $\gamma_{R}(D)=\left|V_{1}\right|=n$.

Proposition 3. Let D be a digraph on $n \geq 2$ vertices with $\delta^{-}(D) \geq 1$. Then $\gamma_{R}(D)=\gamma(D)+1$ if and only if there is a vertex $v \in V(D)$ with $d^{+}(v)=n-\gamma(D)$.

Proof. Assume that D has a vertex v with $d^{+}(v)=n-\gamma(D)$. Then clearly $f=$ $\left(V_{0}, V_{1}, V_{2}\right)=\left(N^{+}(v), V(D)-N^{+}[v],\{v\}\right)$ is an RDF on D of weight $\gamma(D)+1$. Hence $\gamma_{R}(D) \leq \gamma(D)+1$, and the result follows by Proposition 2.

Conversely, let $\gamma_{R}(D)=\gamma(D)+1$ and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}(D)$-function. Then either (1) $\left|V_{1}\right|=\gamma(D)+1$ and $\left|V_{2}\right|=0$ or $(2)\left|V_{1}\right|=\gamma(D)-1$ and $\left|V_{2}\right|=1$.

In case (1), since $\left|V_{2}\right|=0$, we have $\left|V_{0}\right|=0$. Thus $n=\gamma(D)+1$. It follows from Proposition A that $n=\gamma(D)+1 \leq \frac{2 n}{3}+1$, a contradiction when $n \geq 4$. If $n=2$, then the hypothesis $\delta^{-}(D) \geq 1$ implies that D consists of two vertices x and y such that $x \rightarrow y \rightarrow x$ and thus $d^{+}(x)=1=2-1=n-\gamma(D)$. In the case
$n=3$, let $V(D)=\{x, y, z\}$. The condition $\left|V_{2}\right|=0$ implies that $\Delta^{+}(D) \leq 1$. Using $\delta^{-}(D) \geq 1$, it is straightforward to verify that D is isomorphic to the directed cycle $x y z x$, and we have $d^{+}(x)=1=3-2=n-\gamma(D)$.

In case (2), let $V_{2}=\{v\}$. Obviously $(v, u) \in A(D)$ for each $u \in V_{0}$. Since v has no out-neighbor in V_{1}, we obtain $d^{+}(v)=\left|V_{0}\right|=n-\left|V_{1}\right|+\left|V_{2}\right|=n-\gamma(D)$.

Proposition 4. Let D be a digraph on $n \geq 7$ vertices with $\delta^{-}(D) \geq 1$. Then $\gamma_{R}(D)=\gamma(D)+2$ if and only if:
(i) D does not have a vertex of outdegree $n-\gamma(D)$.
(ii) either D has a vertex of outdegree $n-\gamma(D)-1$ or D contains two vertices v, w such that $\left|N^{+}[v] \cup N^{+}[w]\right|=n-\gamma(D)-2$.

Proof. Let $\gamma_{R}(D)=\gamma(D)+2$. It follows from Proposition 3 that D does not have a vertex of outdegree $n-\gamma(D)$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}(D)$-function. Then either (1) $\left|V_{1}\right|=\gamma(D)+2$ and $\left|V_{2}\right|=0,(2)\left|V_{1}\right|=\gamma(D)$ and $\left|V_{2}\right|=1$, or (3) $\left|V_{1}\right|=\gamma(D)-2$ and $\left|V_{2}\right|=2$.

In case (1), we have $\left|V_{0}\right|=0$. Then $V(D)=V_{1}$. If follows from Proposition A that $n=\gamma(D)+2 \leq \frac{2 n}{3}+2$ which implies that $n \leq 6$, a contradiction.

In case (2), let $V_{2}=\{v\}$. Obviously $(v, u) \in A(D)$ for each $u \in V_{0}$. Since v has no out-neighbor in V_{1}, we obtain $d^{+}(v)=\left|V_{0}\right|=n-\left|V_{1}\right|-\left|V_{2}\right|=n-\gamma(D)-1$.

