DIFFERENTIAL SANDWICH THEOREMS FOR MULTIVALENT

 FUNCTIONS INVOLVING CERTAIN OPERATORM. K. Aouf, A. Shamandy, A. O. Mostafa and F. Z. El-Emam

Abstract. In this paper, we give some results for differential subordination and superordination for multivalent functions involving the integral operator I_{p}^{α}.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

Let $H=H(U)$ denotes the class of analytic functions in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$ and let $H[a, p]$ denotes the subclass of the functions $f \in H$ of the form

$$
f(z)=a+a_{p} z^{p}+a_{p+1} z^{p+1}+\ldots \quad(a \in \mathbb{C}, p \in \mathbb{N}=\{1,2, \ldots\}) .
$$

Also, let $A(p)$ be the subclass of the functions $f \in H$ of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}) . \tag{1}
\end{equation*}
$$

If $f, g \in H$ are analytic in U, we say that f is subordinate to g, or g is superordinate to f, if there exists a Schwarz function $w(z)$ in U with $w(0)=0$ and $|w(z)|<1$ $(z \in U)$, such that $f(z)=g(w(z))$ In such a case we write $f \prec g$ or $f(z) \prec g(z)$ $(z \in U)$. If $g(z)$ is univalent in U, then the following equivalence relationship holds true (cf., e.g.,[4] and [6]):

$$
f(z) \prec g(z)(z \in U) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(U) \subset g(U) .
$$

Supposing that φ and h are two analytic functions in U, let

$$
\psi(r, s, t ; z): \mathbb{C}^{3} \times U \rightarrow \mathbb{C} .
$$

If φ and $\psi\left(\varphi(z), z \varphi^{\prime}(z), z^{2} \varphi^{\prime \prime}(z) ; z\right)$ are univalent functions in U and if φ satisfies the second-order superordination

$$
\begin{equation*}
h(z) \prec \psi\left(\varphi(z), z \varphi^{\prime}(z), z^{2} \varphi^{\prime \prime}(z) ; z\right) \tag{2}
\end{equation*}
$$

then h is called to be a solution of the differential superordination (2). A function $q \in H$ is called a subordinant of (2), if $q(z) \prec \varphi(z)$ for all the functions φ satisfying (2). A univalent subordinant \widetilde{q} that satisfies $q(z) \prec \widetilde{q}(z)$ for all of the subordinants q of (2), is said to be the best subordinant.

Recently, Miller and Mocanu [7] obtained sufficient conditions on the functions h, q and ψ for which the following implication holds:

$$
h(z) \prec \psi\left(\varphi(z), z \varphi^{\prime}(z), z^{2} \varphi^{\prime \prime}(z) ; z\right) \Rightarrow q(z) \prec \varphi(z)
$$

Using these results, the second author considered certain classes of first-order differential superordinations [3], as well as superordination-preserving integral operators [2]. Ali et al. [1], using the results from [3], obtained sufficient conditions for certain normalized analytic functions f to satisfy

$$
q_{1}(z) \prec \frac{z f^{\prime}(z)}{f(z)} \prec q_{2}(z)
$$

where q_{1} and q_{2} are given univalent normalized functions in U.
Very recently, Shanmugam et al. ([11], [12] and [13]) obtained the such called sandwich results for certain classes of analytic functions. Further subordination results can be found in [8], [9], [10], [14], [15] and [16].

Motivated essentially by Jung et al. [5], Shams et al. [10] introduced the operator $I_{p}^{\alpha}: A(p) \rightarrow A(p)$ as follows:

$$
(i) I_{p}^{\alpha} f(z)=\frac{(p+1)^{\alpha}}{z \Gamma(\alpha)} \int_{0}^{z}\left(\log \frac{z}{t}\right)^{\alpha-1} f(t) d t \quad(\alpha>0 ; p \in \mathbb{N} ; z \in U)
$$

and

$$
(i i) I_{p}^{0} f(z)=f(z), \quad(\alpha=0 ; p \in \mathbb{N})
$$

Note that the one-parameter family of integral operator $I^{\alpha} \equiv I_{1}^{\alpha}$ was defined by Jung et al. [5].

