Acta Universitatis Apulensis ISSN: 1582-5329 No. 29/2012 pp. 17-29

INCLUSION PROPERTIES FOR CERTAIN K-UNIFORMLY SUBCLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH DZIOK-SRIVASTAVA OPERATOR

Mohammed K. Aouf and Tamer M. Seoudy

ABSTRACT. In this paper, we introduce several new k-uniformly classes of analytic functions defined by using Dziok-Srivastava operator and investigate various inclusion relationships for these classes. Some interesting applications involving certain classes of integral operators are also considered.

Keywords: Analytic functions, k—uniformly starlike functions, k—uniformly convex functions, k—uniformly close-to-convex functions, k—uniformly quasi-convex functions, integral operator, Hadamard product, subordination.

2000 Mathematics Subject Classification: 3045.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
(1.1)

which are analytic in the open unit disk $\mathbf{U} = \{z \in \mathbb{C} : |z| < 1\}$. If f and g are analytic in \mathbf{U} , we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function ω , analytic in \mathbf{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$ ($z \in \mathbf{U}$), such that $f(z) = g(\omega(z))$ ($z \in \mathbf{U}$). In particular, if the function g is univalent in U, the above subordination is equivalent to f(0) = g(0) and $f(\mathbf{U}) \subset g(\mathbf{U})$ (see [15] and [16]). For $0 \le \gamma, \beta < 1$, we denote by $S^*(\gamma)$, $C(\gamma)$, $K(\gamma, \beta)$ and $K^*(\gamma, \beta)$ the subclasses of \mathcal{A} consisting of all analytic functions which are, respectively, starlike of order γ , convex of order γ , close-to-convex of order γ , and type β and quasi-convex of order γ , and type β in \mathbf{U} .

Now, we introduce the subclasses $US^*(k; \gamma)$, $UC(k; \gamma)$, $UK(k; \gamma, \beta)$ and $UK^*(k; \gamma, \beta)$ of the class \mathcal{A} for $0 \leq \gamma, \beta < 1$, and $k \geq 0$, which are defined by

$$US^{*}\left(k;\gamma\right) = \left\{f \in \mathcal{A}: \Re\left(\frac{zf'(z)}{f(z)} - \gamma\right) > k \left| \frac{zf'(z)}{f(z)} - 1 \right| \right\},\tag{1.2}$$

$$UC\left(k;\gamma\right) = \left\{ f \in \mathcal{A} : \Re\left(1 + \frac{zf^{''}(z)}{f^{'}(z)} - \gamma\right) > k \left| \frac{zf^{''}(z)}{f^{'}(z)} \right| \right\},\tag{1.3}$$

$$UK\left(k;\gamma,\beta\right) = \left\{f \in \mathcal{A}: \exists \ g \in US^{*}\left(k;\beta\right), \Re\left(\frac{zf'(z)}{g\left(z\right)} - \gamma\right) > k \left|\frac{zf'(z)}{g\left(z\right)} - 1\right|\right\},\$$

$$UK^{*}\left(k;\gamma,\beta\right) = \left\{ f \in \mathcal{A} : \exists \ g \in UC\left(k;\gamma\right), \Re\left(\frac{\left(zf'(z)\right)'}{g'\left(z\right)} - \gamma\right) > k \left|\frac{\left(zf'(z)\right)'}{g'\left(z\right)} - 1\right| \right\}. \tag{1.5}$$

We note that

$$\begin{split} US^{*}\left(0;\gamma\right) &= S^{*}\left(k;\gamma\right),\ UC\left(0;\gamma\right) = C\left(\gamma\right),\\ UK\left(0;\gamma,\beta\right) &= K\left(\gamma,\beta\right),\ UK^{*}\left(0;\gamma,\beta\right) = K^{*}\left(\gamma,\beta\right)\quad\left(0\leq\gamma,\beta<1\right). \end{split}$$

Corresponding to a conic domain $\Omega_{k,\gamma}$ defined by

$$\Omega_{k,\gamma} = \left\{ u + iv : u > k\sqrt{(u-1)^2 + v^2} + \gamma \right\},$$
(1.6)

we define the function $q_{k,\gamma}(z)$ which maps **U** onto the conic domain $\Omega_{k,\gamma}$ such that $1 \in \Omega_{k,\gamma}$ as the following:

