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THE ROMAN DOMINATION NUMBER OF A DIGRAPH

S.M. Sheikholeslami and L. Volkmann

Abstract. Let D = (V,A) be a finite and simple digraph. A Roman dominating
function (RDF) on a digraph D is a labeling f : V (D) → {0, 1, 2} such that every
vertex with label 0 has a in-neighbor with label 2. The weight of an RDF f is the
value ω(f) =

∑
v∈V f(v). The Roman domination number of a digraph D, denoted

by γR(D), equals the minimum weight of an RDF on D. In this paper we present
some sharp bounds for γR(D)

2000 Mathematics Subject Classification: 05C69.

1. Introduction

Let D be a finite and simple digraph with vertex set V (D) = V and arc set A(D) =
A. A digraph without directed cycles of length 2 is an oriented graph. The order
n = n(D) of a digraph D is the number of its vertices. We write d+

D(v) for the
outdegree of a vertex v and d−D(v) for its indegree. The minimum and maximum
indegree and minimum and maximum outdegree of D are denoted by δ− = δ−(D),
∆− = ∆−(D), δ+ = δ+(D) and ∆+ = ∆+(D), respectively. If uv is an arc of D,
then we also write u → v, and we say that v is an out-neighbor of u and u is an
in-neighbor of v. For a vertex v of a digraph D, we denote the set of in-neighbors
and out-neighbors of v by N−(v) = N−

D (v) and N+(v) = N+
D (v), respectively. If

X ⊆ V (D), then D[X] is the subdigraph induced by X. If X ⊆ V (D) and v ∈ V (D),
then E(X, v) is the set of arcs from X to v. Consult [10] for the notation and
terminology which are not defined here. For a real-valued function f : V (D) −→ R
the weight of f is w(f) =

∑
v∈V f(v), and for S ⊆ V , we define f(S) =

∑
v∈S f(v),

so w(f) = f(V ).
A subset S of vertices of D is a dominating set if N+[S] = V . The domination

number γ(D) is the minimum cardinality of a dominating set of D. The domination
number was introduced by Lee [7].

A Roman dominating function (RDF) on a digraph D = (V,A) is a function
f : V −→ {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0
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has a in-neighbor u for which f(u) = 2. The weight of an RDF f is the value
ω(f) =

∑
v∈V f(v). The Roman domination number of a digraph D, denoted by

γR(D), equals the minimum weight of an RDF on D. A γR(D)-function (or γR-
function) is a Roman dominating function of D with weight γR(D). The Roman
domination for digraphs was introduced by Kamaraj and Jakkammal [6]. A Roman
dominating function f : V −→ {0, 1, 2} can be represented by the ordered partition
(V0, V1, V2) (or (V f

0 , V f
1 , V f

2 ) to refer f) of V , where Vi = {v ∈ V | f(v) = i}. In this
representation, its weight is ω(f) = |V1|+ 2|V2|. Since V f

1 ∪ V f
2 is a dominating set

when f is an RDF, and since placing weight 2 at the vertices of a dominating set
yields an RDF, we have

γ(D) ≤ γR(D) ≤ 2γ(D). (1)

The definition of the Roman dominating function for undirected graphs was
given multiplicity by Steward [9] and ReVelle and Rosing [8]. Cockayne, Dreyer Jr.,
Hedetniemi and Hedetniemi [2] as well as Chambers, Kinnersley, Prince and West
[1] have given a lot of results on Roman domination.

Our purpose in this paper is to establish some bounds for the Roman domination
number of a digraph.

We make use of the following results in this paper.

Proposition A. [7] Let D be a digraph with order n and minimum indegree δ−(D) ≥
1. Then,

γ(D) ≤ 2n

3
.

Proposition B. [6] Let f = (V0, V1, V2) be any γR(D)-function of a digraph D.
Then

(a) ∆+(D[V1]) ≤ 1.

(b) If w ∈ V1, then N−
D (w) ∩ V2 = ∅.

(c) If u ∈ V0, then |V1 ∩N+
D (u)| ≤ 2.

(d) V2 is a γ(D)-set of the induced subdigraph D[V0 ∪ V2]

(e) Let H = D[V0 ∪ V2]. Then each vertex v ∈ V2 with N−(v) ∩ V2 6= ∅, has at
least two private neighbors relative to V2 in the subdigraph H.

Proposition C. [6] Let D be a digraph with order n. Then

γR(D) ≤ n−∆+(D) + 1.
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2. Bounds on the Roman domination number of digraphs

Our first observation characterize the digraphs which attain the lower bound in (1).