For $f \in A(p)$ given by (1), it was shown that (see [10])

$$
\begin{equation*}
I_{p}^{\alpha} f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{p+1}{k+1}\right)^{\alpha} a_{k} z^{k} \quad(\alpha \geq 0 ; p \in \mathbb{N}) \tag{3}
\end{equation*}
$$

Using (3), it is easily verified that (see [10])

$$
\begin{equation*}
z\left(I_{p}^{\alpha} f(z)\right)^{\prime}=(p+1) I_{p}^{\alpha-1} f(z)-I_{p}^{\alpha} f(z) \quad(\alpha \geq 0) \tag{4}
\end{equation*}
$$

2. Preliminaries

To prove our results we shall need the following definition and lemmas.
Definition 1 [7]. Let Q be the set of all functions f that are analytic and injective on $\bar{U} \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$.
Lemma 1 [4]. Let q be an univalent function in U and $\gamma \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ such that

$$
\operatorname{Re}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\} \geq \max \left\{0,-\operatorname{Re} \frac{1}{\gamma}\right\}
$$

If φ is analytic in U, with $\varphi(0)=q(0)$ and

$$
\begin{equation*}
\varphi(z)+\gamma z \varphi^{\prime}(z) \prec q(z)+\gamma z q^{\prime}(z) \tag{5}
\end{equation*}
$$

then $\varphi(z) \prec q(z)$ and q is the best dominant of (5).
Lemma 2 [4]. Let q be convex function in U, with $q(0)=a$ and $\gamma \in \mathbb{C}$ such that Re $\gamma>0$. If $\varphi \in H[a, 1] \cap Q$ and $\varphi(z)+\gamma z \varphi^{\prime}(z)$ is univalent in U, then

$$
q(z)+\gamma z q^{\prime}(z) \prec \varphi(z)+\gamma z \varphi^{\prime}(z) \Rightarrow q(z) \prec \varphi(z)
$$

and q is the best subordinant.
In this paper we will determine some properties on admissible functions defined with the integral operator I_{p}^{α}.

3. Main Results

Theorem 1. Let q be univalent function in U with $q(0)=1$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0,-\operatorname{Re} \frac{1}{\gamma}\right\} \quad\left(\gamma \in \mathbb{C}^{*}\right) \tag{6}
\end{equation*}
$$

If $f \in A(p)$ and

$$
\begin{equation*}
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\} \prec q(z)+\gamma z q^{\prime}(z) \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \prec q(z) \quad(z \in U) \tag{8}
\end{equation*}
$$

and q is the best dominant of (7).
Proof: Let

$$
\begin{equation*}
\varphi(z)=\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \quad(z \in U) . \tag{9}
\end{equation*}
$$

Differentiating (9) logarithmically with respect to z and using the identity (4) in the resulting equation, we have

$$
\frac{z \varphi^{\prime}(z)}{\varphi(z)}=(p+1)\left[\frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}-\frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}\right]=(p+1)\left[\frac{1}{\varphi(z)}-\frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}\right] .
$$

It follows that

$$
\begin{equation*}
\varphi(z)+\gamma z \varphi^{\prime}(z)=\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\} \tag{10}
\end{equation*}
$$

Hence the subordination (7) is equivalent to

$$
\varphi(z)+\gamma z \varphi^{\prime}(z) \prec q(z)+\gamma z q^{\prime}(z) .
$$

Combining this last relation together with Lemma 1, we obtain our result.

Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ in Theorem 1, we have the following result.
Corollary 1. Let $-1 \leq B<A \leq 1$ and

$$
\operatorname{Re}\left\{\frac{1-B z}{1+B z}\right\}>\max \left\{0,-\operatorname{Re} \frac{1}{\gamma}\right\} \quad\left(\gamma \in \mathbb{C}^{*} ; z \in U\right)
$$

If $f \in A(p)$ and

$$
\begin{equation*}
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\} \prec \frac{1+A z}{1+B z}+\gamma \frac{(A-B) z}{(1+B z)^{2}}, \tag{11}
\end{equation*}
$$

then

$$
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \prec \frac{1+A z}{1+B z}
$$

and $\frac{1+A z}{1+B z}$ is the best dominant of (11).
In particular, if we take $q(z)=\frac{1+z}{1-z}$ in Theorem 1, we have the following result.

