A UNIFIED PRESENTATION OF CERTAIN SUBCLASSES OF P-VALENT PRESTARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

M. K. Aouf and A. O. Mostafa

Abstract. The object of the present paper is to introduce and investigate various properties and characteristics of a unified class $T^{p}[\alpha, \beta, \sigma](0 \leq \alpha<p, 0 \leq$ $\beta<p, p \in N=\{1,2, \ldots\}, 0 \leq \sigma \leq 1$) of p -valent prestarlike functions with negative coefficients. We obtain a distortion theorem, extreme points and integral operators for functions belonging to the class $T^{p}[\alpha, \beta, \sigma]$. We also obtain several results for the modified Hadamard products of functions belonging to the class $T^{p}[\alpha, \beta, \sigma]$.

2000 Mathematics Subject Classification: 30C45.

1.Introduction

Let $A(p)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad(p \in N=\{1,2, \ldots\}), \tag{1.1}
\end{equation*}
$$

which are analytic and p -valent in the unit disc $U=\{z:|z|<1\}$. A function $f(z) \in A(p)$ is called p -valent starlike of order $\alpha(0 \leq \alpha<p)$ if $f(z)$ satisfies the conditions

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in U) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{2 \pi} R e\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} d \theta=2 \pi p \quad(z \in U) \tag{1.3}
\end{equation*}
$$

We denote by $S^{*}(p, \alpha)$ the class of p -valent starlike functions of order α. The class $S^{*}(p, \alpha)$ was introduced by Patil and Thakare [5].

The function

$$
\begin{equation*}
s_{\alpha}^{p}(z)=\frac{z^{p}}{(1-z)^{2(p-\alpha)}} \quad(0 \leq \alpha<p ; p \in N) \tag{1.4}
\end{equation*}
$$

is the familiar extremal function for the class $S^{*}(p, \alpha)$. Setting

$$
\begin{equation*}
G^{p}(\alpha, n)=\frac{\prod_{m=2}^{n}[2(p-\alpha)+m-2]}{(n-1)!} \quad(n \in N \backslash\{1\} ; 0 \leq \alpha<p), \tag{1.5}
\end{equation*}
$$

$s_{\alpha}^{p}(z)$ can be written in the form :

$$
\begin{equation*}
s_{\alpha}^{p}(z)=z^{p}+\sum_{n=1}^{\infty} G^{p}(\alpha, n+1) z^{p+n} . \tag{1.6}
\end{equation*}
$$

Clearly, $s_{\alpha}^{p}(z) \in S^{*}(p, \alpha)$ and $G^{p}(\alpha, n+1)$ is a decreasing function in $\alpha(0 \leq \alpha \leq$ $\left.\frac{2 p-1}{2} ; p \in N\right)$ and satisfies

$$
\lim _{n \rightarrow \infty} G^{p}(\alpha, n+1)= \begin{cases}\infty & \left(\alpha<\frac{2 p-1}{2}\right) \\ 1 & \left(\alpha=\frac{2 p-1}{2}\right) \\ 0 & \left(\alpha>\frac{2 p-1}{2}\right)\end{cases}
$$

Let $(f * g)(z)$ denote the Hadamard product (or convolution) of the functions $f(z)$ and $g(z)$, that is, if $f(z)$ is given by (1.1) and $g(z)$ is given by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{n=1}^{\infty} b_{p+n} z^{p+n}, \tag{1.7}
\end{equation*}
$$

then

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} b_{p+n} z^{p+n} . \tag{1.8}
\end{equation*}
$$

A function $f(z) \in A(p)$ is said to be p -valent α-prestarlike function of order β $(0 \leq \alpha<p, 0 \leq \beta<p, p \in N)$ if

$$
\begin{equation*}
\left(f \otimes s_{\alpha}^{p}\right)(z) \in S^{*}(p, \beta), \tag{1.9}
\end{equation*}
$$

where $s_{\alpha}^{p}(z)$ is defined by (1.4). We denote by $R^{p}(\alpha, \beta)$ the class of all p -valent α-prestarlike functions of order β. For $\alpha=\frac{2 p-1}{2}, 0 \leq \beta<p, p \in N, R^{p}\left(\frac{2 p-1}{2}, \beta\right)=$ $S^{*}(p, \beta)$. Further let $C^{p}(\alpha, \beta)$ be the subclass of $A(p)$ consisting of functions $f(z)$ satisfying

$$
\begin{equation*}
f(z) \in C^{p}(\alpha, \beta) \text { if and only if } \frac{z f^{\prime}(z)}{p} \in R^{p}(\alpha, \beta) \tag{1.10}
\end{equation*}
$$