$$q_{k,\gamma}(z) = \begin{cases} \frac{1+(1-2\gamma)z}{1-z} & (k=0), \\ \frac{1-\gamma}{1-k^2}\cos\left\{\frac{2}{\pi}\left(\cos^{-1}k\right)i\log\frac{1+\sqrt{z}}{1-\sqrt{z}}\right\} - \frac{k^2-\gamma}{1-k^2} & (0 < k < 1), \\ 1 + \frac{2(1-\gamma)}{\pi^2}\left(\log\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^2 & (k=1), \\ \frac{1-\gamma}{k^2-1}\sin\left\{\frac{\pi}{2\zeta(k)}\int_0^{\frac{u(z)}{\sqrt{k}}} \frac{dt}{\sqrt{1-t^2\sqrt{1-k^2t^2}}}\right\} + \frac{k^2-\gamma}{k^2-1} & (k > 1). \end{cases}$$
(1.7)

where $u(z) = \frac{z - \sqrt{k}}{1 - \sqrt{k}z}$ and $\zeta(k)$ is such that $k = \cosh \frac{\pi \zeta'(z)}{4\zeta(z)}$. By virture of the properties of the conic domain $\Omega_{k,\gamma}$, we have

$$\Re\left\{q_{k,\gamma}\left(z\right)\right\} > \frac{k+\gamma}{k+1}.\tag{1.8}$$

Making use of the principal of subordination between analytic functions and the definition of $q_{k,\gamma}(z)$, we may rewrite the subclasses $US^*(k;\gamma)$, $UC(k;\gamma)$, $UK(k;\gamma,\beta)$ and $UK^*(k;\gamma,\beta)$ as the following:

$$US^{*}\left(k;\gamma\right) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f\left(z\right)} \prec q_{k,\gamma}\left(z\right) \right\},\tag{1.9}$$

$$UC\left(k;\gamma\right) = \left\{ f \in \mathcal{A} : 1 + \frac{zf^{''}(z)}{f^{'}(z)} \prec q_{k,\gamma}\left(z\right) \right\},\tag{1.10}$$

$$UK(k;\gamma,\beta) = \left\{ f \in \mathcal{A} : \exists g \in US^*(k;\beta), \frac{zf'(z)}{g(z)} \prec q_{k,\gamma}(z) \right\}, \tag{1.11}$$

$$UK^{*}\left(k;\gamma,\beta\right) = \left\{ f \in \mathcal{A} : \exists \ g \in UC\left(k;\gamma\right), \frac{\left(zf'(z)\right)'}{g'\left(z\right)} \prec q_{k,\gamma}\left(z\right) \right\}. \tag{1.12}$$

For two functions f(z) given by (1.1) and g(z) given by

$$g\left(z\right) = z + \sum_{n=2}^{\infty} b_n z^n$$

their Hadamard product (or convolution) is defined by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g * f)(z).$$

For complex parameters

$$a_1,...,a_q;b_1,...,b_s$$
 $(b_j \notin \mathbb{Z}_0^- = \{0,-1,-2,...\}; j=1,...,s)$,

the generalized hypergeometric function ${}_{q}F_{s}\left(a_{1},...,a_{q};b_{1},...,b_{s};z\right)$ is given by

$$_{q}F_{s}\left(a_{1},...,a_{q};b_{1},...,b_{s};z\right) = \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}...\left(a_{q}\right)_{n}}{\left(b_{1}\right)_{n}...\left(b_{s}\right)_{n}} \frac{z^{n}}{n!}$$
 (1.13)

$$(q \le s + 1; q, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \mathbb{N} = \{1, 2, ...\}; z \in U),$$

where $(x)_n$ is the Pochhammer symbol (or the shifted factorial) defined (in terms of the Gamma function) by

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)} = \begin{cases} 1 & (n=0), \\ x(x+1)\dots(x+n-1) & (n \in \mathbb{N}). \end{cases}$$

Corresponding to a function $h(a_1,...,a_q;b_1,...,b_s;z)$ defined by

$$h(a_1, ..., a_q; b_1, ..., b_s; z) = z_q F_s(a_1, ..., a_q; b_1, ..., b_s; z),$$
 (1.14)

Dziok and Srivastava [4] considered a linear operator $H(a_1,...,a_q;b_1,...,b_s): \mathcal{A} \to \mathcal{A}$ defined by

$$H(a_{1},...,a_{q};b_{1},...,b_{s}) f(z) = h(a_{1},...,a_{q};b_{1},...,b_{s};z) * f(z)$$

$$= z + \sum_{n=2}^{\infty} \frac{(a_{1})_{n-1} ... (a_{q})_{n-1}}{(b_{1})_{n-1} ... (b_{s})_{n-1}} \frac{z^{n}}{(n-1)!}, (1.15)$$

We note that many subclasses of analytic functions, associated with the Dziok-Srivastava operator and many special cases, were investigated recently by Aghalary and Azadi [1], Dziok-Srivastava [5, 6], Liu [11], Liu and Srivastava [12] and others.