In case (3), let $V_{2}=\{v, w\}$. Since v and w have no out-neighbor in V_{1} and either $(v, u) \in A(D)$ or $(w, u) \in A(D)$ for each $u \in V_{0}$, it follows that $\left|N^{+}[v] \cup N^{+}[w]\right|=$ $n-\left|V_{1}\right|=n-(\gamma(D)-2)=n-\gamma(D)+2$.

Conversely, assume that D satisfies (i) and (ii). It follows from Proposition 3 and (i) that $\gamma_{R}(D) \geq \gamma(D)+2$. If D has a vertex v with $d^{+}(v)=n-\gamma(D)-1$, then clearly $f=\left(N^{+}(v), V(D)-N^{+}[v],\{v\}\right)$ is an RDF on D of weight $\gamma(D)+2$. Hence $\gamma_{R}(D) \leq \gamma(D)+2$ and the result follows. If D has two vertices v, w such that $\left|N^{+}[v] \cup N^{+}[w]\right|=n-\gamma(D)-2$, then $f=\left(N^{+}(v) \cup N^{+}(w), V(D)-\left(N^{+}[v] \cup\right.\right.$ $\left.\left.N^{+}[w]\right),\{v, w\}\right)$ is an RDF on D of weight $\gamma(D)+2$ and the result follows again. This completes the proof.

Following Cockayne, Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi [2], we will say that a digraph D is a Roman digraph if $\gamma_{R}(D)=2 \gamma(D)$.

Proposition 5. A digraph D is a Roman digraph if and only if it has a γ_{R}-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ with $V_{1}=\emptyset$.
S.M. Sheikholeslami, L. Volkmann - The Roman domination number of a digraph

Proof. Let D be a Roman digraph, and let S be a γ-set of D. Then $f=(V(D)-$ $S, \emptyset, S)$ is a Roman dominating function of D such that

$$
f(V(D))=2|S|=2 \gamma(D)=\gamma_{R}(D),
$$

and therefore f is a γ_{R}-function with $V_{1}=\emptyset$.
Conversely, let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{R}-function with $V_{1}=\emptyset$ and thus $\gamma_{R}(D)=$ $2\left|V_{2}\right|$. Then V_{2} is also a dominating set of D, and hence it follows that $2 \gamma(D) \leq$ $2\left|V_{2}\right|=\gamma_{R}(D)$. Applying (1), we obtain the identity $\gamma_{R}(D)=2 \gamma(D)$, i.e., D is a Roman digraph.

Proposition 6. Let D be a digraph of order n. Then $\gamma_{R}(D)<n$ if and only if $\Delta^{+}(D) \geq 2$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{R}-function of D. The hypothesis $\left|V_{0}\right|+\left|V_{1}\right|+\left|V_{2}\right|=$ $n>\gamma_{R}(D)=\left|V_{1}\right|+2\left|V_{2}\right|$ implies $\left|V_{0}\right| \geq\left|V_{2}\right|+1$. Since each vertex $w \in V_{0}$ has at least one in-neighbor in V_{2}, we deduce that

$$
\sum_{u \in V_{2}} d_{D}^{+}(u) \geq\left|V_{0}\right| \geq\left|V_{2}\right|+1
$$

If we suppose on the contrary that $\Delta^{+}(D) \leq 1$, then we arrive at the contradiction

$$
\left|V_{2}\right| \geq \sum_{u \in V_{2}} d_{D}^{+}(u) \geq\left|V_{2}\right|+1
$$

Conversely, let $\Delta^{+}(D) \geq 2$. Then Proposition C implies that $\gamma_{R}(D) \leq n-$ $\Delta^{+}(D)+1<n$, and the proof is complete.