Proposition 1. Let D be a digraph on n vertices. Then γ(D) = γR(D) if and only
if ∆+(D) = 0.

Proof. Assume that γ(D) = γR(D). If f = (V0, V1, V2) is a γR(D)-function of
D, then the assumption implies that we have equality in γ(D) ≤ |V1| + |V2| ≤
|V1|+ 2|V2| = γR(D). This implies that |V2| = 0 and hence we deduce that |V0| = 0.
Therefore γ(D) = γR(D) = |V1| = |V (D)| = n. If follows that ∆+(D) = 0.
Conversely, if ∆+(D) = 0, then A(D) = ∅ and so γ(D) = n. Since γR(D) ≤ n, the
result follows by (1).

Proposition 2. If D is a digraph on n vertices, then

γR(D) ≥ min{n, γ(D) + 1}.

Proof. If γR(D) = n, then we are done. Assume now that γR(D) < n, and suppose
on the contrary that γR(D) ≤ γ(D). If f = (V0, V1, V2) is a γR(D)-function of D,
then V1 ∪ V2 is a dominating set of D and thus

γ(D) ≤ |V1|+ |V2| ≤ |V1|+ 2|V2|
= γR(D) ≤ γ(D)
≤ |V1|+ |V2|.

This implies |V2| = 0 and hence |V0| = 0. Therefore we arrive at the contradiction
γR(D) = |V1| = n.

Proposition 3. Let D be a digraph on n ≥ 2 vertices with δ−(D) ≥ 1. Then
γR(D) = γ(D) + 1 if and only if there is a vertex v ∈ V (D) with d+(v) = n− γ(D).

Proof. Assume that D has a vertex v with d+(v) = n − γ(D). Then clearly f =
(V0, V1, V2) = (N+(v), V (D) − N+[v], {v}) is an RDF on D of weight γ(D) + 1.
Hence γR(D) ≤ γ(D) + 1, and the result follows by Proposition 2.

Conversely, let γR(D) = γ(D) + 1 and let f = (V0, V1, V2) be a γR(D)-function.
Then either (1) |V1| = γ(D) + 1 and |V2| = 0 or (2) |V1| = γ(D)− 1 and |V2| = 1.

In case (1), since |V2| = 0, we have |V0| = 0. Thus n = γ(D) + 1. It follows
from Proposition A that n = γ(D) + 1 ≤ 2n

3 + 1, a contradiction when n ≥ 4. If
n = 2, then the hypothesis δ−(D) ≥ 1 implies that D consists of two vertices x
and y such that x → y → x and thus d+(x) = 1 = 2 − 1 = n − γ(D). In the case
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n = 3, let V (D) = {x, y, z}. The condition |V2| = 0 implies that ∆+(D) ≤ 1. Using
δ−(D) ≥ 1, it is straightforward to verify that D is isomorphic to the directed cycle
xyzx, and we have d+(x) = 1 = 3− 2 = n− γ(D).

In case (2), let V2 = {v}. Obviously (v, u) ∈ A(D) for each u ∈ V0. Since v has
no out-neighbor in V1, we obtain d+(v) = |V0| = n− |V1|+ |V2| = n− γ(D).

Proposition 4. Let D be a digraph on n ≥ 7 vertices with δ−(D) ≥ 1. Then
γR(D) = γ(D) + 2 if and only if:

(i) D does not have a vertex of outdegree n− γ(D).

(ii) either D has a vertex of outdegree n − γ(D) − 1 or D contains two vertices
v, w such that |N+[v] ∪N+[w]| = n− γ(D)− 2.

Proof. Let γR(D) = γ(D)+2. It follows from Proposition 3 that D does not have a
vertex of outdegree n−γ(D). Let f = (V0, V1, V2) be a γR(D)-function. Then either
(1) |V1| = γ(D)+2 and |V2| = 0, (2) |V1| = γ(D) and |V2| = 1, or (3) |V1| = γ(D)−2
and |V2| = 2.

In case (1), we have |V0| = 0. Then V (D) = V1. If follows from Proposition A
that n = γ(D) + 2 ≤ 2n

3 + 2 which implies that n ≤ 6, a contradiction.
In case (2), let V2 = {v}. Obviously (v, u) ∈ A(D) for each u ∈ V0. Since v has

no out-neighbor in V1, we obtain d+(v) = |V0| = n− |V1| − |V2| = n− γ(D)− 1.
In case (3), let V2 = {v, w}. Since v and w have no out-neighbor in V1 and either

(v, u) ∈ A(D) or (w, u) ∈ A(D) for each u ∈ V0, it follows that |N+[v] ∪N+[w]| =
n− |V1| = n− (γ(D)− 2) = n− γ(D) + 2.