Corresponding to the function $h(a_1, ..., a_q; b_1, ..., b_s; z)$, defined by (1.14), we introduce a function $h_{\mu}(a_1, ..., a_q; b_1, ..., b_s; z)$ given by

$$h(a_1, ..., a_q; b_1, ..., b_s; z) * h_{\mu}(a_1, ..., a_q; b_1, ..., b_s; z) = \frac{z}{(1-z)^{\mu}} \quad (\mu > 0)$$
 (1.16)

Analogous to $H(a_1,...,a_q;b_1,...,b_s)$, Kwon and Cho [8] introduced the linear operator

$$H^{\mu}(a_1,...,a_q;b_1,...,b_s): \mathcal{A} \to \mathcal{A}$$

as follows:

$$H^{\mu}(a_{1},...,a_{q};b_{1},...,b_{s}) f(z) = h_{\mu}(a_{1},...,a_{q};b_{1},...,b_{s};z) * f(z)$$

$$(a_{i},b_{j} \in \mathbb{C} \setminus \mathbb{Z}_{0}^{-}, i = 1,...,s, j = 1,...,q; \mu > 0; f \in \mathcal{A}; z \in U).$$

$$(1.17)$$

For q = s + 1 and $a_2 = b_1, ..., a_q = b_s$, we note that

$$H^{\mu}(\mu,...,a_{q};b_{1},...,b_{s}) f(z) = f(z)$$

and

$$H^{2}(1,...,a_{q};b_{1},...,b_{s}) f(z) = zf'(z).$$

For convenience, we write

$$H_{q,s}^{\mu}(a_1) = H^{\mu}(a_1, ..., a_q; b_1, ..., b_s).$$
 (1.18)

It is easily verified from the definition (1.17) that

$$z \left(H_{q,s}^{\mu} \left(a_{1} \right) f \left(z \right) \right)' = \mu H_{q,s}^{\mu+1} \left(a_{1} \right) f \left(z \right) - \left(\mu - 1 \right) H_{q,s}^{\mu} \left(a_{1} \right) f \left(z \right), \tag{1.19}$$

and

$$z\left(H_{q,s}^{\mu}\left(a_{1}+1\right)f\left(z\right)\right)'=a_{1}H_{q,s}^{\mu}\left(a_{1}\right)f\left(z\right)-\left(a_{1}-1\right)H_{q,s}^{\mu}\left(a_{1}+1\right)f\left(z\right). \tag{1.20}$$

In particular, the operator $H^{\mu}(\lambda+1,1;1)$ ($\mu>0;\lambda>-1$) was introduced by Choi et al. [3], who investigated (among other things) several inclusion properties involving various subclasses of analytic and univalent functions. For $\lambda=n$ ($n\in\mathbb{N}_0$) and $\mu=2$, we also note that the Choi-Saigo-Srivastava operator $H^{\mu}(\lambda+1,1;1)$ is the Noor integral operator of n-th order of f studied by Liu [10] and Noor [17] and Noor and Noor [18].

Next, by using the operator $H_{q,s}^{\mu}(a_1)$, we introduce the following k-uniformly classes of analytic functions for $a_1 \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $s, q \in \mathbb{N}_0$, $\mu > 0$, $k \geq 0$ and $0 \leq \gamma, \beta < 1$:

$$US_{a,s}^{*}(\mu; a_{1}; k; \gamma) = \left\{ f \in \mathcal{A} : H_{a,s}^{\mu}(a_{1}) f(z) \in US^{*}(k; \gamma) \right\}, \tag{1.21}$$

$$UC_{q,s}(\mu; a_1; k; \gamma) = \left\{ f \in \mathcal{A} : H_{q,s}^{\mu}(a_1) f(z) \in UC(\mu; a_1; k; \gamma) \right\},$$
 (1.22)

$$UK_{q,s}\left(\mu;a_{1};k;\gamma,\beta\right) = \left\{f \in \mathcal{A}: H_{q,s}^{\mu}\left(a_{1}\right)f\left(z\right) \in UK\left(k;\gamma,\beta\right)\right\},\tag{1.23}$$

$$UK_{q,s}^{*}(\mu; a_{1}; k; \gamma, \beta) = \left\{ f \in \mathcal{A} : H_{q,s}^{\mu}(a_{1}) f(z) \in UK^{*}(k; \gamma, \beta) \right\}.$$
 (1.24)