Corollary 7. If D is a directed path or directed cycle of order n, then $\gamma_{R}(D)=n$.
Next we characterize the digraphs D with the properties that $\gamma_{R}(D)=2$, $\gamma_{R}(D)=3, \gamma_{R}(D)=4$ or $\gamma_{R}(D)=5$.

Proposition 8. (1) For a digraph D of order $n \geq 2, \gamma_{R}(D)=2$ if and only if $\Delta^{+}(D)=n-1$ or $n=2$ and $A(D)=\emptyset$.
(2) For a digraph D of order $n \geq 3, \gamma_{R}(D)=3$ if and only if $\Delta^{+}(D)=n-2$ or $n=3$ and $\Delta^{+}(D) \leq 1$.
(3) For a digraph D of order $n \geq 4, \gamma_{R}(D)=4$ if and only if $\Delta^{+}(D)=n-3$ or $\Delta^{+}(D) \leq n-3$ and there are two vertices $u, v \in V(D)$ such that $N_{D}^{+}[u] \cup$ $N_{D}^{+}[v]=V(D)$ or $n=4$ and $\Delta^{+}(D) \leq 1$.
(4) For a digraph D of order $n \geq 5, \gamma_{R}(D)=5$ if and only if $\Delta^{+}(D) \leq n-4$ and $\left|N_{D}^{+}[x] \cup N_{D}^{+}[y]\right| \leq|V(D)|-1$ for all pairs of vertices $x, y \in V(D)$. In addition, (i) there are two vertices $u, v \in V(D)$ such that $\left|N_{D}^{+}[u] \cup N_{D}^{+}[v]\right|=|V(D)|-1$ or (ii) $n=5$ and $\Delta^{+}(D) \leq 1$ or (iii) D contains a vertex w with $d^{+}(w)=n-4$ and the induced subdigraph $D\left[V(D)-N^{+}[w]\right]$ consists of three isolated vertices.

Proof. We omit the proof of (1), because it is clear.
(2) If $\Delta^{+}(D)=n-2$ or $n=3$ and $\Delta^{+}(D) \leq 1$, then it is easy to see that $\gamma_{R}(D)=3$.

Conversely, assume that $\gamma_{R}(D)=3$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}(D)$-function. It follows from (1) that $\Delta(D) \leq n-2$. Now we distinguish two cases.

Case 1. Assume that $V_{2}=\emptyset$. Then $\left|V_{1}\right|=3$ and thus $n=3$. Therefore Proposition 6 implies that $\Delta^{+}(D) \leq 1$.

Case 2. Assume that $\left|V_{2}\right|=1$ and $\left|V_{1}\right|=1$. If $V_{2}=\{v\}$, then we deduce that $d^{+}(v)=\Delta^{+}(D)=n-2$.
(3) If $\Delta^{+}(D)=n-3$ or $\Delta^{+}(D) \leq n-3$ and there are two vertices $u, v \in V(D)$ such that $N_{D}^{+}[u] \cup N_{D}^{+}[v]=V(D)$ or $n=4$ and $\Delta^{+}(D) \leq 1$, then it is straighforward to verify that $\gamma_{R}(D)=4$.

Conversely, assume that $\gamma_{R}(D)=4$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}(D)$-function. Using (1) and (2), we find that $\Delta(D) \leq n-3$. Now we distinguish three cases.

Case 1. Assume that $V_{2}=\emptyset$. Then $\left|V_{1}\right|=4$ and thus $n=4$. So Proposition 6 implies that $\Delta^{+}(D) \leq 1$.

Case 2. Assume that $\left|V_{2}\right|=1$ and $\left|V_{1}\right|=2$. If $V_{2}=\{v\}$, then we deduce that $d^{+}(v)=\Delta^{+}(D)=n-3$.

