# ON SOME FENG QI TYPE $Q$-INTEGRAL INEQUALITIES 

Valmir Krasniqi, Toufik Mansour, Armend Sh. Shabani

Abstract. In this paper are given several Feng Qi type $q$-integral inequalities, by using elementary analytic methods in Quantum Calculus.

2000 Mathematics Subject Classification: 33D05, 26D10, 26D15, 81P99

## 1. Introduction

In [7] the following problem was posed: Under what conditions does the inequality

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{t} d x \geq\left[\int_{a}^{b} f(x) d x\right]^{t-1} \tag{1.1}
\end{equation*}
$$

holds for $t>1$ ? In [1] has been proved the following: Let $[a, b]$ be a closed interval of $\mathbb{R}$ and let $p \geq 1$ be a real number. For any real continuous function $f$ on $[a, b]$, differentiable on $] a, b\left[\right.$, such that $f(a) \geq 0$, and $f^{\prime}(x) \geq p$ for all $\left.x \in\right] a, b[$, we have that

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{p+2} d x \geq \frac{1}{(b-a)^{p-1}}\left[\int_{a}^{b} f(x) d x\right]^{p+1} \tag{1.2}
\end{equation*}
$$

In [2] has obtained the $q$-analogue of the previous result as follows. Let $p \geq 1$ be a real number and $f$ a function defined on $[a, b]_{q}$ (see below for the definitions and notation), such that $f(a) \geq 0$, and $D_{q} f(x) \geq p$ for all $x \in(a, b]_{q}$. Then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{p+2} d_{q} x \geq \frac{1}{(b-a)^{p-1}}\left[\int_{a}^{b} f(q x) d_{q} x\right]^{p+1} . \tag{1.3}
\end{equation*}
$$

The aim of this paper is to extend this result. This paper will also provide some more sufficient conditions such that inequalities presented in $[6]$ are valid.

## 2. Notations and preliminaries

For the convenience of the reader, we provide a summary of notations and definitions used in this paper. For details, one may refer to [3] and [5].

Let $q \in(0,1)$. The $q$-analog of the derivative of a function $f$, denoted by $D_{q} f$ is given by

$$
\begin{equation*}
D_{q} f(x)=\frac{f(x)-f(q x)}{(1-q) x}, x \neq 0 \tag{2.4}
\end{equation*}
$$

If $f^{\prime}(0)$ exists, then $D_{q} f(0)=f^{\prime}(0)$. As $q$ tends to $1^{-}$, the $q$-derivative reduces to the usual derivative.

The $q$-Jackson integral from 0 to $a \in \mathbb{R}$ is defined by (see [4])

$$
\begin{equation*}
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n} \tag{2.5}
\end{equation*}
$$

The $q$-Jackson integral on a general interval $[a, b]$ may be defined by (see [5])

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x \tag{2.6}
\end{equation*}
$$

For any function $f$ one has

$$
\begin{equation*}
D_{q}\left(\int_{a}^{x} f(t) d_{q} t\right)=f(x) \tag{2.7}
\end{equation*}
$$

For $b>0$ and $a=b q^{n}, n \in \mathbb{N}$ denote

$$
[a, b]_{q}=\left\{b q^{k}: 0 \leq k \leq n\right\} ; \quad(a, b]_{q}=\left[q^{-1} a, b\right]_{q}
$$

## 3. Main Results

In order to prove our main results we need the following Lemma from [2].
Lemma 3.1 Let $p \geq 1$ and $g$ be a non-negative monotonic function on $[a, b]_{q}$. Then

$$
\begin{equation*}
p g^{p-1}(q x) D_{q} g(x) \leq D_{q}\left[g^{p}(x)\right] \leq p g^{p-1}(x) D_{q} g(x), \quad x \in(a, b]_{q} \tag{3.8}
\end{equation*}
$$

Theorem 3.2 If $f$ is a non-negative increasing function on $[a, b]_{q}$ and satisfies

$$
\begin{equation*}
(\alpha-1) f^{\alpha-2}(q x) D_{q} f(x) \geq \frac{\beta(\beta-1)}{(b-a)^{2 \beta-\alpha-1}}(x-a)^{\beta-2} f^{(\beta-1)}(x) \tag{3.9}
\end{equation*}
$$

for $\alpha \geq 1$ and $\beta \geq 2$, then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\alpha} d_{q} x \geq \frac{1}{(b-a)^{2 \beta-\alpha-1}}\left[\int_{a}^{b} f(x) d_{q} x\right]^{\beta} \tag{3.10}
\end{equation*}
$$

