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REGULARIZATION FOR A LAPLACE EQUATION WITH
NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

Nguyen Huy Tuan and Ngo Van Hoa

Abstract. We consider the following problem
uxx + uyy = 0, (x, y) ∈ (0, π)× (0, 1)

u(0, y) = u(π, y) = 0, y ∈ (0, 1)

uy(x, 0) = g(x), 0 < x < π

u(x, 0) = ϕ(x), 0 < x < π

The problem is shown to be ill-posed, as the solution exhibits unstable dependence
on the given data functions. Using the new method, we regularize of problem and
obtain some new results. Some numerical examples are given to illuminate the effect
of our methods.

2000 Mathematics Subject Classification: 35K05, 35K99, 47J06, 47H10.

1. Introduction

We consider the Cauchy problem for the Laplace equation in a rectangle: deter-
mine the solution u(x, y) for 0 < y ≤ 1 from the input data ϕ(.) := u(., 0), when
u(x, y) satisfies 

uxx + uyy = 0, (x, y) ∈ (0, π)× (0, 1)

u(0, y) = u(π, y) = 0, y ∈ (0, 1)

uy(x, 0) = g(x), 0 < x < π

u(x, 0) = ϕ(x), 0 < x < π

(1)

where ϕ(x), g(x) ∈ L2(0, π) are noisy functions. If g = 0, the problem (1) becomes
uxx + uyy = 0, (x, y) ∈ (0, π)× (0, 1)

u(0, y) = u(π, y) = 0, y ∈ (0, 1)

uy(x, 0) = 0, 0 < x < π

u(x, 0) = ϕ(x), 0 < x < π

(2)
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which can scarcely be found in a series of articles analyzing the stability and
convergence(see e.g [1, 2, 3, 4, 6, 8, 13]).

Many physical and engineering problems in areas like geophysics and seismology
require the solution of a Cauchy problem for the Laplace equation. For example,
certain problems related to the search for mineral resources, which involve interpre-
tation of the earth’s gravitational and magnetic fields, are equivalent to the Cauchy
problem for the Laplace equation. The continuation of the gravitational potential
observed on the surface of the earth in a direction away from the sources of the field
is again such a problem.

The Cauchy problem for the Laplace equation and for other elliptic equations is
in general ill-posed in the sense that the solution, if it exists, does not depend con-
tinuously on the initial data. This is because the Cauchy problem is an initial value
problem which represents a transient phenomenon in a time-like variable while ellip-
tic equations describe steady-state processes in physical fields. A small perturbation
in the Cauchy data, therefore, affects the solution largely.

Very recently, Chu Li-Fu et al [11] approximated the problem (2) by the fourth-
order method 

vδxx + vδyy − β2vδxxyy = 0, (x, y) ∈ (0, π)× (0, 1)

vδ(0, y) = vδ(π, y) = 0, y ∈ (0, 1)

vδy(x, 0) = 0, 0 < x < π

vδ(x, 0) = ϕδ(x), 0 < x < π

(3)

The solution of (3) is given by

vδ(x, y) =

∞∑
n=1

exp{
√

n2

1+βn2 y}+ exp{−
√

n2

1+βn2 y}

2

 < ϕδ, sinnx >

 sinnx.(4)

where

< ϕδ, sinnx >=
2

π

∫ π

0
ϕδ(x) sinnxdx.

Informally, by the method of separation of variables, the solution of problem (1) is
as follows

u(x, y) =
∞∑
n=1

[(
eny + e−ny

2

)
ϕn +

(
eny − e−ny

2n

)
gn

]
sinnx (5)

where

g(x) =

∞∑
n=1

gn sinnx, ϕ(x) =

∞∑
n=1

ϕn sinnx. (6)
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The term eny in (5) increase rather quickly when n become large, so it is the un-
stability cause. Since the exact solution in (5), Chu-Li Fu and his coauthors re-

placed eny and e−ny by two better terms exp{
√

n2

1+βn2 y} and exp{−
√

n2

1+βn2 y} re-

spectively(when g = 0). However, these terms contain complicated square, so it
is difficult to estimate the error. In our opinion, it is complicated to consider the
problem (1) using the method in (3).