Case 3. Assume that $\left|V_{2}\right|=2$. If $V_{2}=\{u, v\}$, then we conclude that $N_{D}^{+}[u] \cup$ $N_{D}^{+}[v]=V(D)$.
(4) The conditions $\Delta^{+}(D) \leq n-4$ and $\left|N_{D}^{+}[x] \cup N_{D}^{+}[y]\right| \leq|V(D)|-1$ for all pairs of vertices $x, y \in V(D)$ and (3) imply that $\gamma_{R}(D) \geq 5$. The other three assumptions show that $\gamma_{R}(D) \leq 5$ and thus we obtain $\gamma_{R}(D)=5$.

Conversely, assume that $\gamma_{R}(D)=5$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}(D)$-function. Using (1), (2) and (3), we see that $\Delta^{+}(D) \leq n-4$ and $\left|N_{D}^{+}[x] \cup N_{D}^{+}[y]\right| \leq|V(D)|-1$ for all pairs of vertices $x, y \in V(D)$. Again, we distinguish three cases.

Case 1. Assume that $V_{2}=\emptyset$. Then $\left|V_{1}\right|=5$ and thus $n=5$. Hence Proposition 6 implies (ii) that $\Delta^{+}(D) \leq 1$.

Case 2. Assume that $\left|V_{2}\right|=1$ and $\left|V_{1}\right|=3$. If $V_{2}=\{w\}$, then we deduce that $d^{+}(w)=n-4$. Let $\{a, b, c\}=V(D)-N^{+}[w]$. If $D[\{a, b, c\}]$ consists of isolated vertices, then we have condition (iii). If $D[\{a, b, c\}]$ contains an arc, say $a b$, then $\left|N_{D}^{+}[w] \cup N_{D}^{+}[a]\right|=|V(D)|-1$ and we have shown condition (i).

Case 3. Assume that $\left|V_{2}\right|=2$ and $\left|V_{1}\right|=1$. If $V_{2}=\{u, v\}$, then it follows that $\left|N_{D}^{+}[u] \cup N_{D}^{+}[v]\right|=|V(D)|-1$ and condition (i) is proved.
S.M. Sheikholeslami, L. Volkmann - The Roman domination number of a digraph

Theorem 9. Let D be a digraph of order n and maximum outdegree $\Delta^{+}(D) \geq 1$. Then

$$
\gamma_{R}(D) \geq\left\lceil\frac{2 n}{1+\Delta^{+}(D)}\right\rceil+\epsilon
$$

with $\epsilon=0$ when $n \equiv 0,1\left(\bmod \left(\Delta^{+}(D)+1\right)\right)$ and $\epsilon=1$ when $n \not \equiv 0,1\left(\bmod \left(\Delta^{+}(D)+\right.\right.$ 1)).

Proof. Let $n=p\left(\Delta^{+}(D)+1\right)+r$ with integers $p \geq 1$ and $0 \leq r \leq \Delta^{+}(D)$, and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}(D)$-function. Then $\gamma_{R}(D)=\left|V_{1}\right|+2\left|V_{2}\right|$ and $n=$ $\left|V_{0}\right|+\left|V_{1}\right|+\left|V_{2}\right|$. Since each vertex of V_{0} has at least one in-neighbor in V_{2}, we deduce that $\left|V_{0}\right| \leq \Delta^{+}(D)\left|V_{2}\right|$. Therefore we conclude that

$$
\begin{aligned}
\left(\Delta^{+}(D)+1\right) \gamma_{R}(D) & =\left(\Delta^{+}(D)+1\right)\left(\left|V_{1}\right|+2\left|V_{2}\right|\right) \\
& =\left(\Delta^{+}(D)+1\right)\left|V_{1}\right|+2\left|V_{2}\right|+2 \Delta^{+}(D)\left|V_{2}\right| \\
& \geq\left(\Delta^{+}(D)+1\right)\left|V_{1}\right|+2\left|V_{2}\right|+2\left|V_{0}\right| \\
& =2 n+\left(\Delta^{+}(D)-1\right)\left|V_{1}\right| \\
& =2 p\left(\Delta^{+}(D)+1\right)+2 r+\left(\Delta^{+}(D)-1\right)\left|V_{1}\right| .
\end{aligned}
$$