The classes $R^{p}(\alpha, \beta)$ and $C^{p}(\alpha, \beta)$ are introduced by Aouf and Silverman [3].
Denoting by $T(p)$ the subclass of $A(p)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}-\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad\left(a_{p+n} \geq 0 ; p \in N\right) \tag{1.11}
\end{equation*}
$$

We denote by $R^{p}[\alpha, \beta]$ and $C^{p}[\alpha, \beta]$ the classes obtained by taking intersections, respectively, of the classes $R^{p}(\alpha, \beta)$ and $C^{p}(\alpha, \beta)$ with the class $T(p)$. Thus, we have

$$
\begin{equation*}
R^{p}[\alpha, \beta]=R^{p}(\alpha, \beta) \cap T(p) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{p}[\alpha, \beta]=C^{p}(\alpha, \beta) \cap T(p) \tag{1.13}
\end{equation*}
$$

The classes $R^{p}[\alpha, \beta]$ and $C^{p}[\alpha, \beta]$ are studied by Aouf and Silverman [3].
The following results for the classes $R^{p}[\alpha, \beta]$ and $C^{p}[\alpha, \beta]$ will be required in our present investigation.

Lemma 1 [3]. Let the function $f(z)$ be defined by (1.11). Then, $f(z) \in R^{p}[\alpha, \beta]$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+p-\beta) G^{p}(\alpha, n+1) a_{p+n} \leq(p-\beta) \tag{1.14}
\end{equation*}
$$

Lemma 2 [3]. Let the function $f(z)$ be defined by (1.11). Then, $f(z) \in C^{p}[\alpha, \beta]$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{p+n}{p}\right)(n+p-\beta) G^{p}(\alpha, n+1) a_{p+n} \leq(p-\beta) \tag{1.15}
\end{equation*}
$$

In view of Lemma 1 and Lemma 2, it would seem to be natural to introduce and study an interesting unification of the classes $R^{p}[\alpha, \beta]$ and $C^{p}[\alpha, \beta]$. Indeed, we say that a function $f(z)$ defined by (1.11) belongs to the class $T^{p}[\alpha, \beta, \sigma]$, if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[1-\sigma+\sigma\left(\frac{p+n}{n}\right)\right](n+p-\beta) G^{p}(\alpha, n+1) a_{p+n} \leq(p-\beta) \tag{1.16}
\end{equation*}
$$

where $0 \leq \alpha<p, 0 \leq \beta<p, p \in N$ and $0 \leq \sigma \leq 1$.
Clearly, we have

$$
\begin{equation*}
T^{p}[\alpha, \beta, \sigma]=(1-\sigma) R^{p}[\alpha, \beta]+\sigma C^{p}[\alpha, \beta] \quad(0 \leq \sigma \leq 1) \tag{1.17}
\end{equation*}
$$

so that

$$
\begin{equation*}
T^{p}[\alpha, \beta, 0]=R^{p}[\alpha, \beta] \text { and } T^{p}[\alpha, \beta, 1]=C^{p}[\alpha, \beta] \tag{1.18}
\end{equation*}
$$

We note that :
(i) $T^{1}[\alpha, \beta, \sigma]=P(\alpha, \beta, \sigma)(0 \leq \alpha<1,0 \leq \beta \leq 1)$ (Raina and Srivastava [6]);
(ii) $T^{1}[\alpha, \beta, 0]=R[\alpha, \beta](0 \leq \alpha<1,0 \leq \beta \leq 1)$ (Silverman and Silvia [8]), Uralegaddi and Sarangi [10], Aouf and Sâlâgean [2], Aouf et al. [1] and Srivastava and Aouf [9]);
(iii) $T^{1}[\alpha, \beta, 1]=C[\alpha, \beta](0 \leq \alpha<1,0 \leq \beta \leq 1)$ (Owa and Uralegaddi [4]).

The object of this paper is to investigate various properties and characteristics of the general class $T^{p}[\alpha, \beta, \sigma]$. Also, we obtain several results for the modified Hadamard products of functions belonging to the class $T^{p}[\alpha, \beta, \sigma]$.

