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THE ROMAN DOMINATION NUMBER OF A DIGRAPH

S.M. SHEIKHOLESLAMI AND L. VOLKMANN

ABSTRACT. Let D = (V, A) be a finite and simple digraph. A Roman dominating
function (RDF) on a digraph D is a labeling f : V(D) — {0,1,2} such that every
vertex with label 0 has a in-neighbor with label 2. The weight of an RDF f is the
value w(f) = > ¢y f(v). The Roman domination number of a digraph D, denoted
by vr(D), equals the minimum weight of an RDF on D. In this paper we present
some sharp bounds for vz(D)

2000 Mathematics Subject Classification: 05C69.
1. INTRODUCTION

Let D be a finite and simple digraph with vertex set V(D) =V and arc set A(D) =
A. A digraph without directed cycles of length 2 is an oriented graph. The order
n = n(D) of a digraph D is the number of its vertices. We write df,(v) for the
outdegree of a vertex v and dj(v) for its indegree. The minimum and mazimum
indegree and minimum and mazimum outdegree of D are denoted by d= = 6~ (D),
A~ = A7(D), 6t = §7(D) and AT = AT (D), respectively. If uv is an arc of D,
then we also write u — v, and we say that v is an out-neighbor of u and u is an
in-neighbor of v. For a vertex v of a digraph D, we denote the set of in-neighbors
and out-neighbors of v by N~ (v) = N, (v) and N*(v) = N (v), respectively. If
X C V(D), then D[X] is the subdigraph induced by X. If X C V(D) and v € V (D),
then E(X,v) is the set of arcs from X to v. Consult [10] for the notation and
terminology which are not defined here. For a real-valued function f: V(D) — R
the weight of f is w(f) = >, f(v), and for S C V, we define f(S) = >, cq f(v),
so w(f) = F(V).

A subset S of vertices of D is a dominating set if NT[S] = V. The domination
number v(D) is the minimum cardinality of a dominating set of D. The domination
number was introduced by Lee [7].

A Roman dominating function (RDF) on a digraph D = (V, A) is a function
f:V — {0,1,2} satisfying the condition that every vertex v for which f(v) =0
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has a in-neighbor u for which f(u) = 2. The weight of an RDF f is the value
w(f) = > pey f(v). The Roman domination number of a digraph D, denoted by
Yr(D), equals the minimum weight of an RDF on D. A ~yr(D)-function (or ~yg-
function) is a Roman dominating function of D with weight v(D). The Roman
domination for digraphs was introduced by Kamaraj and Jakkammal [6]. A Roman
dominating function f:V — {0, 1,2} can be represented by the ordered partition
(Vo, V1, V2) (or (Vof,Vlf, VQf) to refer f) of V, where V; = {v € V| f(v) = ¢}. In this
representation, its weight is w(f) = |Vi| + 2|Va|. Since Vlf U V2f is a dominating set
when f is an RDF, and since placing weight 2 at the vertices of a dominating set
yields an RDF, we have

v(D) < r(D) < 2y(D). (1)

The definition of the Roman dominating function for undirected graphs was
given multiplicity by Steward [9] and ReVelle and Rosing [8]. Cockayne, Dreyer Jr.,
Hedetniemi and Hedetniemi [2] as well as Chambers, Kinnersley, Prince and West
[1] have given a lot of results on Roman domination.

Our purpose in this paper is to establish some bounds for the Roman domination
number of a digraph.

We make use of the following results in this paper.

Proposition A. [7] Let D be a digraph with order n and minimum indegree §~ (D) >
1. Then,

2n

7

Proposition B. [6] Let f = (Vb, V1, Va) be any yr(D)-function of a digraph D.
Then

(D) <

(a) AT(D[W3]) < 1.

(b) If w e Vi, then No(w)NVa = 0.

(¢) If u € Vy, then |Vi N N} (u)| < 2.

(d) Vi is a y(D)-set of the induced subdigraph D[V U V3]

(e) Let H = D[V U Va]. Then each vertex v € Vo with N~ (v) N Vo # 0, has at
least two private neighbors relative to Vo in the subdigraph H.