Proof. For $x \in[a, b]_{q}$, let

$$
F(x)=\int_{a}^{x}[f(t)]^{\alpha} d_{q} t-\frac{1}{(b-a)^{2 \beta-\alpha-1}} \cdot\left[\int_{a}^{x} f(t) d_{q} t\right]^{\beta}
$$

and $h(x)=\int_{a}^{x} f(t) d_{q} t$. By virtue of Lemma 3.1, it follows that

$$
\begin{aligned}
D_{q} F(x) & =f^{\alpha}(x)-\frac{1}{(b-a)^{2 \beta-\alpha-1}} D_{q}\left(h^{\beta}(x)\right) \\
& \geq f^{\alpha}(x)-\frac{\beta}{(b-a)^{2 \beta-\alpha-1}} h^{\beta-1}(x) D_{q} h(x) \\
& \geq f^{\alpha}(x)-\frac{\beta}{(b-a)^{2 \beta-\alpha-1}} h^{\beta-1}(x) f(x) \\
& =f(x) F_{1}(x),
\end{aligned}
$$

where $F_{1}(x)=f^{\alpha-1}(x)-\frac{\beta}{(b-a)^{2 \beta-\alpha-1}} h^{\beta-1}(x)$.
By Lemma 3.1 we have

$$
\begin{aligned}
D_{q} F_{1}(x) & =D_{q}\left(f^{\alpha-1}(x)\right)-\frac{\beta}{(b-a)^{2 \beta-\alpha-1}} D_{q}\left(h^{\beta-1}(x)\right) \\
& \geq(\alpha-1) f^{\alpha-2}(q x) D_{q} f(x)-\frac{\beta(\beta-1)}{(b-a)^{2 \beta-\alpha-1}} h^{\beta-2}(x) f(x) .
\end{aligned}
$$

Since $f$ is a non-negative and increasing function, then

$$
h(x)=\int_{a}^{x} f(t) d_{q} t \leq f(x)(x-a),
$$

hence

$$
D_{q} F_{1}(x) \geq(\alpha-1) f^{\alpha-2}(q x) D_{q} f(x)-\frac{\beta(\beta-1)}{(b-a)^{2 \beta-\alpha-1}}(x-a)^{\beta-2} f^{\beta-1}(x)
$$

which means that $D_{q} F_{1}(x) \geq 0$. Since $F_{1}(a)=f^{\alpha-1}(a) \geq 0$, we obtain $F_{1}(x) \geq 0$. Since $F(a)=0$ and $D_{q} F(x) \geq 0$ it follows that $F(x) \geq 0$, for all $x \in[a, b]_{q}$, which completes the proof.

Theorem 3.3 If $f$ is a non-negative and increasing function on $\left[b q^{m}, b\right]_{q}, m \in \mathbb{N}$ and satisfies

$$
\begin{equation*}
(\alpha-1) D_{q} f(x) \geq \frac{\beta(\beta-1)}{(b-a)^{2 \beta-\alpha-1}} \cdot(x-a)^{\beta-2} \cdot f^{\beta-\alpha+1}\left(q^{m} x\right) \tag{3.11}
\end{equation*}
$$

on $[a, b]_{q}$ for $\alpha \geq 1$ and $\beta \geq 2$, then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\alpha} d_{q} x \geq \frac{1}{(b-a)^{2 \beta-\alpha-1}}\left[\int_{a}^{b} f\left(q^{m} x\right) d_{q} x\right]^{\beta} . \tag{3.12}
\end{equation*}
$$

Proof. For $x \in[a, b]_{q}$ let

$$
F(x)=\int_{a}^{x}[f(t)]^{\alpha} d_{q} t-\frac{1}{(b-a)^{2 \beta-\alpha-1}}\left[\int_{a}^{x} f\left(q^{m} t\right) d_{q} t\right]^{\beta}
$$

and $h(x)=\int_{a}^{x} f\left(q^{m} t\right) d_{q} t$. Utilizing Lemma 3.1 gives that

$$
\begin{aligned}
D_{q} F(x) & =f^{\alpha}(x)-\frac{1}{(b-a)^{2 \beta-\alpha-1}} D_{q}\left(h^{\beta}(x)\right) \\
& \geq f^{\alpha}(x)-\frac{\beta}{(b-a)^{2 \beta-\alpha-1}} h^{\beta-1}(x) D_{q} h(x) \\
& \geq f^{\alpha}(x)-\frac{\beta}{(b-a)^{2 \beta-\alpha-1}} h^{\beta-1}(x) f(x) \\
& =f(x) F_{1}(x),
\end{aligned}
$$