2.DISTORTION THEOREM

Theorem 1. If a function $f(z)$ defined by (1.11) is in the class $T^{p}[\alpha, \beta, \sigma]$, then

$$
\begin{align*}
& \left\{\frac{p!}{(p-m)!}-\frac{(p-\beta)(1+p)!}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)(p-\alpha)(1+p-m)!}|z|\right\}|z|^{p-m} \\
\leq & \left|f^{(m)}(z)\right| \leq \\
& \left\{\frac{p!}{(p-m)!}+\frac{(p-\beta)(1+p)!}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)(p-\alpha)(1+p-m)!}|z|\right\}|z|^{p-m} \\
& 2.1 \tag{1}
\end{align*}
$$

$$
\left(z \in U ; 0 \leq \alpha \leq \frac{2 p-1}{2} ; 0 \leq \beta<p ; 0 \leq \sigma \leq 1 ; m \in N_{0}=N \cup\{0\} ; p \in N ; p>m\right)
$$

The result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(p-\beta)}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)(p-\alpha)} z^{p+1} \quad(p \in N) \tag{2.2}
\end{equation*}
$$

Since $G^{p}(\alpha, n+1)$ defined by (1.5) is a decreasing function in $\alpha\left(0 \leq \alpha \leq \frac{2 p-1}{2} ; p \in\right.$ N), then we find from (1.16) that

$$
\begin{aligned}
& \frac{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)(p-\alpha)}{(p-\beta)(1+p)!} \sum_{n=1}^{\infty}(n+p)!a_{p+n} \\
\leq & \sum_{n=1}^{\infty} \frac{2\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)} a_{p+n} \leq 1,
\end{aligned}
$$

which readily yields

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+p)!a_{p+n} \leq \frac{(p-\beta)(1+p)!}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)(p-\alpha)} \quad(p \in N) . \tag{2.3}
\end{equation*}
$$

Now, by differentiating both sides of (1.11) m times, we have

$$
\begin{gather*}
f^{(m)}(z)=\frac{p!}{(p-m)!} z^{p-m}-\sum_{n=1}^{\infty} \frac{(n+p)!}{(n+p-m)!} a_{p+n} z^{n+p-m} \\
\left(n, p \in N ; m \in N_{0} ; p>m\right) \tag{2.4}
\end{gather*}
$$

and Theorem 1 would follows from (2.3) and (2.4).
Finally it is easy to see that, the bounds in (2.1) are attained for the function $f(z)$ fiven by (2.2).

Putting (i) $\sigma=0$ (ii) $\sigma=1$, in Theorem 1 we obtain the following consequences :

Corollary 1. If a function $f(z)$ defined by (1.11) is in the class $R^{p}[\alpha, \beta]$, then

$$
\begin{align*}
& \left\{\frac{p!}{(p-m)!}-\frac{(p-\beta)(1+p)!}{2(1+p-\beta)(p-\alpha)(1+p-m)!}|z|\right\}|z|^{p-m} \\
\leq & \left|f^{(m)}(z)\right| \leq \\
& \left\{\frac{p!}{(p-m)!}+\frac{(p-\beta)(1+p)!}{2(1+p-\beta)(p-\alpha)(1+p-m)!}|z|\right\}|z|^{p-m} 2.5 \tag{2}\\
& \left(z \in U ; 0 \leq \alpha \leq \frac{2 p-1}{2} ; 0 \leq \beta<p ; m \in N_{0} ; p \in N ; p>m\right) .
\end{align*}
$$

The result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(p-\beta)}{2(1+p-\beta)(p-\alpha)} z^{p+1} \quad(p \in N) . \tag{2.6}
\end{equation*}
$$

Corollary 2. If a function $f(z)$ defined by (1.11) is in the class $C^{p}[\alpha, \beta]$, then

$$
\begin{aligned}
& \left\{\frac{p!}{(p-m)!}-\frac{(p-\beta)(1+p)!}{2\left(\frac{p+1}{p}\right)(1+p-\beta)(p-\alpha)(1+p-m)!}|z|\right\}|z|^{p-m} \\
\leq & \left|f^{(m)}(z)\right| \leq \\
& \left\{\frac{p!}{(p-m)!}+\frac{(p-\beta)(1+p)!}{2\left(\frac{p+1}{p}\right)(1+p-\beta)(p-\alpha)(1+p-m)!}|z|\right\}|z|^{p-m}
\end{aligned}
$$

$$
\begin{equation*}
2.7 \tag{3}
\end{equation*}
$$

$$
\left(z \in U ; 0 \leq \alpha \leq \frac{2 p-1}{2} ; 0 \leq \beta<p ; m \in N_{0} ; p \in N ; p>m\right) .
$$