Conversely, assume that D satisfies (i) and (ii). It follows from Proposition 3
and (i) that γR(D) ≥ γ(D) + 2. If D has a vertex v with d+(v) = n − γ(D) − 1,
then clearly f = (N+(v), V (D) −N+[v], {v}) is an RDF on D of weight γ(D) + 2.
Hence γR(D) ≤ γ(D) + 2 and the result follows. If D has two vertices v, w such
that |N+[v]∪N+[w]| = n− γ(D)− 2, then f = (N+(v)∪N+(w), V (D)− (N+[v]∪
N+[w]), {v, w}) is an RDF on D of weight γ(D) + 2 and the result follows again.
This completes the proof.

Following Cockayne, Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi [2], we
will say that a digraph D is a Roman digraph if γR(D) = 2γ(D).

Proposition 5. A digraph D is a Roman digraph if and only if it has a γR-function
f = (V0, V1, V2) with V1 = ∅.
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Proof. Let D be a Roman digraph, and let S be a γ-set of D. Then f = (V (D) −
S, ∅, S) is a Roman dominating function of D such that

f(V (D)) = 2|S| = 2γ(D) = γR(D),

and therefore f is a γR-function with V1 = ∅.
Conversely, let f = (V0, V1, V2) be a γR-function with V1 = ∅ and thus γR(D) =

2|V2|. Then V2 is also a dominating set of D, and hence it follows that 2γ(D) ≤
2|V2| = γR(D). Applying (1), we obtain the identity γR(D) = 2γ(D), i.e., D is a
Roman digraph.

Proposition 6. Let D be a digraph of order n. Then γR(D) < n if and only if
∆+(D) ≥ 2.

Proof. Let f = (V0, V1, V2) be a γR-function of D. The hypothesis |V0|+ |V1|+ |V2| =
n > γR(D) = |V1| + 2|V2| implies |V0| ≥ |V2| + 1. Since each vertex w ∈ V0 has at
least one in-neighbor in V2, we deduce that∑

u∈V2

d+
D(u) ≥ |V0| ≥ |V2|+ 1.

If we suppose on the contrary that ∆+(D) ≤ 1, then we arrive at the contradiction

|V2| ≥
∑
u∈V2

d+
D(u) ≥ |V2|+ 1.

Conversely, let ∆+(D) ≥ 2. Then Proposition C implies that γR(D) ≤ n −
∆+(D) + 1 < n, and the proof is complete.

Corollary 7. If D is a directed path or directed cycle of order n, then γR(D) = n.

Next we characterize the digraphs D with the properties that γR(D) = 2,
γR(D) = 3, γR(D) = 4 or γR(D) = 5.

Proposition 8. (1) For a digraph D of order n ≥ 2, γR(D) = 2 if and only if
∆+(D) = n− 1 or n = 2 and A(D) = ∅.

(2) For a digraph D of order n ≥ 3, γR(D) = 3 if and only if ∆+(D) = n − 2 or
n = 3 and ∆+(D) ≤ 1.

(3) For a digraph D of order n ≥ 4, γR(D) = 4 if and only if ∆+(D) = n − 3
or ∆+(D) ≤ n − 3 and there are two vertices u, v ∈ V (D) such that N+

D [u] ∪
N+

D [v] = V (D) or n = 4 and ∆+(D) ≤ 1.
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(4) For a digraph D of order n ≥ 5, γR(D) = 5 if and only if ∆+(D) ≤ n− 4 and
|N+

D [x]∪N+
D [y]| ≤ |V (D)|−1 for all pairs of vertices x, y ∈ V (D). In addition,

(i) there are two vertices u, v ∈ V (D) such that |N+
D [u]∪N+

D [v]| = |V (D)| − 1
or (ii) n = 5 and ∆+(D) ≤ 1 or (iii) D contains a vertex w with d+(w) = n−4
and the induced subdigraph D[V (D)−N+[w]] consists of three isolated vertices.

Proof. We omit the proof of (1), because it is clear.
(2) If ∆+(D) = n − 2 or n = 3 and ∆+(D) ≤ 1, then it is easy to see that

γR(D) = 3.
Conversely, assume that γR(D) = 3. Let f = (V0, V1, V2) be a γR(D)-function.

