A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY MULTIPLIER TRANSFORMATION

Laura Stanciu and Daniel Breaz

Abstract. In this paper, we consider the multiplier transformation

$$
I_{p}(n, \lambda) f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k}
$$

where $p \in \mathbb{N}, n \in \mathbb{N} \cup 0, \lambda \geq 0$ and we provide the sufficient conditions for functions to be in the class $B(n, \mu, \alpha, \lambda)$.

2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Univalent function, Starlike function, Convex function, Multiplier transformation.

1. Introduction and Preliminaries

Let A_{p} denote the class of functions of the form

$$
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, \quad p \in \mathbb{N}=\{1,2, \ldots\}
$$

which are analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$.
Let S_{p} denote the subclass of functions that are univalent in U.
A function $f \in A_{p}$ is said to be p-valent starlike of order $\alpha(0 \leq \alpha<p)$ in U, if it satisfies the following inequality:

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad z \in U
$$

We denote by $S_{p}^{*}(\alpha)$ the class of all such functions.
A function $f \in A_{p}$ is said to be p-valent convex of order $\alpha(0 \leq \alpha<p)$ in U, if and only if

$$
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)>\alpha, \quad z \in U
$$

for some $\alpha,(0 \leq \alpha<1)$.
We denote by $K_{p}(\alpha)$ the class of all those functions $f \in A_{p}$ which are multivalently convex of order α in U and denote by $R(\alpha)$ the class of functions in A_{p} which satisfy

$$
\operatorname{Re} f^{\prime}(z)>\alpha, \quad z \in U
$$

It is well known that $K_{p}(\alpha) \subset S_{p}^{*}(\alpha) \subset S_{p}$.
If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$ if $w(0)=0,|w(z)|<1$, for all $z \in U$. If g is univalent then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subseteq g(U)$.
The following multiplier transformation was given by Sukhwinder Singh, Sushma Gupta and Sukhjit Singh [1].
Definition 1.([1]). For $f \in A_{p}, p \in \mathbb{N}, n \in \mathbb{N} \cup 0, \lambda \geq 0$, the operator $I_{p}(n, \lambda) f(z)$ is defined by the following infinite series

$$
\begin{equation*}
I_{p}(n, \lambda) f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k} . \tag{1}
\end{equation*}
$$

It is easily verified from (1) that

$$
\begin{equation*}
(p+\lambda) I_{p}(n+1, \lambda) f(z)=p(1-\lambda) I_{p}(n, \lambda) f(z)+\lambda z\left(I_{p}(n, \lambda) f(z)\right)^{\prime} . \tag{2}
\end{equation*}
$$

Remark 1. If $p=1$ we have

$$
I_{1}(n, \lambda) f(z)=I(n, \lambda)
$$

and

$$
(\lambda+1) I(n+1, \lambda) f(z)=(1-\lambda) I(n, \lambda) f(z)+\lambda z(I(n, \lambda) f(z))^{\prime},
$$

for $z \in U$.
Remark 2. If $f \in A_{n}, f(z)=z+\sum_{k=p+1}^{\infty} a_{k} z^{k}$, then

$$
I(n, \lambda) f(z)=z+\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k},
$$

for $z \in U$.
In the proof of our main result we need the following lemma.
Lemma 1. ([2]). Let u be analytic in U with $u(0)=1$ and suppose that

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z u^{\prime}(z)}{u(z)}\right)>\frac{3 \alpha-1}{2 \alpha}, z \in U . \tag{3}
\end{equation*}
$$

Then $\operatorname{Re} u(z)>\alpha$ for $z \in U$ and $\frac{1}{2} \leq \alpha<1$.

2. Main results

Definition 2. We say that a function $f \in A_{p}$ is in the class $B(n, \mu, \alpha, \lambda)$, $n \in \mathrm{~N}, \mu \geq 0, \alpha \in[0,1)$. If

$$
\begin{equation*}
\left|\frac{I(n+1, \lambda)}{z}\left(\frac{z}{I(n, \lambda) f(z)}\right)^{\mu}-1\right|<1-\alpha, z \in U . \tag{4}
\end{equation*}
$$