We also note that

$$f(z) \in US_{q,s}^{*}(\mu; a_1; k; \gamma) \Leftrightarrow zf'(z) \in UC_{q,s}(\mu; a_1; k; \gamma), \qquad (1.25)$$

and

$$f(z) \in UK_{q,s}(\mu; a_1; k; \gamma, \beta) \Leftrightarrow zf'(z) \in UK_{q,s}^*(\mu; a_1; k; \gamma, \beta).$$

$$(1.26)$$

In this paper, we investgate several inclusion properties of the classes $US_{q,s}^*$ $(\mu; a_1; k; \gamma)$, $UC_{q,s}(\mu; a_1; k; \gamma)$, $UK_{q,s}(\mu; a_1; k; \gamma, \beta)$, and $UK_{q,s}^*(\mu; a_1; k; \gamma, \beta)$ associated with the operator $H_{q,s}^{\mu}(a_1)$. Some applications involving integral operators are also considered.

2. Inclusion Properties Involving the Operator $H_{q,s}^{\mu}(a_1)$

In order to prove the main results, we shall need The following lemmas.

Lemma 1 [7]. Let h(z) be convex univalent in \mathbf{U} with h(0) = 1 and $\Re \{ \eta h(z) + \gamma \} > 0$ $(\eta, \gamma \in \mathbb{C})$. If p(z) is analytic in \mathbf{U} with p(0) = 1, then

$$p(z) + \frac{zp'(z)}{\eta p(z) + \gamma} \prec h(z)$$
(2.1)

implies

$$p(z) \prec h(z). \tag{2.2}$$

Lemma 2 [14]. Let h(z) be convex univalent in U and let w be analytic in U with $\Re\{w(z)\} \ge 0$. If p(z) is analytic in U and p(0) = h(0), then

$$p(z) + w(z)zp'(z) \prec h(z)$$
 (2.3)

implies

$$p(z) \prec h(z). \tag{2.4}$$

Theorem 1. Let $a_1, \mu > \frac{1-\gamma}{k+1}$. Then,

$$US_{q,s}^{*}(\mu+1;a_{1};k;\gamma) \subset US_{q,s}^{*}(\mu;a_{1};k;\gamma) \subset US_{q,s}^{*}(\mu;a_{1}+1;k;\gamma).$$
 (2.5)

Proof. First of all, we will show that

$$US_{q,s}^{*}(\mu+1;a_{1};k;\gamma) \subset US_{q,s}^{*}(\mu;a_{1};k;\gamma).$$
 (2.6)

Let $f \in US_{q,s}^*(\mu + 1; a_1; k; \gamma)$ and set

$$p(z) = \frac{z (H_{q,s}^{\mu}(a_1) f(z))'}{H_{q,s}^{\mu}(a_1) f(z)} (z \in \mathbf{U}), \qquad (2.7)$$

where p(z) is analytic in **U** with p(0) = 1. Using (1.19), (2.6) and (2.7), we have

$$\frac{z\left(H_{q,s}^{\mu+1}(a_1)f(z)\right)'}{H_{q,s}^{\mu+1}(a_1)f(z)} = p(z) + \frac{zp'(z)}{p(z) + \mu - 1} \prec q_{k,\gamma}(z) \qquad (z \in \mathbf{U}).$$
 (2.8)

Since $\mu > \frac{1-\gamma}{k+1}$ and $\Re \{q_{k,\gamma}(z)\} > \frac{k+\gamma}{k+1}$, we see that

$$\Re \{q_{k,\gamma}(z) + \mu - 1\} > 0 \quad (z \in \mathbf{U}).$$
 (2.9)

Applying Lemma 1 to (2.8), it follows that $p(z) \prec q_{k,\gamma}(z)$, that is, $f \in US_{q,s}^*(\mu; a_1; k; \gamma)$. To prove the second part, let $f \in US_{q,s}^*(\mu; a_1; k; \gamma)$ and put

$$s(z) = \frac{z \left(H_{q,s}^{\mu}(a_1 + 1) f(z)\right)'}{H_{q,s}^{\mu}(a_1 + 1) f(z)} \quad (z \in \mathbf{U}),$$
(2.10)

where s(z) is analytic function with s(0) = 1. Then, by using the arguments similar to those detailed above with (1.20), it follows that $s(z) \prec q_{k,\gamma}(z)$ in **U**, which implies that $f \in US_{q,s}^*(\mu; a_1 + 1; k; \gamma)$. Therefore, we complete the proof of Theorem 1.