Corollary 2. Let

$$
\operatorname{Re}\left\{\frac{1+z}{1-z}\right\}>\max \left\{0,-\operatorname{Re} \frac{1}{\gamma}\right\} \quad\left(\gamma \in \mathbb{C}^{*} ; z \in U\right)
$$

If $f \in A(p)$ and

$$
\begin{equation*}
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\} \prec \frac{1+z}{1-z}+\frac{2 \gamma z}{(1-z)^{2}} \tag{12}
\end{equation*}
$$

then

$$
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \prec \frac{1+z}{1-z}
$$

and $\frac{1+z}{1-z}$ is the best dominant of (12).
Theorem 2. Let q be a convex function in U, with $q(0)=1$ and $\gamma \in \mathbb{C}$ such that Re $\gamma>0$. If $f \in A(p)$,

$$
\begin{gathered}
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \in H[q(0), 1] \cap Q \\
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\}
\end{gathered}
$$

is univalent in U and

$$
\begin{equation*}
q(z)+\gamma z q^{\prime}(z) \prec \frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\}, \tag{11}
\end{equation*}
$$

then

$$
\begin{equation*}
q(z) \prec \frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \tag{14}
\end{equation*}
$$

and q is the best subordinant of (13).
Proof: Let

$$
\begin{equation*}
\varphi(z)=\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \quad(z \in U) . \tag{15}
\end{equation*}
$$

Differentiating (15) logarithmically with respect to z and using the identity (4) in the resulting equation, we have (10) holds. Hence the subordination (13) is equivalent to

$$
q(z)+\gamma z q^{\prime}(z) \prec \varphi(z)+\gamma z \varphi^{\prime}(z) .
$$

Combining this last relation together with Lemma 2, we obtain our result.

Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ in Theorem 2, we have the following result.
Corollary 3. Let $-1 \leq B<A \leq 1$ and $\gamma \in \mathbb{C}$ such that Re $\gg 0$. If $f \in A(p)$,

$$
\begin{gathered}
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \in H[q(0), 1] \cap Q, \\
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\}
\end{gathered}
$$

is univalent in U and

$$
\begin{aligned}
& \frac{1+A z}{1+B z}+\gamma \frac{(A-B) z}{(1+B z)^{2}} \\
\prec & \frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\},
\end{aligned}
$$

then

$$
\frac{1+A z}{1+B z} \prec \frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}
$$

and $\frac{1+A z}{1+B z}$ is the best subordinant.
In particular, if we take $q(z)=\frac{1+z}{1-z}$ in Theorem 2 , we have the following result. Corollary 4. Let $\gamma \in \mathbb{C}$ such that Re $\gamma>0$. If $f \in A(p)$,

$$
\begin{gathered}
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \in H[q(0), 1] \cap Q \\
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\}
\end{gathered}
$$

is univalent in U and

$$
\begin{aligned}
& \frac{1+z}{1-z}+\frac{2 \gamma z}{(1-z)^{2}} \\
\prec & \frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\},
\end{aligned}
$$

then

$$
\frac{1+z}{1-z} \prec \frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}
$$

and $\frac{1+z}{1-z}$ is the best subordinant.
Combining Theorem 1 and Theorem 2, we get the following sandwich theorem. Theorem 3. Let q_{1} be convex function with $q_{1}(0)=1$ in U and q_{2} be univalent function with $q_{2}(0)=1$ in $U, q_{2}(z)$ satisfies (6). Let $\gamma \in \mathbb{C}$ such that Re >0. If $f \in A(p)$,

$$
\begin{gathered}
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \in H[q(0), 1] \cap Q \\
\frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\}
\end{gathered}
$$

is univalent in U and

$$
\begin{align*}
q_{1}(z)+\gamma z q_{1}^{\prime}(z) & \prec \frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)}+\gamma(p+1)\left\{1-\frac{I_{p}^{\alpha-1} f(z) I_{p}^{\alpha+1} f(z)}{\left[I_{p}^{\alpha} f(z)\right]^{2}}\right\} \\
& \prec q_{2}(z)+\gamma z q_{2}^{\prime}(z), \tag{16}
\end{align*}
$$

then

$$
q_{1}(z) \prec \frac{I_{p}^{\alpha+1} f(z)}{I_{p}^{\alpha} f(z)} \prec q_{2}(z),
$$

and q_{1} and q_{2} are the best subordinant and the best dominant respectively of (16).
Theorem 4. Let q be an univalent function in U with $q(0)=1$ and (6) holds. If $f \in A(p)$ and
$(1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}} \prec q(z)+\gamma z q^{\prime}(z)$,
then

$$
\begin{equation*}
\frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \prec q(z) \tag{17}
\end{equation*}
$$

and q is the best dominant of subordination (17).
Proof: Let

$$
\begin{equation*}
\varphi(z)=\frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \quad(z \in U) . \tag{19}
\end{equation*}
$$

