LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS INVOLVING p - GAMMA FUNCTIONS

Valmir Krasniqi

AbSTRACT. In this paper we prove that the function $f_{\alpha, \beta, p}(x)=\frac{\Gamma_{p}(x+\beta)}{p^{x} x^{x+\beta-\alpha}}(x+$ $p)^{x+p+\beta-\alpha}$ is logarithmically completely monotonic on $(0, \infty)$ if $0 \leq \beta \leq \frac{1}{2}$, and $\alpha \leq \beta-e^{-4}(1-\beta)^{2} \exp \left(\frac{2}{1-\beta}\right)$.

2000 Mathematics Subject Classification: 33B15, 26A48

1. Introduction

A function f is said to be completely monotonic on an open interval I, if f has derivatives of all orders on I and satisfies

$$
\begin{equation*}
(-1)^{n} f^{(n)}(x) \geq 0,(x \in I, n=0,1,2, \ldots) \tag{1.1}
\end{equation*}
$$

If the inequality (1.1) is strict, then f is said to be strictly completely monotonic on I. Bernstein' Theorem (see [10]) states that f is completely monotonic on $(0, \infty)$ if and only if $f(x)=\int_{0}^{\infty} e^{-x t} d \mu(t)$, where μ is a nonnegative measure on $[0, \infty)$ such that for all $x>0$ the integral converges.

A positive function f is said to be logarithmically completely monotonic (see [6]) on an open interval I, if f satisfies

$$
\begin{equation*}
(-1)^{n}[\ln f(x)]^{(n)} \geq 0,(x \in I, n=1,2, \ldots) . \tag{1.2}
\end{equation*}
$$

If the inequality (1.2) is strict, then f is said to be strictly logarithmically completely monotonic. Let C and L denote the set of completely monotonic functions and the set of logarithmically completely monotonic functions, respectively. The relationship between completely monotonic functions and logarithmically completely monotonic functions can be presented (see [6]) by $L \subset C$.

The Euler gamma function $\Gamma(x)$ is defined for $x>0$ by $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$. The digamma (or $p s i$) function is defined for positive real numbers x as the logarithmic derivative of Euler's gamma function, that is $\psi(x)=\frac{d}{d x} \ln \Gamma(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$. The following integral and series representations are valid (see [1]):

$$
\begin{equation*}
\psi(x)=-\gamma+\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{1-e^{-t}} d t=-\gamma-\frac{1}{x}+\sum_{n \geq 1} \frac{x}{n(n+x)}, \tag{1.3}
\end{equation*}
$$

where $\gamma=0.57721 \cdots$ denotes Euler's constant. Euler gave another equivalent definition for the $\Gamma(x)$ (see [7]),

$$
\begin{equation*}
\Gamma_{p}(x)=\frac{p!p^{x}}{x(x+1) \cdots(x+p)}=\frac{p^{x}}{x\left(1+\frac{x}{1}\right) \cdots\left(1+\frac{x}{p}\right)}, \quad x>0, \tag{1.4}
\end{equation*}
$$

where p is a positive integer, and

$$
\begin{equation*}
\Gamma(x)=\lim _{p \rightarrow \infty} \Gamma_{p}(x) . \tag{1.5}
\end{equation*}
$$

The p-analogue of the psi function is defined as the logarithmic derivative of the Γ_{p} function (see [7],[9]), that is

$$
\begin{equation*}
\psi_{p}(x)=\frac{d}{d x} \ln \Gamma_{p}(x)=\frac{\Gamma_{p}^{\prime}(x)}{\Gamma_{p}(x)} \tag{1.6}
\end{equation*}
$$

The function ψ_{p} defined in (1.6) satisfies the following properties (see [8]). It has the following series representation

$$
\begin{equation*}
\psi_{p}(x)=\ln p-\sum_{k=0}^{p} \frac{1}{x+k}=\ln p-\int_{0}^{\infty} \frac{e^{-x t}}{1-e^{-t}}\left(1-e^{-p t}\right) d t . \tag{1.7}
\end{equation*}
$$

It is increasing on $(0, \infty)$ and it is strictly completely monotonic on $(0, \infty)$. Its derivatives are given by (see [7], [8]):

$$
\begin{equation*}
\psi_{p}^{(n)}(x)=\sum_{k=0}^{p} \frac{(-1)^{n-1} \cdot n!}{(x+k)^{n+1}}=(-1)^{n+1} \int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1-e^{-t}}\left(1-e^{-p t}\right) d t . \tag{1.8}
\end{equation*}
$$

2. Main Results

Let $\alpha \in R$ and $\beta \geq 0$ be real numbers, define

$$
\begin{equation*}
f_{\alpha, \beta, p}(x)=\frac{\Gamma_{p}(x+\beta)}{p^{x} x^{x+\beta-\alpha}}(x+p)^{x+p+\beta-\alpha} . \tag{3.9}
\end{equation*}
$$

Theorem 3.1 The function $f_{\alpha, \beta, p}(x)$ defined by (3.9) is logarithmically completely monotonic on $(0, \infty)$ if $0 \leq \beta \leq \frac{1}{2}$ and $\alpha \leq \beta-e^{-4}(1-\beta)^{2} \exp \left(\frac{2}{1-\beta}\right)$.