The result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(p-\beta)}{2\left(\frac{p+1}{p}\right)(1+p-\beta)(p-\alpha)} z^{p+1} \quad(p \in N) . \tag{2.8}
\end{equation*}
$$

3.Extreme points

Theorem 2. The class $T^{p}[\alpha, \beta, \sigma]$ is closed under convex linear combinations.
Let the functions

$$
\begin{equation*}
f_{j}(z)=z^{p}-\sum_{n=1}^{\infty} a_{p+n, j} z^{p+n} \quad\left(a_{p+n, j} \geq 0 ; j=1,2\right) \tag{3.1}
\end{equation*}
$$

be in the class $T^{p}[\alpha, \beta, \sigma]$. Then it is sufficient to show that the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=t f_{1}(z)+(1-t) f_{2}(z) \quad(0 \leq t \leq 1), \tag{3.2}
\end{equation*}
$$

is also in the class $T^{p}[\alpha, \beta, \sigma]$. Since, for $0 \leq t \leq 1$,

$$
\begin{equation*}
h(z)=z^{p}-\sum_{n=1}^{\infty}\left\{t a_{p+n, 1}+(1-t) a_{p+n, 2}\right\} z^{p+n}, \tag{3.3}
\end{equation*}
$$

with the aid of (1.16), we have

$$
\begin{align*}
\sum_{n=1}^{\infty} & {\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)\left\{t a_{p+n, 1}+(1-t) a_{p+n, 2}\right\} } \\
& \leq(p-\beta) \quad(0 \leq t \leq 1) \tag{3.4}
\end{align*}
$$

which implies that $h(z) \in T^{p}[\alpha, \beta, \sigma]$.
As a consequence of Theorem 2, there exist the extreme points of the class $T^{p}[\alpha, \beta, \sigma]$.
Theorem 3. Let

$$
\begin{equation*}
f_{p}(z)=z^{p} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{p+n}(z)=z^{p}-\frac{(p-\beta)}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)} z^{p+n} \quad(p, n \in N) . \tag{3.6}
\end{equation*}
$$

Then, $f(z) \in T^{p}[\alpha, \beta, \sigma]$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \mu_{p+n} f_{p+n}(z), \tag{3.7}
\end{equation*}
$$

where $\mu_{p+n} \geq 0$ and $\sum_{n=0}^{\infty} \mu_{p+n}=1$.
Suppose that

$$
\begin{align*}
f(z)= & \sum_{n=0}^{\infty} \mu_{p+n} f_{p+n}(z) \\
= & z^{p}-\sum_{n=1}^{\infty} \frac{(p-\beta)}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)} \mu_{p+n} z^{p+n} . \\
& 3.8 \tag{4}
\end{align*}
$$

Then it follows that

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)} . \\
& \frac{(p-\beta)}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)} \mu_{p+n} \\
& =\sum_{n=1}^{\infty} \mu_{p+n}=1-\mu_{p} \leq 1 . \tag{3.9}
\end{align*}
$$

Therefore, by (1.16), $f(z) \in T^{p}[\alpha, \beta, \sigma]$.
Conversely, assume that the function $f(z)$ defined by (1.11) belongs to the class $T^{p}[\alpha, \beta, \sigma]$. Then

$$
\begin{equation*}
a_{p+n} \leq \frac{(p-\beta)}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)} \quad(p, n \in N) . \tag{3.10}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\mu_{p+n}=\frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)} a_{p+n} \quad(p, n \in N) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{p}=1-\sum_{n=1}^{\infty} \mu_{p+n} . \tag{3.12}
\end{equation*}
$$

Hence, we can see that $f(z)$ can be expressed in the form (3.7). This completes the proof of Theorem 3.

Corollary 3. The extreme points of the class $T^{p}[\alpha, \beta, \sigma]$ are the functions $f_{p}(z)$ and $f_{p+n}(z)$ given by (3.5) and (3.6), respectively.