Proposition C. [6] Let D be a digraph with order n. Then

yr(D) <n— AT(D) + 1.
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2. BOUNDS ON THE ROMAN DOMINATION NUMBER OF DIGRAPHS

Our first observation characterize the digraphs which attain the lower bound in (1).

Proposition 1. Let D be a digraph on n vertices. Then v(D) = vr(D) if and only
if AT(D) = 0.

Proof. Assume that v(D) = yr(D). If f = (W, V1,Va2) is a yr(D)-function of
D, then the assumption implies that we have equality in y(D) < [Vi] 4+ [Va| <
|Vi| +2|Va| = yr(D). This implies that |V2| = 0 and hence we deduce that |Vp| = 0.
Therefore y(D) = vyg(D) = |Vi| = |V(D)| = n. If follows that A™(D) = 0.

Conversely, if AT(D) = 0, then A(D) = () and so y(D) = n. Since yg(D) < n, the
result follows by (1). O

Proposition 2. If D is a digraph on n vertices, then
Yr(D) = min{n,y(D) + 1}.

Proof. If ygr(D) = n, then we are done. Assume now that yr(D) < n, and suppose
on the contrary that yr(D) < (D). If f = (W, V1,V2) is a yr(D)-function of D,
then V3 U V5 is a dominating set of D and thus

YD) < Vil + Vol < [Vi| +2|V3|
= r(D) <~v(D)
< Nl + [Vl

This implies |V2| = 0 and hence |Vy| = 0. Therefore we arrive at the contradiction
Yr(D) = [Vi| = n. O

Proposition 3. Let D be a digraph on n > 2 wvertices with 6~ (D) > 1. Then
Yr(D) = ~v(D)+ 1 if and only if there is a vertex v € V(D) with d* (v) = n —~(D).

Proof. Assume that D has a vertex v with d*(v) = n — (D). Then clearly f =
(Vo, V1, Vo) = (Nt (v),V(D) — N*[v],{v}) is an RDF on D of weight v(D) + 1.
Hence yr(D) < v(D) + 1, and the result follows by Proposition 2.

Conversely, let yg(D) = v(D) + 1 and let f = (Vp, V1, Va) be a ygr(D)-function.
Then either (1) |[Vi| =~(D)+ 1 and |[Va| =0 or (2) |V1| =~(D) — 1 and |Va| = 1.

In case (1), since |Va| = 0, we have |Vp| = 0. Thus n = (D) + 1. It follows
from Proposition A that n = (D) +1 < %” + 1, a contradiction when n > 4. If
n = 2, then the hypothesis 7 (D) > 1 implies that D consists of two vertices z
and y such that z — y — x and thus d*(z) =1 =2—1 = n — y(D). In the case
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n =3, let V(D) = {z,y,2}. The condition |V5| = 0 implies that AT(D) < 1. Using
0~ (D) > 1, it is straightforward to verify that D is isomorphic to the directed cycle
zyzz, and we have d*(z) =1=3—-2=n—~(D).

In case (2), let Vo = {v}. Obviously (v,u) € A(D) for each u € Vj. Since v has
no out-neighbor in V3, we obtain d* (v) = |[Vo| = n — |V4| + |V2| = n — (D). O

Proposition 4. Let D be a digraph on n > 7 wvertices with 6 (D) > 1. Then
Yr(D) =~v(D) + 2 if and only if:

(i) D does not have a vertex of outdegree n — (D).

(ii) either D has a vertex of outdegree n — y(D) — 1 or D contains two vertices
v,w such that INT[v]U NT[w]| =n—~(D) — 2.

Proof. Let vr(D) = v(D)+ 2. It follows from Proposition 3 that D does not have a
vertex of outdegree n — (D). Let f = (V, V1, V3) be a yg(D)-function. Then either
(1) Vil = y(D)+2and [Vo| = 0, (2) [Vi| = v(D) and |Vo| = 1, or (3) [V1] = (D) -2
and |Va| = 2.

In case (1), we have |Vy| = 0. Then V(D) = V;. If follows from Proposition A
that n = (D) +2 < %” + 2 which implies that n < 6, a contradiction.