Theorem 2. Let
$$a_1, \mu > \frac{1-\gamma}{k+1}$$
. Then,

$$UC_{q,s}(\mu+1; a_1; k; \gamma) \subset UC_{q,s}(\mu; a_1; k; \gamma) \subset UC_{q,s}(\mu; a_1+1; k; \gamma).$$
 (2.11)

Proof. Applying (1.25) and Theorem 1, we observe that

$$f(z) \in UC_{q,s}(\mu+1; a_1; k; \gamma) \iff zf'(z) \in US_{q,s}^*(\mu+1; a_1; k; \gamma) \quad (2.12)$$

$$\implies zf'(z) \in US_{q,s}^*(\mu; a_1; k; \gamma) \quad (by \ Theorem \ 1)$$

$$\iff f(z) \in UC_{q,s}(\mu; a_1; k; \gamma)$$

and

$$f(z) \in UC_{q,s}(\mu; a_1; k; \gamma) \iff zf'(z) \in US_{q,s}^*(\mu; a_1; k; \gamma)$$

$$\implies zf'(z) \in US_{q,s}^*(\mu; a_1 + 1; k; \gamma) \quad (by \ Theorem \ 1)$$

$$\iff f(z) \in UC_{q,s}(\mu; a_1 + 1; k; \gamma).$$

which evidently proves Theorem 2.

Next, by using Lemma 2, we obtain the following inclusion relation for the class $UK_{q,s}(\mu; a_1; k; \gamma, \beta)$.

Theorem 3. Let $a_1, \mu > \frac{1-\gamma}{k+1}$. Then,

$$UK_{q,s}(\mu + 1; a_1; k; \gamma, \beta) \subset UK_{q,s}(\mu; a_1; k; \gamma, \beta) \subset UK_{q,s}(\mu; a_1 + 1; k; \gamma, \beta)$$
. (2.13)

Proof. We begin by proving that

$$UK_{a,s}(\mu + 1; a_1; k; \gamma, \beta) \subset UK_{a,s}(\mu; a_1; k; \gamma, \beta).$$
 (2.14)

Let $f \in UK_{q,s}$ ($\mu + 1; a_1; k; \gamma, \beta$). Then, from the definition of $UK_{q,s}$ ($\mu + 1; a_1; k; \gamma, \beta$), there exists a function $r(z) \in US^*(k; \gamma)$ such that

$$\frac{z\left(H_{q,s}^{\mu+1}\left(a_{1}\right)f\left(z\right)\right)'}{r\left(z\right)} \prec q_{k,\gamma}\left(z\right) \quad \left(z \in \mathbf{U}\right). \tag{2.15}$$

Choose the function g such that $H_{q,s}^{\mu+1}\left(a_{1}\right)g\left(z\right)=r\left(z\right)$. Then, $g\in US_{q,s}^{*}\left(\mu+1;a_{1};k;\gamma\right)$ and

$$\frac{z\left(H_{q,s}^{\mu+1}(a_1)f(z)\right)'}{H_{q,s}^{\mu+1}(a_1)g(z)} \prec q_{k,\gamma}(z) \quad (z \in \mathbf{U}).$$
 (2.16)

Now let

$$p(z) = \frac{z \left(H_{q,s}^{\mu}(a_1) f(z)\right)'}{H_{q,s}^{\mu}(a_1) g(z)},$$
(2.17)

where p(z) is analytic in **U** with p(0) = 1. Since $g \in US_{q,s}^*(\mu + 1; a_1; k; \gamma)$, by Theorem 1, we know that $g \in US_{q,s}^*(\mu; a_1; k; \gamma)$. Let

$$t(z) = \frac{z \left(H_{q,s}^{\mu}(a_1) g(z)\right)'}{H_{q,s}^{\mu}(a_1) g(z)} \quad (z \in \mathbf{U}),$$
 (2.18)

where t(z) is analytic in **U** with $\Re\{t(z)\} > \frac{k+\beta}{k+1}$. Also, from (2.17), we note that

$$H_{q,s}^{\mu}(a_1) z f'(z) = H_{q,s}^{\mu}(a_1) g(z) p(z).$$
 (2.19)