It follows from (1) that ∆(D) ≤ n− 2. Now we distinguish two cases.
Case 1. Assume that V2 = ∅. Then |V1| = 3 and thus n = 3. Therefore

Proposition 6 implies that ∆+(D) ≤ 1.
Case 2. Assume that |V2| = 1 and |V1| = 1. If V2 = {v}, then we deduce that

d+(v) = ∆+(D) = n− 2.
(3) If ∆+(D) = n− 3 or ∆+(D) ≤ n− 3 and there are two vertices u, v ∈ V (D)

such that N+
D [u]∪N+

D [v] = V (D) or n = 4 and ∆+(D) ≤ 1, then it is straighforward
to verify that γR(D) = 4.

Conversely, assume that γR(D) = 4. Let f = (V0, V1, V2) be a γR(D)-function.
Using (1) and (2), we find that ∆(D) ≤ n− 3. Now we distinguish three cases.

Case 1. Assume that V2 = ∅. Then |V1| = 4 and thus n = 4. So Proposition 6
implies that ∆+(D) ≤ 1.

Case 2. Assume that |V2| = 1 and |V1| = 2. If V2 = {v}, then we deduce that
d+(v) = ∆+(D) = n− 3.

Case 3. Assume that |V2| = 2. If V2 = {u, v}, then we conclude that N+
D [u] ∪

N+
D [v] = V (D).

(4) The conditions ∆+(D) ≤ n−4 and |N+
D [x]∪N+

D [y]| ≤ |V (D)|−1 for all pairs
of vertices x, y ∈ V (D) and (3) imply that γR(D) ≥ 5. The other three assumptions
show that γR(D) ≤ 5 and thus we obtain γR(D) = 5.

Conversely, assume that γR(D) = 5. Let f = (V0, V1, V2) be a γR(D)-function.
Using (1), (2) and (3), we see that ∆+(D) ≤ n−4 and |N+

D [x]∪N+
D [y]| ≤ |V (D)|−1

for all pairs of vertices x, y ∈ V (D). Again, we distinguish three cases.
Case 1. Assume that V2 = ∅. Then |V1| = 5 and thus n = 5. Hence Proposition

6 implies (ii) that ∆+(D) ≤ 1.
Case 2. Assume that |V2| = 1 and |V1| = 3. If V2 = {w}, then we deduce that

d+(w) = n − 4. Let {a, b, c} = V (D) − N+[w]. If D[{a, b, c}] consists of isolated
vertices, then we have condition (iii). If D[{a, b, c}] contains an arc, say ab, then
|N+

D [w] ∪N+
D [a]| = |V (D)| − 1 and we have shown condition (i).

Case 3. Assume that |V2| = 2 and |V1| = 1. If V2 = {u, v}, then it follows that
|N+

D [u] ∪N+
D [v]| = |V (D)| − 1 and condition (i) is proved.
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Theorem 9. Let D be a digraph of order n and maximum outdegree ∆+(D) ≥ 1.
Then

γR(D) ≥
⌈

2n

1 + ∆+(D)

⌉
+ ε

with ε = 0 when n ≡ 0, 1 (mod (∆+(D)+1)) and ε = 1 when n 6≡ 0, 1 (mod (∆+(D)+
1)).

Proof. Let n = p(∆+(D) + 1) + r with integers p ≥ 1 and 0 ≤ r ≤ ∆+(D), and
let f = (V0, V1, V2) be a γR(D)-function. Then γR(D) = |V1| + 2|V2| and n =
|V0| + |V1| + |V2|. Since each vertex of V0 has at least one in-neighbor in V2, we
deduce that |V0| ≤ ∆+(D)|V2|. Therefore we conclude that

(∆+(D) + 1)γR(D) = (∆+(D) + 1)(|V1|+ 2|V2|)
= (∆+(D) + 1)|V1|+ 2|V2|+ 2∆+(D)|V2|
≥ (∆+(D) + 1)|V1|+ 2|V2|+ 2|V0|
= 2n + (∆+(D)− 1)|V1|
= 2p(∆+(D) + 1) + 2r + (∆+(D)− 1)|V1|.

This inequality chain and the hypothesis that ∆+(D) ≥ 1 lead to the desired bound
if r = 0 or r = 1 or 2 ≤ r ≤ ∆+(D) and V1 6= ∅. In the remaining case that
2 ≤ r ≤ ∆+(D) and V1 = ∅, it follows from |V0| ≤ ∆+(D)|V2| that

p(∆+(D) + 1) + r = n = |V0|+ |V2| ≤ (∆+(D) + 1)|V2|.