In this paper we provide a sufficient condition for functions to be in the class $B(n, \mu, \alpha, \lambda)$.
Theorem 1. For the functions $f \in A_{p}, n \in \mathbb{N}, \mu \geq 0, \frac{1}{2} \leq \alpha<1$.
If

$$
\begin{equation*}
\frac{(\lambda+1)}{\lambda} \frac{I(n+2, \lambda) f(z)}{I(n+1, \lambda) f(z)}-\mu \frac{(\lambda+1)}{\lambda} \frac{I(n+1, \lambda) f(z)}{I(n, \lambda) f(z)}+\frac{1}{\lambda}(\mu-1) \prec 1+\beta z, z \in U \tag{5}
\end{equation*}
$$

where

$$
\beta=\frac{3 \alpha-1}{2 \alpha}
$$

then $f \in B(n, \mu, \alpha, \lambda)$.
Proof. If we consider

$$
u(z)=\frac{I(n+1, \lambda) f(z)}{z}\left(\frac{z}{I(n, \lambda) f(z)}\right)^{\mu}
$$

then $u(z)$ is analytic in U with $u(0)=1$. A simple differentiation yields

$$
\frac{z u^{\prime}(z)}{u(z)}=\frac{(\lambda+1)}{\lambda} \frac{I(n+2, \lambda) f(z)}{I(n+1, \lambda) f(z)}-\frac{\mu(\lambda+1)}{\lambda} \frac{I(n+1, \lambda) f(z)}{I(n, \lambda) f(z)}+\frac{(\mu-1)}{\lambda}
$$

Using (4) we get

$$
\operatorname{Re}\left(1+\frac{z u^{\prime}(z)}{u(z)}\right)>\frac{3 \alpha-1}{2 \alpha} .
$$

From Lemma 1. we have

$$
\operatorname{Re}\left(\frac{I(n+1, \lambda) f(z)}{z}\left(\frac{z}{I(n, \lambda) f(z)}\right)^{\mu}\right)>\alpha
$$

Therefore, $f \in B(n, \mu, \alpha, \lambda)$, by Definition 2 .

3. Applications of Theorem 1.

First of all, setting $n=1, \mu=1, \alpha=\frac{1}{2}, \lambda=1$ in Theorem 1 , we immediately arrive at the following application of Theorem 1. we have
Corollary 1. If $f \in A_{1}$ and

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)+3 z^{2} f^{\prime \prime}(z)+z^{3} f^{\prime \prime \prime}(z)}{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}-\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{z f^{\prime}(z)}\right)>-\frac{1}{2}
$$

then $f \in B\left(1,1, \frac{1}{2}, 1\right)$.
Setting $n=1, \mu=0, \alpha=\frac{1}{2}, \lambda=1$ we obtain the following interesting consequence of Theorem 1 .
Corollary 2. If $f \in A_{1}$ and

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)+3 z^{2} f^{\prime \prime}(z)+z^{3} f^{\prime \prime \prime}(z)}{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}\right)>-\frac{3}{2}
$$

then $f \in B\left(1,0, \frac{1}{2}, 1\right)$.
Setting $n=0, \mu=1, \alpha=\frac{1}{2}, \lambda=1$ we obtain another consequence of Theorem 1.
Corollary 3. If $f \in A_{1}$ and

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{z f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)>-\frac{1}{2}
$$

then $f \in B\left(0,1, \frac{1}{2}, 1\right)$.
Finally, setting $n=0, \mu=0, \alpha=\frac{1}{2}, \lambda=1$ we obtain the next consequence of Theorem 1.
Corollary 4. If $f \in A_{1}$ and

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{z f^{\prime}(z)}\right)>\frac{3}{2}
$$

then $f \in B\left(0,0, \frac{1}{2}, 1\right)$.

Acknowledgments

This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the European Social Fund-Investing in People.

References

[1]. Sukhwinder Singh, Sushma Gupta and Sukhjit Singh, On a subclass of analytic functions, General Mathematics Vol. 16, No. 2 (2008), 37-47.
[2]. B. A. Frasin and Jay M. Jahangiri, A new and comprehensive class of analytic functions, Analele Universitãţii din Oradea, Tom XV, 2008, 61-64.

Laura Filofteia Stanciu
University of Piteşti
Department of Mathematics
Târgul din Vale Str., No.1, 110040, Piteşti
Argeş, România.
E-mail address: laura_stanciu_30@yahoo.com
Daniel Breaz
"1 Decembrie 1918"' University of Alba Iulia Department of Mathematics
Alba Iulia, Str. N. Iorga, 510000, No. 11-13, România.
E-mail address: dbreaz@uab.ro