Differentiating both sides of (2.19) with respect to z, we obtain

$$\frac{z\left(H_{q,s}^{\mu}(a_{1})zf'(z)\right)'}{H_{q,s}^{\mu}(a_{1})g(z)} = \frac{z\left(H_{q,s}^{\mu}(a_{1})g(z)\right)'}{H_{q,s}^{\mu}(a_{1})g(z)}p(z) + zp'(z)$$

$$= t(z)p(z) + zp'(z). \tag{2.20}$$

Now using the identity (1.19) and (2.22), we obtain

$$\frac{z\left(H_{q,s}^{\mu+1}(a_{1})f(z)\right)'}{H_{q,s}^{\mu+1}(a_{1})g(z)} = \frac{H_{q,s}^{\mu+1}(a_{1})zf'(z)}{H_{q,s}^{\mu+1}(a_{1})g(z)}$$

$$= \frac{z\left(H_{q,s}^{\mu}(a_{1})zf'(z)\right)' + (\mu - 1)H_{q,s}^{\mu}(a_{1})zf'(z)}{z\left(H_{q,s}^{\mu}(a_{1})g(z)\right)' + (\mu - 1)H_{q,s}^{\mu}(a_{1})g(z)}$$

$$= \frac{\frac{z\left(H_{q,s}^{\mu}(a_{1})zf'(z)\right)'}{z\left(H_{q,s}^{\mu}(a_{1})zf'(z)\right)'} + (\mu - 1)\frac{z\left(H_{q,s}^{\mu}(a_{1})f(z)\right)'}{H_{q,s}^{\mu}(a_{1})g(z)}}$$

$$= \frac{\frac{z\left(H_{q,s}^{\mu}(a_{1})zf'(z)\right)'}{H_{q,s}^{\mu}(a_{1})g(z)} + (\mu - 1)\frac{z\left(H_{q,s}^{\mu}(a_{1})f(z)\right)'}{H_{q,s}^{\mu}(a_{1})g(z)}}$$

$$= \frac{t\left(z\right)p\left(z\right) + zp'\left(z\right) + (\mu - 1)p\left(z\right)}{t\left(z\right) + \mu - 1}$$

$$= p\left(z\right) + \frac{zp'\left(z\right)}{t\left(z\right) + \mu - 1}.$$
(2.21)

Since $\mu > \frac{1-\gamma}{k+1}$ and $\Re\left\{t\left(z\right)\right\} > \frac{k+\gamma}{k+1}$, we see that

$$\Re\{t(z) + \mu - 1\} > 0 \quad (z \in \mathbf{U}).$$
 (2.22)

Hence, applying Lemma 2, we can show that $p(z) \prec q_{k,\gamma}(z)$ so that $f \in UK_{q,s}(\mu+1; a_1; k; \gamma, \beta)$. For the second part, by using the arguments similar to those detailed above with (1.20), we obtain

$$UK_{q,s}(\mu; a_1; k; \gamma, \beta) \subset UK_{q,s}(\mu; a_1 + 1; k; \gamma, \beta). \tag{2.23}$$

Therefore, we complete the proof of Theorem 3.

Theorem 4. Let $a_1, \mu > \frac{1-\gamma}{k+1}$. Then,

$$UK_{q,s}(\mu+1; a_1; k; \gamma, \beta) \subset UK_{q,s}(\mu; a_1; k; \gamma, \beta) \subset UK_{q,s}(\mu; a_1+1; k; \gamma, \beta)$$
. (2.24)

Proof. Just as we derived Theorem 2 as consequence of Theorem 1 by using the equivalence (1.25), we can also prove Theorem 4 by using Theorem 3 and the equivalence (1.26).

3. Inclusion Properties Involving the Integral Operator F_c

In this section, we consider the generalized Libera integral operator F_c (see [2], [9] and [13]) defined by

$$F_c(f)(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \quad (f \in \mathcal{A}; c > -1).$$
 (3.1)

Theorem 5. Let $c \geq -\frac{k+\gamma}{k+1}$. If $f \in US_{q,s}^*(\mu; a_1; k; \gamma)$, then

$$F_c(f) \in US_{q,s}^*(\mu; a_1; k; \gamma)$$
.

Proof. Let $f \in US_{q,s}^*(\mu; a_1; k; \gamma)$ and set

$$p(z) = \frac{z \left(H_{q,s}^{\mu}(a_1) F_c(f)(z)\right)'}{H_{q,s}^{\mu}(a_1) F_c(f)(z)} \quad (z \in \mathbf{U}),$$
(3.2)

where p(z) is analytic in U with p(0) = 1. From (3.1), we have

$$z \left(H_{q,s}^{\mu} \left(a_{1} \right) F_{c} \left(f \right) \left(z \right) \right)' = \left(c + 1 \right) H_{q,s}^{\mu} \left(a_{1} \right) f \left(z \right) - c H_{q,s}^{\mu} \left(a_{1} \right) F_{c} \left(f \right) \left(z \right). \tag{3.3}$$

Then, by using (3.2) and (3.3), we obtain

$$(c+1)\frac{H_{q,s}^{\mu}(a_1) f(z)}{H_{q,s}^{\mu}(a_1) F_c(f)(z)} = p(z) + c.$$
(3.4)