This inequality chain and the hypothesis that $\Delta^{+}(D) \geq 1$ lead to the desired bound if $r=0$ or $r=1$ or $2 \leq r \leq \Delta^{+}(D)$ and $V_{1} \neq \emptyset$. In the remaining case that $2 \leq r \leq \Delta^{+}(D)$ and $V_{1}=\emptyset$, it follows from $\left|V_{0}\right| \leq \Delta^{+}(D)\left|V_{2}\right|$ that

$$
p\left(\Delta^{+}(D)+1\right)+r=n=\left|V_{0}\right|+\left|V_{2}\right| \leq\left(\Delta^{+}(D)+1\right)\left|V_{2}\right| .
$$

Hence the condition $r \geq 2$ leads to $\left|V_{2}\right| \geq p+1$. Therefore we obtain $\gamma_{R}(D)=$ $2\left|V_{2}\right| \geq 2(p+1)$, and this completes the proof.

Theorem 10. For any digraph D on n vertices,

$$
\gamma_{R}(D) \leq n\left(\frac{2+\ln \frac{1+\delta^{-}(D)}{2}}{1+\delta^{-}(D)}\right)
$$

Proof. Given a digraph D, select a set of vertices A, which each vertex is selected independently with probability p (with p to be defined later). The expected size of of A is $n p$. Let $B=V(D)-N^{+}[A]$. Obviously, $f=(V(D)-(A \cup B), B, A)$ is an RDF for D.

Now we compute the expected size of B. The probability that v is in B is equal to the probability that v is not in A and that no vertex of A is the in-neighbor of v. This probability is $(1-p)^{1+\operatorname{deg}^{-}(v)}$. Since $e^{-x} \geq 1-x$ for any $x \geq 0$, and $\operatorname{deg}^{-}(v) \geq \delta^{-}(D)$, we conclude that $\operatorname{Pr}(v \in B) \leq e^{-p\left(1+\delta^{-}(D)\right)}$. Hence, the
expected size of B is at most $n e^{-p\left(1+\delta^{-}(D)\right)}$, and the expected weight of f, denoted by $E\left[f(V(D)]\right.$, is at most $2 n p+n e^{-p\left(1+\delta^{-}(D)\right)}$. The upper bound for $E[f(V(D))]$ is minimized when $p=\frac{\ln \frac{1+\delta^{-}(D)}{2}}{1+\delta^{-}(D)}$, and substituting this value in for p gives

$$
E\left[f(V(D)] \leq n\left(\frac{2+\ln \frac{1+\delta^{-}(D)}{2}}{1+\delta^{-}(D)}\right) .\right.
$$

Since the expected weight of $f(V(D))$ is at most value $n\left(\frac{2+\ln \frac{1+\delta^{-}(D)}{2}}{1+\delta^{-}(D)}\right)$, there must be some RDF with at most this weight.

The bound is sharp for every orientation of $\frac{n}{2} K_{2}$.
A Roman dominating function on a graph $G=(V(G), E(G))$ is a function $f: V(G) \longrightarrow\{0,1,2\}$ satisfying the condition that every vertex $v \in V(G)$ for which $f(v)=0$ has a neighbor $u \in V(G)$ for which $f(u)=2$. The weight of an Roman dominating function f on G is the value $\omega(f)=\sum_{v \in V(G)} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, equals the minimum weight of an Roman dominating function on G.

The associated digraph $D(G)$ of a graph G is the digraph obtained when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{D(G)}^{-}(v)=N_{D(G)}^{+}(v)=N_{G}(v)$ for each vertex $v \in V(G)=V(D(G))$, the following observation is valid.