In case (2), let Vo = {v}. Obviously (v,u) € A(D) for each u € Vj. Since v has
no out-neighbor in Vi, we obtain d*(v) = |Vy| =n — |V4| — [Va| = n — (D) — 1.

In case (3), let Vo = {v,w}. Since v and w have no out-neighbor in V; and either
(v,u) € A(D) or (w,u) € A(D) for each u € Vj, it follows that |[NT[v] U NT[w]| =
n—WVif=n-((D)=2)=n-~D)+2

Conversely, assume that D satisfies (i) and (ii). It follows from Proposition 3
and (i) that ygr(D) > (D) + 2. If D has a vertex v with d*(v) = n — v(D) — 1,
then clearly f = (N (v), V(D) — N*[v],{v}) is an RDF on D of weight v(D) + 2.
Hence vgr(D) < (D) + 2 and the result follows. If D has two vertices v, w such
that |[Nt[o] U Nt[w]| = n—~(D) —2, then f = (Nt (v) UNT(w),V(D)— (N*T[v]U
Nt{w]),{v,w}) is an RDF on D of weight (D) + 2 and the result follows again.
This completes the proof. O

Following Cockayne, Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi [2], we
will say that a digraph D is a Roman digraph if yr(D) = 2v(D).

Proposition 5. A digraph D is a Roman digraph if and only if it has a yr-function
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Proof. Let D be a Roman digraph, and let S be a «-set of D. Then f = (V(D) —
S,0,S5) is a Roman dominating function of D such that

f(V(D)) = 2|S| = 2¢(D) = yr(D),

and therefore f is a yr-function with Vi = 0.

Conversely, let f = (Vp, V1, Va) be a yg-function with V3 = () and thus yr(D) =
2|V3|. Then V4 is also a dominating set of D, and hence it follows that 2v(D) <
2|Va| = vr(D). Applying (1), we obtain the identity vr(D) = 2y(D), i.e., D is a
Roman digraph. O

Proposition 6. Let D be a digraph of order n. Then vygr(D) < n if and only if
AT(D) > 2.

Proof. Let f = (Vp, V1, Va) be a yg-function of D. The hypothesis [Vo|+|Vi|+|Va| =
n > yr(D) = |V1| + 2|V2| implies |Vp| > |Va| + 1. Since each vertex w € Vj has at
least one in-neighbor in V5, we deduce that

> dh(w) > Vol > [Va| + 1.
u€eVy

If we suppose on the contrary that AT (D) < 1, then we arrive at the contradiction

Vol > > df(u) > [Va| + 1.
ueVy

Conversely, let AT(D) > 2. Then Proposition C implies that yg(D) < n —
AT(D) +1 < n, and the proof is complete. O

Corollary 7. If D is a directed path or directed cycle of order n, then yr(D) = n.

Next we characterize the digraphs D with the properties that vg(D) = 2,
Yr(D) =3, Yr(D) = 4 or yr(D) = 5.
Proposition 8. (1) For a digraph D of order n > 2, ygr(D) = 2 if and only if
AT(D)=n—1orn=2 and A(D) = 0.

(2) For a digraph D of order n > 3, yp(D) = 3 if and only if AT(D) =n—2 or
n =3 and AT (D) < 1.

(8) For a digraph D of order n > 4, yr(D) = 4 if and only if AT(D) = n —3
or AT(D) < n —3 and there are two vertices u,v € V(D) such that N} [u] U
Npw] =V(D) orn=4 and AT (D) < 1.
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(4) For a digraph D of order n > 5, yr(D) =5 if and only if AT(D) <n—4 and
INS|UNS Y]] < |V(D)|—1 for all pairs of vertices x,y € V(D). In addition,
(i) there are two vertices u,v € V(D) such that |Nj[u] U NS [v]| = |[V(D)| -1
or (ii)n =5 and AT (D) < 1 or (iii) D contains a vertex w with d*(w) = n—4
and the induced subdigraph D[V (D)— N*[w]| consists of three isolated vertices.