Taking the logarithmic differentiation on both sides of (3.4) and multiplying by z, we have

$$\frac{z\left(H_{q,s}^{\mu}\left(a_{1}\right)f\left(z\right)\right)'}{H_{q,s}^{\mu}\left(a_{1}\right)f\left(z\right)} = p\left(z\right) + \frac{zp'\left(z\right)}{p\left(z\right) + c} \prec q_{k,\gamma}\left(z\right) \quad (z \in \mathbf{U}). \tag{3.5}$$

Hence, by virtue of Lemma 1, we conclude that $p(z) \prec q_{k,\gamma}(z)$ in **U**, which implies that $F_c(f) \in US_{q,s}^*(\mu; a_1; k; \gamma)$.

Next, we derive an inclusion property involving $F_{p,c}(f)$, which is given by the following.

Theorem 6. Let
$$c \geq -\frac{k+\gamma}{k+1}$$
. If $f \in UC_{q,s}(\mu; a_1; k; \gamma)$, then $F_c(f) \in UC_{q,s}(\mu; a_1; k; \gamma)$.

Proof. By applying Theorem 5, it follows that

$$f(z) \in UC_{q,s}(\mu; a_1; k; \gamma) \iff zf'(z) \in US_{q,s}^*(\mu; a_1; k; \gamma)$$

$$\Rightarrow F_c(zf'(z)) \in US_{q,s}^*(\mu; a_1; k; \gamma) \quad (by \ Theorem \ 5)$$

$$\Leftrightarrow z(F_c(f)(z))' \in US_{q,s}^*(\mu; a_1; k; \gamma)$$

$$\Leftrightarrow F_c(f)(z) \in UC_{q,s}(\mu; a_1; k; \gamma),$$

$$(3.6)$$

which proves Theorem 6.

Theorem 7. Let
$$c \geq -\frac{k+\gamma}{k+1}$$
. If $f \in UK_{q,s}(\mu; a_1; k; \gamma, \beta)$, then $F_c(f) \in UK_{q,s}(\mu; a_1; k; \gamma, \beta)$.

Proof. Let $f \in UK_{q,s}(\mu; a_1; k; \gamma, \beta)$. Then, in view of the definition of the class $UK_{q,s}(\mu; a_1; k; \gamma, \beta)$, there exists a function $g \in US_{q,s}^*(\mu; a_1; k; \gamma)$ such that

$$\frac{z \left(H_{q,s}^{\mu}(a_1) f(z)\right)'}{H_{q,s}^{\mu}(a_1) g(z)} \prec q_{k,\gamma}(z) \quad (z \in \mathbf{U}). \tag{3.7}$$

Thus, we set

$$p(z) = \frac{z (H_{q,s}^{\mu}(a_1) F_c(f)(z))'}{H_{q,s}^{\mu}(a_1) F_c(g)(z)} \quad (z \in \mathbf{U}),$$
(3.8)

where p(z) is analytic in **U** with p(0) = 1. Since $g \in US_{q,s}^*(\mu; a_1; k; \gamma)$, we see from Theorem 5 that $F_c(f) \in US_{q,s}^*(\mu; a_1; k; \gamma)$. Let

$$t(z) = \frac{z(H_{q,s}^{\mu}(a_1) F_c(g)(z))'}{H_{q,s}^{\mu}(a_1) F_c(g)(z)} \quad (z \in \mathbf{U}),$$
 (3.9)

where t(z) is analytic in **U** with $\Re\{t(z)\} > \frac{k+\beta}{k+1}$. Also, from (3.8), we note that

$$H_{q,s}^{\mu}(a_1) z F_c'(f)(z) = H_{q,s}^{\mu}(a_1) F_c(g)(z) p(z).$$
 (3.10)

Differentiating both sides of (3.10) with respect to z, we obtain

$$\frac{z(H_{q,s}^{\mu}(a_{1})zF_{c}'(f)(z))'}{H_{q,s}^{\mu}(a_{1})F_{c}(g)(z)} = \frac{z(H_{q,s}^{\mu}(a_{1})F_{c}(g)(z))'}{H_{q,s}^{\mu}(a_{1})F_{c}(g)(z)}p(z) + zp'(z)$$

$$= t(z)p(z) + zp'(z). \tag{3.11}$$

Now using the identity (3.3) and (3.11), we obtain

$$\frac{z(H_{q,s}^{\mu}(a_{1}) f(z))'}{H_{q,s}^{\mu}(a_{1}) g(z)} = \frac{z(H_{q,s}^{\mu}(a_{1}) z F_{c}'(f)(z))' + c H_{q,s}^{\mu}(a_{1}) z F_{c}'(f)(z)}{z(H_{q,s}^{\mu}(a_{1}) F_{c}(g)(z))' + c H_{q,s}^{\mu}(a_{1}) F_{c}(g)(z)}$$