Hence the condition r ≥ 2 leads to |V2| ≥ p + 1. Therefore we obtain γR(D) =
2|V2| ≥ 2(p + 1), and this completes the proof.

Theorem 10. For any digraph D on n vertices,

γR(D) ≤ n

(
2 + ln 1+δ−(D)

2

1 + δ−(D)

)
.

Proof. Given a digraph D, select a set of vertices A, which each vertex is selected
independently with probability p (with p to be defined later). The expected size of
of A is np. Let B = V (D) −N+[A]. Obviously, f = (V (D) − (A ∪ B), B, A) is an
RDF for D.

Now we compute the expected size of B. The probability that v is in B is equal
to the probability that v is not in A and that no vertex of A is the in-neighbor
of v. This probability is (1 − p)1+deg−(v). Since e−x ≥ 1 − x for any x ≥ 0,
and deg−(v) ≥ δ−(D), we conclude that Pr(v ∈ B) ≤ e−p(1+δ−(D)). Hence, the
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expected size of B is at most ne−p(1+δ−(D)), and the expected weight of f , denoted
by E[f(V (D)], is at most 2np + ne−p(1+δ−(D)). The upper bound for E[f(V (D))] is

minimized when p =
ln 1+δ−(D)

2

1 + δ−(D)
, and substituting this value in for p gives

E[f(V (D)] ≤ n

(
2 + ln 1+δ−(D)

2

1 + δ−(D)

)
.

Since the expected weight of f(V (D)) is at most value n

(
2+ln

1+δ−(D)
2

1+δ−(D)

)
, there must

be some RDF with at most this weight.
The bound is sharp for every orientation of n

2 K2.

A Roman dominating function on a graph G = (V (G), E(G)) is a function
f : V (G) −→ {0, 1, 2} satisfying the condition that every vertex v ∈ V (G) for
which f(v) = 0 has a neighbor u ∈ V (G) for which f(u) = 2. The weight of an
Roman dominating function f on G is the value ω(f) =

∑
v∈V (G) f(v). The Roman

domination number of a graph G, denoted by γR(G), equals the minimum weight of
an Roman dominating function on G.

The associated digraph D(G) of a graph G is the digraph obtained when each
edge e of G is replaced by two oppositely oriented arcs with the same ends as e.
Since N−

D(G)(v) = N+
D(G)(v) = NG(v) for each vertex v ∈ V (G) = V (D(G)), the

following observation is valid.

Observation 11. If D(G) is the associated digraph of a graph G, then γ(D(G)) =
γ(G) and γR(D(G)) = γR(G).

There are a lot of interesting applications of Obsevation 11, as for example the
following three results.

Corollary 12. ([2]) If G is a connected graph of order n ≥ 2, then γR(G) = γ(G)+1
if and only if there is a vertex v ∈ V (G) of degree dG(v) = n− γ(G).

Proof. Since dG(v) = d+
D(G)(v) for each vertex v ∈ V (G) = V (D(G)) and n =

n(D(G)), it follows from Proposition 3 that γR(D(G)) = γ(D(G)) + 1 if and only
if there is a vertex v ∈ V (D(G)) with d+

D(G)(v) = n(D(G)) − γ(D(G)). Using
Observation 11, we obtain the desired result.

Corollary 13. ([3]) If G is a graph of order n and maximum ∆(G) ≥ 1, then

γR(G) ≥
⌈

2n

1 + ∆(G)

⌉
.
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Proof. Since ∆(G) = ∆+(D(G)) and n = n(D(G)), it follows from Theorem 9 and
Observation 11 that

γR(G) = γR(D(G)) ≥
⌈

2n(D(G))
1 + ∆+(D(G))

⌉
=
⌈

2n

1 + ∆(G)

⌉
.

Corollary 14. ([2]) For any graph on n vertices,

γR(G) ≤ n

(
2 + ln 1+δ(G)

2

1 + δ(G)

)
.

Proof. Since δ(G) = δ−(D(G)) and n = n(D(G)), it follows from Theorem 9 and
Observation 11 that

γR(G) = γR(D(G)) ≤ n(D(G))

(
2 + ln 1+δ−(D(G))

2

1 + δ−(D(G))

)
= n

(
2 + ln 1+δ(G)

2

1 + δ(G)

)
.
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