Although (2) is considered in some papers, but there are not many results of
(1). In the present paper, we shall introduce two new regularization methods to
solve the Cauchy problem for the Laplace equation which is an extension of paper
[11]. In the first method, we replace only eny by the better term eny−βn

2y. The
term e−ny is bounded by 1, so it is not need to replaced. Based on the inequality
n− βn2 ≤ 1

4β , the pertubing term becomes stability. In second method, we replace

eny by the different term eny

1+αen . The regularization methods are effective and
convenient for dealing with some ill-posed problems. Moreover, we establish some
new error estimates including the order of Hölder type. Especially, the convergence
of the approximate solution at y = 1 is also proved.
The paper is organized as follows. In Section 2, we introduce the first regularization
method and obtain the convergence estimates. In Section 3, we use a second method
to construct a stable approximation solution and give the convergence estimates.
Finally, In Section 4, a numerical example is given to test the effectiveness of the
proposed methods.

2. The first regularization method

Throught out this paper, we assume that the functions ϕ, g ∈ L2(0, π). Physi-
cally, ϕ, g can only be measured, there will be measurement errors, and we would ac-

tually have as data some function ϕε =
∞∑
n=1

ϕεn sinnx ∈ L2(0, π), gε =
∞∑
n=1

gεn sinnx ∈

L2(0, π) for which

‖ϕε − ϕ‖ = ‖ϕε − u(., 0)‖ ≤ ε,
‖gε − g‖ ≤ ε,

where the constant ε > 0 represents a bound on the measurement error, ‖.‖denotes
the L2-norm.
We modify the exact solution u as follows

uε(x, y) =
∞∑
n=1

[(
e(n−βn

2)y + e−ny

2

)
ϕn +

(
e(n−βn

2)y − e−ny

2n

)
gn

]
sinnx (7)
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where ϕn, gn are defined by (6). And β is the regularization parameter which depend
on ε.
Let the function vε be defined

vε(x, y) =
∞∑
n=1

[(
e(n−βn

2)y + e−ny

2

)
ϕεn +

(
e(n−βn

2)y − e−ny

2n

)
gεn

]
sinnx. (8)

Regarding the stability of the regularized solution we have the following result.
Theorem 1 Let uε, vε be defined by (7) and (8) respectively. Then one has

‖vε(., y)− uε(., y)‖ ≤ ε
√

2e
1
2β + 2.

Proof.
It follows from (7) and (8) that

‖uε(., y)− vε(., y)‖2 ≤ 2
π

2

∞∑
n=1

[(
e(n−βn

2)y + e−ny

2

)
(ϕεn − ϕn)

]2
+

2
π

2

∞∑
n=1

[(
e(n−βn

2)y − e−ny

2n

)
(gεn − gn)

]2

≤ 2
π

2

∞∑
n=1

e2(n−βn
2)y + 1

2

[
(ϕεn − ϕn)2 + (gεn − gn)2

]
.

Using the inequality n− βn2 ≤ 1
4β , we get

‖uε(., y)− vε(., y)‖2 ≤ 2(e
1
2β + 1)‖ϕε − ϕ‖2

≤ 2(e
1
2β + 1)ε2.

Theorem 2. Let E be positive numbers such that ‖u(., 1)‖2 + ‖uy(., 1)‖2 ≤ E2. If
we select β = 1

2m ln( 1
ε
)

(0 < m < 2), then one has

‖vε(., y)− u(., y)‖ ≤ 1

2m ln(1ε )

√
2E

(1− y)2
+
√

2ε2 + 2ε2−m, (9)

for every y ∈ [0, 1).
Proof.

Step 1. First, we estimate the following error

‖u(., y)− uε(., y)‖ ≤
√

2Eβ

(1− y)2
.
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Infact, we have

u(x, y)− uε(x, y) =
∞∑
n=1

(
eny − e(n−βn2)y

2

)(
ϕn +

gn
n

)
sinnx. (10)

From (5) and

uy(x, y) =

∞∑
n=1

n

[(
eny − e−ny

2

)
ϕn +

(
eny + e−ny

2n

)
gn

]
sinnx

we get

< u(x, 1), sinnx > =

(
en + e−n

2

)
ϕn +

(
en − e−n

2n

)
gn.