$$= \frac{\frac{z(H_{q,s}^{\mu}(a_{1}) z F_{c}'(f)(z))'}{H_{q,s}^{\mu}(a_{1}) F_{c}(g)(z)} + c \frac{z(H_{q,s}^{\mu}(a_{1}) F_{c}(f)(z))'}{H_{q,s}^{\mu}(a_{1}) F_{c}(g)(z)}}{\frac{z(H_{q,s}^{\mu}(a_{1}) F_{c}(g)(z))'}{H_{q,s}^{\mu}(a_{1}) F_{c}(g)(z)}} + c$$

$$= \frac{t(z) p(z) + z p'(z) + c p(z)}{t(z) + c}$$

$$= p(z) + \frac{z p'(z)}{t(z) + c}.$$
(3.12)

Since $c \ge -\frac{k+\gamma}{k+1}$ and $\Re\{t(z)\} > \frac{k+\gamma}{k+1}$, we see that

$$\Re\left\{t\left(z\right)+c\right\}>0\quad\left(z\in\mathbf{U}\right).\tag{3.13}$$

Hence, applying Lemma 2 to (3.12), we can show that $p(z) \prec q_{k,\gamma}(z)$ so that $f \in UK_{q,s}(\mu; a_1; k; \gamma, \beta)$.

Theorem 8. Let
$$c \geq -\frac{k+\gamma}{k+1}$$
. If $f \in UK_{q,s}^*(\mu; a_1; k; \gamma, \beta)$, then $F_c(f) \in UK_{q,s}^*(\mu; a_1; k; \gamma, \beta)$.

Proof. Just as we derived Theorem 6 as consequence of Theorem 5, we easily deduce the integral-preserving property asserted by Theorem 8 by using Theorem 7.

References

- [1] R. Aghalary and G.H. Azadi, The Dziok-Srivastava operator and k-uniformly starlikefunctions, J. Ineq. Pure Appl. Math., 6(2)(2005), Art. 52,1-7.
- [2] S.D. Bernardi, Convex and univalent functions, Trans. Amer. Math. Soc., 135 (1996), 429-446.
- [3] J. H. Choi, M. Saigo, and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276(2002), no. 1, 432–445.
- [4] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput.,103(1999), no. 1, 1–13.
- [5] J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Advanced Studies in Contemporary Mathematics, 5(2002), no. 2, 115–125.
- [6] J. Dziok and H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14(2003), no. 1, 7–18.
- [7] P. Eenigenburg, S. S. Miller, P. T. Mocanu, and M. O. Reade, *On a Briot-Bouquet differential subordination*, in General Inequalities, 3 (Oberwolfach, 1981), vol. 64 of Internationale Schriftenreihe zur Numerischen Mathematik, pp. 339–348, Birkhäuser, Basel, Switzerland, 1983.
- [8] O. S. Kwon and N. E. Cho, *Inclusion properties for certain subclasses of analytic functions associated with the Dziok-Srivastava operator*, J. Inequal. Appl., 2007(2007), 1-10, Article ID 51079.
- [9] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc.16(1965), 755–658.
- [10] J.-L. Liu, The Noor integral and strongly starlike functions, J. Math. Anal. Appl., 261(2001), no. 2, 441–447.
- [11] J.- L. Liu, Strongly starlike functions associated with the Dziok-Srivastava operator, Tamkang J. Math., 35(2004), 37–42.
- [12] J.-L. Liu and H. M. Srivastava, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput., 159(2004), no. 2, 485–493.
- [13] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357.
- [14] S. S.Miller and P. T.Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), no. 2, 157–172.
- [15] S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.

- [16] S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables Theory Appl., 48(2003), no.10, 815–826.
- [17] K. I. Noor, On new classes of integral operators, J. Nat. Geom., 16(1999), no. 1-2, 71-80.
- [18] K. I. Noor and M. A. Noor, *On integral operators*, J. Math. Anal. Appl., 238(1999), no. 2, 341–352.

Mohammed. K. Aouf Department of Mathematics, Faculty of Science, Mansoura University Mansoura 35516, Egypt Email: mkaouf127@yahoo.com

T. M. Seoudy
Department of Mathematics,
Faculty of Science,
Fayoum University
Fayoum 63514, Egypt
Email: tmseoudy@gmail.com