Differentiating (19) logarithmically with respect to z and using the identity (4) in the resulting equation, we have

$$
\frac{z \varphi^{\prime}(z)}{\varphi(z)}=p+1+(p+1) \frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}-2(p+1) \frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)} .
$$

It follows that

$$
\begin{equation*}
\varphi(z)+\gamma z \varphi^{\prime}(z)=(1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}} . \tag{20}
\end{equation*}
$$

Hence the subordination (17) is equivalent to

$$
\varphi(z)+\gamma z \varphi^{\prime}(z) \prec q(z)+\gamma z q^{\prime}(z) .
$$

Combining this last relation together with Lemma 1, we obtain our result.

Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ in Theorem 4, we have the following result.
Corollary 5. Let $-1 \leq B<A \leq 1$ and

$$
\operatorname{Re}\left\{\frac{1-B z}{1+B z}\right\}>\max \left\{0,-\operatorname{Re} \frac{1}{\gamma}\right\} \quad\left(\gamma \in \mathbb{C}^{*} ; z \in U\right)
$$

If $f \in A(p)$ and

$$
\begin{align*}
& (1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}} \\
\prec & \frac{1+A z}{1+B z}+\gamma \frac{(A-B) z}{(1+B z)^{2}}, \tag{21}
\end{align*}
$$

then

$$
\frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \prec \frac{1+A z}{1+B z}
$$

and $\frac{1+A z}{1+B z}$ is the best dominant of (21).
In particular, if we take $q(z)=\frac{1+z}{1-z}$ in Theorem 4, we have the following result.
Corollary 6. Let

$$
\operatorname{Re}\left\{\frac{1+z}{1-z}\right\}>\max \left\{0,-\operatorname{Re} \frac{1}{\gamma}\right\} \quad\left(\gamma \in \mathbb{C}^{*} ; z \in U\right)
$$

If $f \in A(p)$ and

$$
\begin{align*}
& (1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}} \\
\prec & \frac{1+z}{1-z}+\frac{2 \gamma z}{(1-z)^{2}}, \tag{22}
\end{align*}
$$

then

$$
\frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \prec \frac{1+z}{1-z}
$$

and $\frac{1+z}{1-z}$ is the best dominant of (22).
Theorem 5. Let q be a convex function in U, with $q(0)=1$ and $\gamma \in \mathbb{C}$ such that Re $\gamma>0$. If $f \in A(p)$,

$$
\begin{gathered}
\frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \in H[q(0), 1] \cap Q \\
(1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}}
\end{gathered}
$$

is univalent in U and

$$
\begin{align*}
q(z)+\gamma z q^{\prime}(z) \prec & (1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \\
& -2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}} \tag{23}
\end{align*}
$$

then

$$
\begin{equation*}
q(z) \prec \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \tag{24}
\end{equation*}
$$

and q is the best subordinant of superordination (23).
Proof: Let

$$
\begin{equation*}
\varphi(z)=\frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \quad(z \in U) \tag{25}
\end{equation*}
$$

Differentiating (25) logarithmically with respect to z and using the identity (4) in the resulting equation, we have (20) holds. Hence the subordination (23) is equivalent to

$$
q(z)+\gamma z q^{\prime}(z) \prec \varphi(z)+\gamma z \varphi^{\prime}(z)
$$

Combining this last relation together with Lemma 2, we obtain our result.
Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ in Theorem 5 , we have the following result.
Corollary 7. Let $-1 \leq B<A \leq 1$ and $\gamma \in \mathbb{C}$ such that Re $\gamma>0$. If $f \in A(p)$,

$$
\frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \in H[q(0), 1] \cap Q
$$

$$
(1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}}
$$

is univalent in U and

$$
\begin{aligned}
& \frac{1+A z}{1+B z}+\gamma \frac{(A-B) z}{(1+B z)^{2}} \\
\prec & (1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}}(26)
\end{aligned}
$$

then

$$
\frac{1+A z}{1+B z} \prec \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}
$$

and $\frac{1+A z}{1+B z}$ is the best subordinant of superordination of (26).
In particular, if we take $q(z)=\frac{1+z}{1-z}$ in Theorem 5 , we have the following result. Corollary 8. Let $\gamma \in \mathbb{C}$ such that Re >0. If $f \in A(p)$,

$$
\begin{gathered}
\frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \in H[q(0), 1] \cap Q, \\
(1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}}
\end{gathered}
$$