1

n
< uy(x, 1), sinnx > =

(
en − e−n

2

)
ϕn +

(
en + e−n

2n

)
gn.

It implies that

< u(x, 1), sinnx > +
1

n
< uy(x, 1), sinnx >= en(ϕn +

gn
n

). (11)

Combining (10) and (11) we get

u(x, y)− uε(x, y) =
∞∑
n=1

(
eny − e(n−βn2)y

2en

)(
< u(x, 1), sinnx > +

1

n
< uy(x, 1), sinnx >

)
sinnx.

Using the inequalities (a+ b)2 ≤ 2(a2 + b2) and 1− e−x ≤ x, x > 0, we get

| < u(x, y)− uε(x, y), sinnx > |2 =

=

(
eny − e(n−βn2)y

2en

)2(
< u(x, 1), sinnx > +

1

n
< uy(x, 1), sinnx >

)2

≤ 1

2
e2(y−1)n(1− e−βn2y)2

(
| < u(x, 1), sinnx > |2 +

1

n2
| < uy(x, 1), sinnx > |2

)
≤ e2(y−1)nβ2n4y2

(
| < u(x, 1), sinnx > |2 + | < uy(x, 1), sinnx > |2

)
. (12)

It is easy to prove the inequality for k, n > 0

n4

e2kn
≤ 4

k4
.
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Thus, for y < 1

e2(y−1)nβ2n4 ≤ 4β2

(1− y)4
. (13)

This follows from (13) and (14) that

| < u(x, y)− uε(x, y), sinnx > |2 ≤ 2β2

(1− y)4
(
| < u(x, 1), sinnx > |2 + | < uy(x, 1), sinnx > |2

)
.

Therefore, we obtain

‖u(., y)− uε(., y)‖2 =
π

2

∞∑
n=1

| < u(x, y)− uε(x, y), sinnx > |2

≤ π

2

2β2

(1− y)4

∞∑
n=1

(
| < u(x, 1), sinnx > |2 + | < uy(x, 1), sinnx > |2

)
≤ 2β2

(1− y)4
(‖u(., 1)‖2 + ‖uy(., 1)‖2).

Hence

‖u(., y)− uε(., y)‖ ≤
√

2Eβ

(1− y)2
.

Step 2.
Using Theorem 2, we obtain

‖vε(., y)− uε(., y)‖ ≤
√

2e
1
2β + 2ε =

√
2ε2 + 2ε2−m. (14)

Since Step 1 and Step 2 give

‖vε(., y)− u(., y)‖ ≤ ‖vε(., y)− uε(., y)‖+ ‖uε(., y)− u(., y)‖

≤ 1

2m ln(1ε )

√
2E

(1− y)2
+
√

2ε2 + 2ε2−m.

Remark 1.
1. If g = 0, the estimate (9) becomes

‖vε(., y)− u(., y)‖ ≤ 1√
2m ln(1ε )

E

(1− y)2
+
√

2ε2 + 2ε2−m. (15)

The order of error (15) is same in Theorem 2.3 in paper [11](page 483).
2. It follows from (9) that the error in y = 1 is not considered. This is disadvantage
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point of this estimate. To improve this, we introduce next Theorem which the error
in y = 1 is proved.
Theorem 3. Suppose that there is a positive constant E1 such that

∞∑
n=1

n4
(
| < u(x, 1), sinnx > |2 + | < uy(x, 1), sinnx > |2

)
< E2

1 .

Let us select β = 1
2m ln( 1

ε
)

(0 < m < 2), then one has

‖vε(., y)− u(., y)‖ ≤
√
π

2

E1

2m ln(1ε )
+

√
ε2 + ε2−m

2
.

for every y ∈ [0, 1].
Proof.
First, we prove that

‖u(., y)− uε(., y)‖ ≤ β
√
π

2
E1. (16)

Since (12), we get

| < u(x, y)− uε(x, y), sinnx > |2 ≤ e2(y−1)nβ2n4y2

×
(
| < u(x, 1), sinnx > |2 + | < uy(x, 1), sinnx > |2

)
.