Observation 11. If $D(G)$ is the associated digraph of a graph G, then $\gamma(D(G))=$ $\gamma(G)$ and $\gamma_{R}(D(G))=\gamma_{R}(G)$.

There are a lot of interesting applications of Obsevation 11, as for example the following three results.

Corollary 12. ([2]) If G is a connected graph of order $n \geq 2$, then $\gamma_{R}(G)=\gamma(G)+1$ if and only if there is a vertex $v \in V(G)$ of degree $d_{G}(v)=n-\gamma(G)$.

Proof. Since $d_{G}(v)=d_{D(G)}^{+}(v)$ for each vertex $v \in V(G)=V(D(G))$ and $n=$ $n(D(G))$, it follows from Proposition 3 that $\gamma_{R}(D(G))=\gamma(D(G))+1$ if and only if there is a vertex $v \in V(D(G))$ with $d_{D(G)}^{+}(v)=n(D(G))-\gamma(D(G))$. Using Observation 11, we obtain the desired result.

Corollary 13. ([3]) If G is a graph of order n and maximum $\Delta(G) \geq 1$, then

$$
\gamma_{R}(G) \geq\left\lceil\frac{2 n}{1+\Delta(G)}\right\rceil
$$

S.M. Sheikholeslami, L. Volkmann - The Roman domination number of a digraph

Proof. Since $\Delta(G)=\Delta^{+}(D(G))$ and $n=n(D(G))$, it follows from Theorem 9 and Observation 11 that

$$
\gamma_{R}(G)=\gamma_{R}(D(G)) \geq\left\lceil\frac{2 n(D(G))}{1+\Delta^{+}(D(G))}\right\rceil=\left\lceil\frac{2 n}{1+\Delta(G)}\right\rceil .
$$

Corollary 14. ([2]) For any graph on n vertices,

$$
\gamma_{R}(G) \leq n\left(\frac{2+\ln \frac{1+\delta(G)}{2}}{1+\delta(G)}\right)
$$

Proof. Since $\delta(G)=\delta^{-}(D(G))$ and $n=n(D(G))$, it follows from Theorem 9 and Observation 11 that

$$
\gamma_{R}(G)=\gamma_{R}(D(G)) \leq n(D(G))\left(\frac{2+\ln \frac{1+\delta^{-}(D(G))}{2}}{1+\delta^{-}(D(G))}\right)=n\left(\frac{2+\ln \frac{1+\delta(G)}{2}}{1+\delta(G)}\right) .
$$

References

[1] E. W. Chambers, B. Kinnersley, N. Prince, D. B. West, Extremal problems for Roman domination, SIAM J. Discrete Math., 23 (2009), 1575-1586.
[2] E. J. Cockayne, P. M. Dreyer Jr., S. M. Hedetniemi, S. T. Hedetniemi, On Roman domination in graphs, Discrete Math., 278 (2004), 11-22.
[3] E. J. Cockayne, P. J. P. Grobler, W. R. Gründlingh, J. Munganga, J. H. van Vuuren, Protection of a graph, Util. Math., 67 (2005), 19-32.
[4] E. J. Cockayne, S. T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7 (1977), 247-261.
[5] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., New york, 1998.
[6] M. Kamaraj, P. Jakkammal, Roman domination in digraphs, submitted.
[7] C. Lee, Domination in digraphs, J. Korean Math. Soc. 35 (1998), 843-853.
[8] C. S. ReVelle, K. E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly, 107 (7) (2000), 585-594.
[9] I. Stewart, Defend the Roman Empire, Sci. Amer., 281 (6) (1999), 136-139.
[10] D. B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
S.M. Sheikholeslami, L. Volkmann - The Roman domination number of a digraph

S.M. Sheikholeslami
Department of Mathematics
Azarbaijan University of Tarbiat Moallem
Tabriz, I.R. Iran
email: s.m.sheikholeslami@azaruniv.edu
L.Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
email: volkm@math2.rwth-aachen.de