is univalent in U and

$$
\begin{align*}
& \frac{1+z}{1-z}+\frac{2 \gamma z}{(1-z)^{2}} \\
\prec & (1+2 \gamma) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}}, \tag{27}
\end{align*}
$$

then

$$
\frac{1+z}{1-z} \prec \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}
$$

and $\frac{1+z}{1-z}$ is the best subordinant of superordination of (27)
Combining Theorem 4 and Theorem 5, we get the following sandwich theorem. Theorem 6. Let q_{1} be convex function with $q_{1}(0)=1$ in U and q_{2} be univalent function with $q_{2}(0)=1$ in $U, q_{2}(z)$ satisfies (6). Let $\gamma \in \mathbb{C}$ such that Re $\gg 0$. If $f \in A(p)$,

$$
\frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \in H[q(0), 1] \cap Q
$$

$$
(1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}}
$$

is univalent in U and

$$
\begin{gather*}
q_{1}(z)+\gamma z q_{1}^{\prime}(z) \prec(1+\gamma(p+1)) \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}}+\gamma(p+1) \frac{z^{p} I_{p}^{\alpha-1} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \\
-2 \gamma(p+1) \frac{z^{p}\left[I_{p}^{\alpha} f(z)\right]^{2}}{\left[I_{p}^{\alpha+1} f(z)\right]^{3}} \prec q_{2}(z)+\gamma z q_{2}^{\prime}(z), \tag{28}
\end{gather*}
$$

then

$$
q_{1}(z) \prec \frac{z^{p} I_{p}^{\alpha} f(z)}{\left[I_{p}^{\alpha+1} f(z)\right]^{2}} \prec q_{2}(z)
$$

and q_{1} and q_{2} are the best subordinant and the best dominant respectively of (28).

References

[1] R.M. Ali, V. Ravichandran, M.H. Khan and K.G. Subramaniam, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15 (2004), no. 1, 87-94.
[2] T. Bulboacă, A class of superordination preserving integral operators, IndagMath. (New Series), 13 (2002), no. 3, 301-311.
[3] T. Bulboacă, Classes of first-order differential subordinations, Demonstratio Math., 35 (2002), no. 2, 287-392.
[4] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[5] I.B. Jung, Y.C. Kim and H.M. Srivastava, The Hardy space of analytic functions associated with certain one parameter families of integeral operators, J. Math. Anal. Appl., 176 (1993), 138-147.
[6] S.S. Miller and P.T. Mocanu, Differential Subordination : Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[7] S.S. Miller and P.T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48 (2003), no. 10, 815-826.
[8] M. Obradović, M.K. Aouf and S. Owa, On some results for starlike functions of complex order, Publ. Inst. Math. Belgrade, 46 (60)(1989), 79-85.
[9] M. Obradović and S. Owa, On certain properties for some classes of starlike functions, J. Math. Anal. Appl., 145 (1990), no.2, 357-364.
[10] S. Shams, S.R. Kulkarni, and J.M. Jahangiri, Subordination properties of pvalent functions defned by integral operators, Internat. J. Math. Math. Sci., Vol. 2006, Article ID 94572, 1-3.
[11] T.N. Shanmugan, C. Ramachandran, M. Darus and S. Sivasubbramanian, Differential sandwich theorems for some subclasses of analytic functions involving a linear operator, Acta Math. Univ. Comenianae, 74 (2007), no.2, 287-294.
[12] T.N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl., 3 (2006), no. 1, Art. 8, 1-11.
[13] T.N. Shanmugam, S. Sivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Internat. J. Math. Math. Sci., Vol. 2006, Article ID 29684, 1-13.
[14] V. Singh, On some criteria for univalence and starlikeness, Indian J. Pure. Appl. Math., 34 (2003), no.4, 569-577.
[15] H.M. Srivastava and A.Y. Lashin, Some applications of the Briot-Bouquet differential subordination, J. Ineq. Pure Appl. Math., 6 (2005), no.2, article 41, 1-7.
[16] Z. Wang, C. Gao and M. Liao, On certain generalized class of non-Bazilević functions, Acta Math. Acad. Paed. Nyireg. New Series, 21(2005), no.2, 147-154.
M. K. Aouf, A. Shamandy, A. O. Mostafa and F. Z. El-Emam

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email:mkaouf127@yahoo.com,shamandy16@hotmail.com
adelaeg254@yahoo.com, fatma_elemam@yahoo.com