Proof. It is clear that

$$
\begin{aligned}
\ln f_{\alpha, \beta, p}(x)=\ln & \Gamma_{p}(x+\beta)+(x+p+\beta-\alpha) \ln (x+p)-(x+\beta-\alpha) \ln x-x \ln p \\
{\left[\ln f_{\alpha, \beta, p}(x)\right]^{\prime} } & =\psi_{p}(x+\beta)+\frac{x+p+\beta-\alpha}{x+p}+\ln (x+p)-\ln p x-\frac{x+\beta-\alpha}{x} \\
& =\psi_{p}(x+\beta)+\frac{\beta-\alpha}{x+p}-\frac{\beta-\alpha}{x}+\ln (x+p)-\ln x-\ln p
\end{aligned}
$$

Using the representation of:

$$
\begin{align*}
\frac{1}{x^{n}} & =\frac{1}{\Gamma(n)} \int_{0}^{\infty} t^{n-1} e^{-x t} d t, \quad n=1,2, \ldots \tag{3.10}\\
(-1)^{n}\left[\ln f_{\alpha, \beta, p}(x)\right]^{(n)} & =(-1)^{n} \psi_{p}^{(n-1)}(x+\beta)-\frac{(n-2)!}{x^{n-1}}+\frac{(n-2)!}{(x+p)^{n-1}} \\
& +\frac{(\beta-\alpha)(n-1)!}{x^{n}}-\frac{(\beta-\alpha)(n-1)!}{(x+p)^{n}} \\
& =(-1)^{n} \psi_{p}^{(n-1)}(x+\beta)-(n-2)!\left[\frac{1}{x^{n-1}}-\frac{1}{(x+p)^{n-1}}\right] \\
& +(\beta-\alpha)(n-1)!\left[\frac{1}{x^{n}}-\frac{1}{(x+p)^{n}}\right] \\
& =\int_{0}^{\infty} \frac{t^{n-1} e^{-(x+\beta) t}}{1-e^{-t}}\left(1-e^{-p t}\right) d t-\int_{0}^{\infty}\left(t^{n-2} e^{-x t}\left(1-e^{-p t}\right) d t\right. \\
& +(\beta-\alpha) \int_{0}^{\infty}\left(t^{n-1} e^{-x t}\left(1-e^{-p t}\right) d t\right. \\
& =\int_{0}^{\infty} g_{\alpha, \beta}(t) \frac{t^{n-2} e^{-x t}}{e^{t}-1}\left(1-e^{-p t}\right) d t, \tag{3.11}
\end{align*}
$$

where

$$
\begin{equation*}
g_{\alpha, \beta}(t)=(\beta-\alpha) t e^{(1-\beta) t}+e^{(1-\beta) t}+(\beta-\alpha-1) e^{t}+\alpha-\beta . \tag{3.12}
\end{equation*}
$$

Since $g_{\alpha, \beta}(t)>0$ for $0 \leq \beta \leq \frac{1}{2}$ and $\alpha \leq \beta-e^{-4}(1-\beta)^{2} \exp \left(\frac{2}{1-\beta}\right)$ (see [5]), from (3.11) we see that when $n \geq 2$

$$
(-1)^{n}\left[\ln f_{\alpha, \beta, p}(x)\right]^{(n)}>0
$$

in $(0, \infty)$ for $0 \leq \beta \leq \frac{1}{2}$. Since $\left[\ln f_{\alpha, \beta, p}(x)\right]^{\prime}$ is increasing, we have

$$
\begin{equation*}
\left[\ln f_{\alpha, \beta, p}(x)\right]^{\prime}<\lim _{x \rightarrow \infty}\left[\psi_{p}(x+\beta)+\frac{\beta-\alpha}{x+p}-\frac{\beta-\alpha}{x}+\ln \left(1+\frac{p}{x}\right)-\ln p\right]=0 \tag{3.13}
\end{equation*}
$$

Hence, for $0 \leq \beta \leq \frac{1}{2}$ and $\alpha \leq \beta-e^{-4}(1-\beta)^{2} \exp \left(\frac{2}{1-\beta}\right)$ and $n \in \mathbb{N},(-1)^{n}\left[\ln f_{\alpha, \beta, p}(x)\right]^{(n)}>$ 0 in $(0, \infty)$. The proof is complete.

Remark 3.2 Let p tend to infinty, then we obtain Thorem 1,(1) of (see [5]).

References

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, NewYork, 1965.
[2] S. Bocher, Harmonic Analysis and the theory of Probability, Dover Books, 2005.
[3] P. S. Bullen, Handbook of means and their inequalities, Math. Appl., Vol. 560, Kluver Academic, Dordrecht, 2003.
[4] Ch.-P. Chen and F. Qi, Logarithmically completely monotonic functions relating to the gamma functions, J. Math. Anal. Appl. 321 (2006), 405-411.
[5] S. Guo and H. M. Srivastava, A class of logarithmically completely monotonic functions, App. Math. Lett. 21(2008) 1134-1141.
[6] F. Qi and Ch.-P. Chen, A complete monotonicity property of the Gamma function, J. Math. Anal. Appl. 296 (2004), 603-607.
[7] V. Krasniqi and A. Shabani, Convexity properties and inequalities for a generalized gamma function, Appl. Math. E-Notes, 10(2010), 27-35.
[8] V. Krasniqi, T. Mansour, and A. Shabani, Some monotonicity properties and inequality for Γ - and ζ - function,Math. Commun., Vol. 15, (2010), 365-376 .
[9] V. Krasniqi and S. Guo, Logarithmically Completely monotonic functions involving generalized gamma and q-gamma functions, J. Inequal. Spec. Funct, 1 (2011) 8-16.
[10] D.V. Wider, The Laplace Transform, Princeton Univ. Press, Princeton, 1941.
Valmir Krasniqi
Department of Mathematics
University of Prishtina
Prishtinë 10000, Republic of Kosova
email:vali.99@hotmail.com