Proof. We omit the proof of (1), because it is clear.

(2) If AT(D) =n—2orn=3and AT(D) < 1, then it is easy to see that
Yr(D) =3.

Conversely, assume that yg(D) = 3. Let f = (o, V1, V2) be a yr(D)-function.
It follows from (1) that A(D) < n — 2. Now we distinguish two cases.

Case 1. Assume that V5 = (). Then |[Vi| = 3 and thus n = 3. Therefore
Proposition 6 implies that A*(D) < 1.

Case 2. Assume that |Vo| =1 and |V4| = 1. If V4 = {v}, then we deduce that
dt(v) = AT (D) =n—2.

(3) If AT(D) =n—3 or AT(D) <n—3 and there are two vertices u,v € V(D)
such that N [u]UN} [v] = V(D) or n = 4 and AT(D) < 1, then it is straighforward
to verify that yg(D) = 4.

Conversely, assume that yr(D) = 4. Let f = (Vo, V1, V2) be a yr(D)-function.
Using (1) and (2), we find that A(D) < n — 3. Now we distinguish three cases.

Case 1. Assume that V2 = (. Then |Vi| = 4 and thus n = 4. So Proposition 6
implies that A™T(D) < 1.

Case 2. Assume that |Va| = 1 and |Vi| = 2. If Vo = {v}, then we deduce that
dt(v) = AT (D) =n-3.

Case 3. Assume that [Vo| = 2. If V5 = {u, v}, then we conclude that N7 [u] U
N[ = V(D).

(4) The conditions AT(D) < n—4 and [N [z]UNA[y]| < |V(D)| -1 for all pairs
of vertices z,y € V(D) and (3) imply that yr(D) > 5. The other three assumptions
show that yr(D) < 5 and thus we obtain yr(D) = 5.

Conversely, assume that yr(D) = 5. Let f = (o, V1, V2) be a yr(D)-function.
Using (1), (2) and (3), we see that AT(D) < n—4 and |N}[z]UN} [y]| < |[V(D)| -1
for all pairs of vertices x,y € V(D). Again, we distinguish three cases.

Case 1. Assume that Vo = (). Then |V4| = 5 and thus n = 5. Hence Proposition
6 implies (ii) that A*(D) < 1.

Case 2. Assume that |Va| =1 and |V4| = 3. If Vo = {w}, then we deduce that
dt(w) = n —4. Let {a,b,c} = V(D) — NT[w]. If D[{a,b,c}] consists of isolated
vertices, then we have condition (iii). If D[{a,b,c}] contains an arc, say ab, then

INS[w] UNpal| = |V(D)| — 1 and we have shown condition (i).
Case 3. Assume that |Vo| =2 and |V;| = 1. If Vo = {u, v}, then it follows that
INj[u] U NA[v]| = |[V(D)| — 1 and condition (i) is proved. O
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Theorem 9. Let D be a digraph of order n and mazimum outdegree AT (D) > 1.
Then

Yr(D) = [HZZ(D)W +e

with e = 0 whenn = 0,1 (mod (AT(D)+1)) ande = 1 whenn # 0,1 (mod (A*(D)+
1)).

Proof. Let n = p(A*(D) + 1) + r with integers p > 1 and 0 < r < AT(D), and
let f = (Vo,V1,V2) be a yr(D)-function. Then yr(D) = |Vi| + 2|V3| and n =

Vol + [Vi] + |V2]. Since each vertex of Vj has at least one in-neighbor in Vs, we
deduce that |Vp| < AT(D)|Va|. Therefore we conclude that

(AT(D) +1)yr(D) = (AT(D) +1)(|Va| +2|Val)

= (AT(D) + 1)|Vi| + 2[Vo| + 247 (D) V4|
> (AT(D) + D)V + 2[Va| + 2[ V|

= 2n+ (AT(D) - 1)|W|

= 2p(AT(D) +1)+2r + (AT(D) — 1)|V4].