where $F_{1}(x)=f^{\alpha-1}(x)-\frac{\beta}{(b-a)^{2 \beta-\alpha-1}} h^{\beta-1}(x)$. By Lemma 3.1, we obtain that

$$
\begin{aligned}
D_{q} F_{1}(x) & =D_{q}\left[f^{\alpha-1}(x)\right]-\frac{\beta}{(b-a)^{2 \beta-\alpha-1}} D_{q}\left(h^{\beta-1}(x)\right) \\
& \geq(\alpha-1) f^{\alpha-2}(q x) D_{q} f(x)-\frac{\beta(\beta-1)}{(b-a)^{2 \beta-\alpha-1}} h^{\beta-2}(x) f\left(q^{m} x\right) .
\end{aligned}
$$

Since $f$ is a non-negative and increasing function, then

$$
h(x)=\int_{a}^{x} f\left(q^{m} x\right) d_{q} t \leq f\left(q^{m} x\right)(x-a),
$$

hence

$$
\begin{aligned}
D_{q} F_{1}(x) & \geq(\alpha-1) f^{\alpha-2}(q x) D_{q} F(x)-\frac{\beta(\beta-1)}{(b-a)^{2 \beta-\alpha-1}}(x-a)^{\beta-2} f^{\beta-1}\left(q^{m} x\right) \\
& =f^{\alpha-2}(q x)\left[(\alpha-1) D_{q} f(x)-\frac{\beta(\beta-1)}{(b-a)^{2 \beta-\alpha-1}}(x-a)^{\beta-2} f^{\alpha-\beta+1}\left(q^{m} x\right)\right]
\end{aligned}
$$

which means that $D_{q} F_{1}(x) \geq 0$. Since $F_{1}(a)=f^{\alpha-1}(a) \geq 0$, we obtain $F_{1}(x) \geq 0$. Since $F(a)=0$ and $D_{q} F(x) \geq 0$ it follows that $F(x) \geq 0$, for all $x \in[a, b]_{q}$, as claimed.

Corollary 3.4 If $f$ is a non-negative increasing function on $[a, b]_{q}$ and satisfies

$$
\begin{equation*}
f^{p}(q x) D_{q} f(x) \geq \frac{p}{(b-a)^{2 \beta-\alpha-1}} f^{p}(x)(x-a)^{p-1} \tag{3.13}
\end{equation*}
$$

for $p \geq 0$, then

$$
\begin{equation*}
\int_{a}^{b} f^{p+2}(x) d_{q}(x) \geq \frac{1}{(b-a)^{p-1}}\left[\int_{a}^{b} f(x) d_{q}(x)\right]^{p+1} . \tag{3.14}
\end{equation*}
$$

Proof. In Theorem 3.2 put $\alpha=p+2, \beta=p+1$.
At the end of the notes we pose the following problem. Under what conditions does the inequality

$$
\int_{a}^{b}[f(x)]^{\alpha} \leq \frac{1}{(b-a)^{\alpha}}\left[\int_{a}^{b} x^{\beta} f(x) d_{q} x\right]^{\beta}
$$

holds for $\alpha \geq 1, \beta \geq 1$ ?

## References

[1] M. Akkouchi, Some Integral Inequalities, Divulgaciones Math., 11(2) (2003), 121-125.
[2] K. Brahim, N. Bettaibi and M. Sellemi, On some Feng-Qi type q-integral inequalities, J. Ineq. Pure Appl. Math., 9 (2)(2008), Art. 43; Available online at: http://jipam.vu.edu.au/article.php?sid=975.
[3] G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd Edition, (2004), Encyclopedia of Mathematics and Applications, 96, Cambridge University Press, Cambridge.
[4] F.H. Jackson, On a q-definite integrals, Quarterly Journal of Pure and Applied Mathematics, 41 (1910), 193-203.
[5] V. G. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
[6] Y. Miao, F. Qi, Several q-integral inequalities, J. Math. Inequal., 3(1) (2009), 115-121.
[7] F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2) (2000), Art. 19; Available online at http://jipam.vu.edu.au/article.php?sid=113.

Valmir Krasniqi
Department of Mathematics
University of Prishtina
Prishtinë 10000, Republic of Kosova
email:vali.99@hotmail.com

Toufik Mansour
Department of Mathematics
University of Haifa
31905 Haifa, Israel
email:toufik@math.haifa.ac.il
V. Krasniqi, T. Mansour, A. Shabani - On some F. Qi type $q$-integral inequalities

Armend Sh. Shabani
Department of Mathematics
University of Prishtina
Prishtinë 10000, Republic of Kosova
email:armend_shabani@hotmail.com