4.Integral operators

Theorem 4. Let the function $f(z)$ defined by (1.11) be in the class $T^{p}[\alpha, \beta, \sigma]$, and let c be a real number such that $c>-p$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{4.1}
\end{equation*}
$$

also belongs to the class $T^{p}[\alpha, \beta, \sigma]$.
From (1.11) and the representation (4.1) of $F(z)$, it follows that

$$
\begin{equation*}
F(z)=z^{p}-\sum_{n=1}^{\infty} b_{p+n} z^{p+n}, \tag{4.2}
\end{equation*}
$$

where

$$
b_{p+n}=\left(\frac{c+p}{c+p+n}\right) a_{p+n}
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1) b_{p+n} \\
= & \sum_{n=1}^{\infty}\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)\left(\frac{c+p}{c+p+n}\right) a_{p+n} \\
\leq & \sum_{n=1}^{\infty}\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1) a_{p+n} \leq(p-\beta),
\end{aligned}
$$

since $f(z) \in T^{p}[\alpha, \beta, \sigma]$. Hence, by (1.16), $F(z) \in T^{p}[\alpha, \beta, \sigma]$.
Theorem 5. Let the function $F(z)=z^{p}-\sum_{n=1}^{\infty} a_{p+n} z^{p+n}\left(a_{p+n} \geq 0\right)$ be in the class $T^{p}[\alpha, \beta, \sigma]$ and let c be a real number such that $c>-p$. Then the function $f(z)$ involved in (4.1) is p-valent in $|z|<R_{p}^{*}$, where

$$
\begin{equation*}
R_{p}^{*}=\inf _{n}\left\{\frac{p(c+p)\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p+n)(c+p+n)(p-\beta)}\right\}^{\frac{1}{n}} \quad(n \in N) \tag{4.3}
\end{equation*}
$$

The result is sharp.
From (4.1), we have

$$
\begin{aligned}
f(z) & =\frac{z^{1-c}\left[z^{c} F(z)\right]^{\prime}}{(c+p)}(c>-p) \\
& =z^{p}-\sum_{n=1}^{\infty}\left(\frac{c+p+n}{c+p}\right) a_{p+n} z^{p+n} .
\end{aligned}
$$

To prove the result, it sufficies to show that

$$
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq p \quad \text { for } \quad|z|<R_{p}^{*}
$$

where R_{p}^{*} is defined by (4.3). Now

$$
\begin{aligned}
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| & =\left|-\sum_{n=1}^{\infty}(p+n)\left(\frac{c+p+n}{c+p}\right) a_{p+n} z^{n}\right| \\
& \leq \sum_{n=1}^{\infty}(p+n)\left(\frac{c+p+n}{c+p}\right) a_{p+n}|z|^{n}
\end{aligned}
$$

Thus $\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq p$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{p+n}{p}\right)\left(\frac{c+p+n}{c+p}\right) a_{p+n}|z|^{n} \leq 1 . \tag{4.4}
\end{equation*}
$$

But (1.16) confirms that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)} a_{p+n} \leq 1 \tag{4.5}
\end{equation*}
$$

Thus (4.4) will be satisfied if

$$
\frac{(p+n)(c+p+n)}{p(c+p)}|z|^{n} \leq \frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)}
$$

or if

$$
\begin{equation*}
|z| \leq\left\{\frac{p(c+p)\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p+n)(c+p+n)(p-\beta)}\right\}^{\frac{1}{n}} \quad(n \in N) . \tag{4.6}
\end{equation*}
$$

The required result follows now from (4.6). The result is sharp for the function $f(z)$ in the form:

$$
\begin{equation*}
f(z)=z^{p}-\frac{(c+p+n)(p-\beta)}{(c+p)\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)} z^{p+n} \quad(p, n \in N) . \tag{4.7}
\end{equation*}
$$

5.Modified Hadamard products

Let the functions $f_{j}(z)(j=1,2)$ be defined by (3.1). Then the modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z^{p}-\sum_{n=1}^{\infty} a_{p+n, 1} a_{p+n, 2} z^{p+n} . \tag{5.1}
\end{equation*}
$$

Throughout this section, we assume that $0 \leq \alpha \leq \frac{2 p-1}{2}, 0 \leq \beta<p, 0 \leq \sigma \leq 1$ and $p, n \in N$.
Theorem 6. Let the functions $f_{j}(z)(j=1,2)$ defined by (3.1) be in the class $T^{p}[\alpha, \beta, \sigma]$. Then $\left(f_{1} * f_{2}\right)(z) \in T^{p}[\alpha, \gamma,(\alpha, \beta, \sigma), \sigma]$, where

$$
\begin{equation*}
\gamma(\alpha, \beta, p, \sigma)=p-\frac{(p-\beta)^{2}}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)^{2}(p-\alpha)-(p-\beta)^{2}} . \tag{5.2}
\end{equation*}
$$