This inequality chain and the hypothesis that A*(D) > 1 lead to the desired bound
ifr=0o0orr=1o0r2<7r<A"(D)and V; # 0. In the remaining case that
2 <r < AT(D) and V; =0, it follows from |Vp| < AT (D)|Vs] that

p(AT(D)+1) +r =n=|Vo| +|Va| < (AT(D) + 1)|Va|.

Hence the condition r > 2 leads to V2| > p + 1. Therefore we obtain yr(D) =
2|Va| > 2(p+ 1), and this completes the proof. O

Theorem 10. For any digraph D on n vertices,

2+1In 1+9(D)
D) < - 2
a( )—”< 1+6-(D)

Proof. Given a digraph D, select a set of vertices A, which each vertex is selected
independently with probability p (with p to be defined later). The expected size of
of Ais np. Let B = V(D) — NT[A]. Obviously, f = (V(D) — (AU B), B, A) is an
RDF for D.

Now we compute the expected size of B. The probability that v is in B is equal
to the probability that v is not in A and that no vertex of A is the in-neighbor
of v. This probability is (1 — p)'*de&” () Since e=* > 1 — z for any = > 0,
and deg”(v) > 07 (D), we conclude that Pr(v € B) < e P1+5" (D) Hence, the
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expected size of B is at most ne P19 (D) and the expected weight of f, denoted

by E[f(V(D)], is at most 2np 4+ ne P+ (D) The upper bound for E[f(V(D))] is
In 1H9_(D)

2
140 (D)

minimized when p = and substituting this value in for p gives

—(D)
Elf(V(D)] < n (2““”)

1+46-(D)
146 (D)

Since the expected weight of f(V(D)) is at most value n (%), there must

be some RDF with at most this weight.
The bound is sharp for every orientation of 5 Ks. O

A Roman dominating function on a graph G = (V(G),E(G)) is a function
f: V(G) — {0,1,2} satisfying the condition that every vertex v € V(G) for
which f(v) = 0 has a neighbor u € V(G) for which f(u) = 2. The weight of an
Roman dominating function f on G is the value w(f) =>_,cy () f(v). The Roman
domination number of a graph G, denoted by vr(G), equals the minimum weight of
an Roman dominating function on G.

The associated digraph D(G) of a graph G is the digraph obtained when each
edge e of GG is replaced by two oppositely oriented arcs with the same ends as e.
Since NB(G)(’U) = Ng(G)(U) = N¢g(v) for each vertex v € V(G) = V(D(Q)), the
following observation is valid.

Observation 11. If D(G) is the associated digraph of a graph G, then v(D(G)) =
V(G) and yr(D(G)) = vr(G).

There are a lot of interesting applications of Obsevation 11, as for example the
following three results.

Corollary 12. ([2]) If G is a connected graph of order n > 2, then yr(G) = v(G)+1
if and only if there is a vertex v € V(G) of degree dg(v) =n — v(G).

Proof. Since dg(v) = dB(G)(U) for each vertex v € V(G) = V(D(G)) and n =
n(D(Q)), it follows from Proposition 3 that vr(D(G)) = v(D(G)) + 1 if and only
if there is a vertex v € V(D(G)) with dE(G)( v) = n(D(G)) — v(D(G)). Using
Observation 11, we obtain the desired result. ]

Corollary 13. ([3]) If G is a graph of order n and mazimum A(G) > 1, then

R(G) = [H?Z(G)] .

84



S.M. Sheikholeslami, L. Volkmann - The Roman domination number of a digraph

Proof. Since A(G) = AT(D(G)) and n = n(D(G)), it follows from Theorem 9 and
Observation 11 that

m(G)zm(D(G»z[ 2n(D(G)) }:[2”]

1+ AT(D(G)) 1+ AG)

Corollary 14. ([2]) For any graph on n vertices,

2+1In 1+0(6)
< - 2
TR(G) <n ( 15 0(C)

Proof. Since 6(G) = 6~ (D(G)) and n = n(D(G)), it follows from Theorem 9 and
Observation 11 that

1+~ (D(G)) 146(Q)
7r(G) = vr(D(G)) < n(D(Q)) <2+ln+2> ) <2+1n+2>

1+06-(D(G)) 1+6(G)
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