The result is sharp.
. Employing the technique used earlier by Schild and Silverman [7], we need to find the largest $\gamma=\gamma(\alpha, \beta, p, \sigma)$ such that

Since $f_{j}(z) \in T^{p}[\alpha, \beta, \sigma](j=1,2)$, we readily see that
and

$$
\begin{equation*}
\underset{n=1}{\infty} \frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\gamma) G^{p}(\alpha, n+1)}{(p-\beta)} a_{p+n, 2} \leq 1 \tag{5.5}
\end{equation*}
$$

Therefore, by the Cauchy - Schwarz inequality, we obtain

$$
\begin{equation*}
\underset{n=1}{\infty} \frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\gamma) G^{p}(\alpha, n+1)}{(p-\beta)} \sqrt{a_{p+n, 1} a_{p+n, 2}} \leq 1 \tag{5.6}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{align*}
& \frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\gamma) G^{p}(\alpha, n+1)}{(p-\gamma)} a_{p+n, 1} a_{p+n, 2} \\
\leq & \frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\gamma) G^{p}(\alpha, n+1)}{(p-\beta)} \sqrt{a_{p+n, 1} a_{p+n, 2}}, \tag{5.7}
\end{align*}
$$

or, equivalently, that

$$
\begin{equation*}
\sqrt{a_{p+n, 1} a_{p+n, 2}} \leq \frac{(p-\gamma)(n+p-\beta)}{(p-\beta)(n+p-\gamma)} \quad(n \in N) \tag{5.8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sqrt{a_{p+n, 1} a_{p+n, 2}} \leq \frac{(p-\beta)}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)} . \tag{5.9}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{equation*}
\frac{(p-\beta)}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)} \leq \frac{(p-\gamma)(n+p-\beta)}{(p-\beta)(n+p-\gamma)}, \tag{5.10}
\end{equation*}
$$

or, equivalently , that

$$
\begin{equation*}
\gamma \leq p-\frac{n(p-\beta)^{2}}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta)^{2} G^{p}(\alpha, n+1)-(p-\beta)^{2}} . \tag{5.11}
\end{equation*}
$$

Since

$$
\begin{equation*}
A(n)=p-\frac{n(p-\beta)^{2}}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta)^{2} G^{p}(\alpha, n+1)-(p-\beta)^{2}} \tag{5.12}
\end{equation*}
$$

is an increasing function of n for $0 \leq \alpha \leq \frac{2 p-1}{2}, 0 \leq \beta<p, 0 \leq \sigma \leq 1$ and $p \in$ N, letting $n=1$ in (5.12), we obtain

$$
\begin{equation*}
\gamma \leq A(1)=p-\frac{(p-\beta)^{2}}{2\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](1+p-\beta)^{2}(p-\alpha)-(p-\beta)^{2}} \tag{5.13}
\end{equation*}
$$

which completes the proof of Theorem 6 .
Finally, by taking the functions

$$
\begin{equation*}
f_{j}(z)=z^{p}-\frac{(p-\beta)}{2\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](1+p-\beta)(p-\alpha)} z^{p+1} \quad(j=1,2) \tag{5.14}
\end{equation*}
$$

we can see that the result is sharp.
Corollary 4. For $f_{j}(z)(j=1,2)$ as in Theorem 6 , we have

$$
\begin{equation*}
h(z)=z^{p}-{ }_{n=1}^{\infty} \sqrt{a_{p+n, 1} a_{p+n, 2}} z^{p+n} \tag{5.15}
\end{equation*}
$$

belongs to the class $T^{p}[\alpha, \beta, \sigma]$.
The result follows from the inequality (5.6). It is sharp for the same functions as in Theorem 6.

Theorem 7. Let the function $f_{1}(z)$ defined by (3.1) be in the class $T^{p}[\alpha, \beta, \sigma]$ and the function $f_{2}(z)$ defined by (3.1) be in the class $T^{p}[\alpha, \tau, \sigma]$. Then $\left(f_{1} * f_{2}\right)(z) \in$ $T^{p}[\alpha, \xi(\alpha, \beta, \tau, p, \sigma), \sigma]$, where

$$
\begin{align*}
& \xi(\alpha, \beta, \tau, p, \sigma)=p- \\
& \frac{(p-\beta)(p-\tau)}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)(1+p-\tau)(p-\alpha)-(p-\beta)(p-\tau)} . \tag{5.16}
\end{align*}
$$

The result is sharp.
Proceeding as in the proof of Theorem 6, we get

$$
\xi \leq B(n)=p-
$$

$$
\begin{equation*}
\frac{n(p-\beta)(p-\tau)}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta)(n+p-\tau) G^{p}(\alpha, n+1)-(p-\beta)(p-\tau)} . \tag{5.17}
\end{equation*}
$$

Since the function $B(n)$ is an increasing function of $n(n \in N)$ for $0 \leq \alpha \leq$ $\frac{2 p-1}{2}, 0 \leq \beta<p, 0 \leq \tau<p, 1 \leq \sigma \leq 1$ and $p \in N$, letting $n=1$ in (5.17), we obtain

$$
\begin{align*}
\xi & \leq B(1)=p- \\
& \frac{(p-\beta)(p-\tau)}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)(1+p-\tau)(p-\alpha)-(p-\beta)(p-\tau)} \tag{5.18}
\end{align*}
$$

which evidently proves Theorem 7.
Finally, the result is the best possible for the functions

$$
\begin{equation*}
f_{1}(z)=z^{p}-\frac{(p-\beta)}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)(p-\alpha)} z^{p+1} \tag{5.19}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z^{p}-\frac{(p-\tau)}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\tau)(p-\alpha)} z^{p+1} . \tag{5.20}
\end{equation*}
$$

Corollary 5. Let the functions $f_{j}(z)(j=1,2,3)$ defined by (3.1) be in the class $T^{p}[\alpha, \beta, \sigma]$. Then $\left(f_{1} * f_{2} * f_{3}\right)(z) \in T^{p}[\alpha, \eta(\alpha, \beta, p, \sigma), \sigma]$, where

$$
\begin{align*}
\eta(\alpha, \beta, p, \sigma)= & p- \\
& \frac{(p-\beta)^{3}}{4\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)^{3}(p-\alpha)^{2}-(p-\beta)^{3}} . \tag{5.21}
\end{align*}
$$

The result is the best possible for the functions

$$
\begin{equation*}
f_{j}(z)=z^{p}-\frac{(p-\beta)}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)(p-\alpha)} z^{p+1} \quad(j=1,2,3 ; p \in N) . \tag{5.22}
\end{equation*}
$$

From Theorem 6, we have $\left(f_{1} * f_{2}\right)(z) \in T^{p}[\alpha, \gamma(\alpha, \beta, p, \sigma), \sigma]$, where γ is given by (5.2). Using now Theorem 7, we get $\left(f_{1} * f_{2} * f_{3}\right)(z) \in R^{p}[\alpha, \eta(\alpha, \beta, p, \sigma), \sigma]$, where

$$
\begin{aligned}
& \eta((\alpha, \beta, p, \sigma)=p- \\
& \frac{(p-\beta)(p-\gamma)}{2\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)(1+p-\gamma)(p-\alpha)-(p-\beta)(p-\gamma)} \\
&= \frac{(p-\beta)^{3}}{4\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)^{3}(p-\alpha)^{2}-(p-\beta)^{3}} .
\end{aligned}
$$

This completes the proof of Corollary 5 .

Theorem 8. Let the functions $f_{j}(z)(j=1,2)$ defined by (3.1) be in the class $T^{p}[\alpha, \beta, \sigma]$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=z^{p}-\sum_{n=1}^{\infty}\left(a_{p+n, 1}^{2}+a_{p+n, 2}^{2}\right) z^{p+n} \tag{5.23}
\end{equation*}
$$

belongs to the class $R^{p}[\alpha, \varphi(\alpha, \beta, p, \sigma), \sigma]$, where

$$
\begin{align*}
\varphi(\alpha, \beta, p, \sigma)= & p- \\
& \frac{(p-\beta)^{2}}{\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)^{2}(p-\alpha)-(p-\beta)^{2}} \tag{5.24}
\end{align*}
$$

The result is sharp for the functions $f_{j}(z)(j=1,2)$ defined by (5.14).
By virture of (1.16), we obtain

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left\{\frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)}\right\}^{2} a_{p+n, 1}^{2} \\
\leq & \left\{\sum_{n=1}^{\infty} \frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)} a_{p+n, 1}\right\}^{2} \leq 1 \tag{5.25}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left\{\frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)}\right\}^{2} a_{p+n, 2}^{2} \\
\leq & \left\{\sum_{n=1}^{\infty} \frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)} a_{p+n, 2}\right\}^{2} \leq 1 . \tag{5.26}
\end{align*}
$$

It follows from (5.25) and (5.26) that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2}\left\{\frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)}\right\}^{2}\left(a_{p+n, 1}^{2}+a_{p+n, 2}^{2}\right) \leq 1 \tag{5.27}
\end{equation*}
$$

Therefore, we need to find the largest φ such that

$$
\frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\varphi) G^{p}(\alpha, n+1)}{(p-\varphi)}
$$

$$
\begin{equation*}
\leq \frac{1}{2}\left\{\frac{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta) G^{p}(\alpha, n+1)}{(p-\beta)}\right\}^{2} \tag{5.28}
\end{equation*}
$$

that is, that

$$
\begin{equation*}
\varphi \leq p-\frac{2 n(p-\beta)^{2}}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta)^{2} G^{p}(\alpha, n+1)-2(p-\beta)^{2}} \tag{5.29}
\end{equation*}
$$

Since

$$
D(n)=p-\frac{2 n(p-\beta)^{2}}{\left[1-\sigma+\sigma\left(\frac{p+n}{p}\right)\right](n+p-\beta)^{2} G^{p}(\alpha, n+1)-2(p-\beta)^{2}}
$$

is an increasing function of $n(n \in N)$ for $0 \leq \alpha \leq \frac{2 p-1}{2}, 0 \leq \beta<p, 0 \leq \sigma \leq$ 1 and $p \in N$, we readily have

$$
\begin{equation*}
\varphi \leq D(1)=p-\frac{(p-\beta)^{2}}{\left[1-\sigma+\sigma\left(\frac{p+1}{p}\right)\right](1+p-\beta)^{2}(p-\alpha)^{2}-(p-\beta)^{2}} \tag{5.30}
\end{equation*}
$$

which completes the proof of Theorem 8.
Remarks. (i) Putting $\sigma=0$ in Theorem 6, we obtain the result obtained by Aouf and Silverman [3, Theorem 12];
(ii) Putting $\sigma=1$ in Theorem 6, we obtain the result obtained by Aouf and Silverman [3, Corollary 9];
(iii) Putting $\sigma=0$ and $\sigma=1$ in Theorem 7, Corollary 5 and Theorem 8, respectively, we obtain the corresponding results for the classes $R^{p}[\alpha, \beta]$ and $C^{p}[\alpha, \beta]$, respectively.

References

[1] M. K. Aouf, H. M. Hossen and H. M. Srivastava, Certain subclasses of prestarlike functions with negative coefficients, Kumamoto J.Math. 11 (1998), 1-17.
[2] M. K. Aouf and G. S. Salagean, Certain subclasses of prestarlike functions with negative coeffcients, Studia Univ. Babes - Bolyia Math. 39 (1994), no.1, 19-30.
[3] M. K. Aouf and H. Silverman, Subclasses of p-valent and prestarlike functions, Internat. J. Contemp. Math. Sci. 2(2007), no. 8, 357-372.
[4] S. Owa and B.A. Uralegaddi, A class of functions α - prestarlike of order β, Bull. Korean Math. Soc. 21(1984), no, 77-85.
[5] D.A. Patil and N.K.Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.), 27 (1983), no. 75, $145-160$.
[6] R. K. Raina and H.M. Srivastava, A unified presentation of certain subclasses of prestarlike functions with negative coefficients, Comput. Math. Appl. 38 (1999), 71 - 78.
[7] A. Schild and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie - Sklodowska Sect. A, 29 (1975), 99-106.
[8] H. Silverman and E. M .Silvia, Subclasses of prestarlike functions, Math. Japon. 29(1984), 929-935.
[9] H. M. Srivastava and M. K. Aouf, Some applications of fractional calculus operators to certain subclasse of prestarlike functions with negative coefficients, Comput. Math. Appl. 30 (1995), no.1, 53-61.
[10] B. A. Uralegaddi and S. M. Sarangi, Certain generalization of prestarlike functions with negative coefficients, Ganita 34 (1983), 99-105.
M.K.Aouf ${ }^{1}$ and A. O. Mostafa ${ }^{2}$

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
emails: ${ }^{1}$ mkaouf127@yahoo.com, ${ }^{2}$ adelaeg254@yahoo.com