Then

‖u(x, y)− uε(x, y)‖2 =
π

2

∞∑
n=1

| < u(x, y)− uε(x, y), sinnx > |2

≤ π

2
β2

∞∑
n=1

(
n4| < u(x, 1), sinnx > |2 + n4| < uy(x, 1), sinnx > |2

)
≤ π

2
β2E2

1 .

Hence, (16) is proved. Since (14) and (16), we obtain

‖vε(., y)− u(., y)‖ ≤ ‖vε(., y)− uε(., y)‖+ ‖uε(., y)− u(., y)‖

≤
√
π

2
E1β +

√
2ε2 + 2ε2−m

=

√
π

2

E1

2m ln(1ε )
+
√

2ε2 + 2ε2−m.
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2. In Theorem 3, the logarithmic stability estimate is investigated. This often
occurs in the boundary error estimate for ill-posed problems. In next section, we
shall give the different regularization method which the order error of Hölder type
is established.

3. The second regularization method

For a ≥ 1 is a positive constant and α is the parameter regularization, we have
the second approximated problem as follows

wε(x, y) =
∞∑
n=1

[(
eny

1+αena + e−ny

2

)
ϕn +

(
eny

1+αena − e
−ny

2n

)
gn

]
sinnx. (17)

W ε(x, y) =

∞∑
n=1

[(
eny

1+αena + e−ny

2

)
ϕεn +

(
eny

1+αena − e
−ny

2n

)
gεn

]
sinnx. (18)

Theorem 4
Let ϕ(x), g(x) ∈ L2(0, π). Then, we have

‖W ε(., y)− wε(., y)‖ ≤ α−
y
a ε.

Proof. We have

W ε(x, y)− wε(x, y) =

∞∑
n=1

[(
eny

1+αena + e−ny

2

)
(ϕεn − ϕε)

]
sinnx

+
∞∑
n=1

[(
eny

1+αena − e
−ny

2n

)
(gεn − gn)

]
sinnx.

For n, x, α, 0 ≤ a ≤ b, it is not difficult to prove the inequality

ena

1 + αenb
≤ α−

a
b . (19)

Thus, we have

ena

1 + αenb
=

ena

(1 + αenb)
a
b (1 + αenb)1−

a
b

≤ ena

(1 + αenb)
a
b

≤ α−
a
b .
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Using the inequality

‖W ε(., y)− wε(., y)‖2 ≤ 2
π

2

∞∑
n=1

[(
eny

1+αena + e−ny

2

)
(ϕεn − ϕn)

]2

+ 2
π

2

∞∑
n=1

[(
eny

1+αena − e
−ny

2n

)
(gεn − gn)

]2

≤ 2
π

2

∞∑
n=1

[(
eny

1 + αena

)
(ϕεn − ϕn)

]2
+ 2

π

2

∞∑
n=1

[(
eny

1 + αena

)
(gεn − gn)

]2
≤ 2α−2

y
a
(
‖ϕε − ϕ‖2 + ‖gε − g‖2

)
≤ 4α−2

y
a ε2.

Hence

‖W ε(., y)− wε(., y)‖ ≤ 2α−
y
a ε.

Theorem 5. Let E be positive numbers such that ‖u(., 1)‖2 + ‖uy(., 1)‖2 ≤ E2. If
we select α = εa, then one has

‖W ε(., y)− u(., y)‖ ≤ (

√
E2

2
+ 2)ε1−y (20)

for every y ∈ [0, 1].
Proof.

Since (7) and (17) give

u(x, y)− wε(x, y) =
∞∑
n=1

[(
eny − eny

1+αena

2

)
ϕn +

(
eny − eny

1+αena

2n

)
gn

]
sinnx.

=
∞∑
n=1

(
eny − eny

1+αena

2

)[
ϕn +

gn
n

]
sinnx

=
αen(a+y)

2(1 + αena)

[
ϕn +

gn
n

]
sinnx. (21)

Using (11), we get

ϕn +
gn
n

= e−n
[
< u(x, 1), sinnx > +

1

n
< uy(x, 1), sinnx >

]
. (22)
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It follows from (21) and (22) that

< u(x, y)− wε(x, y), sinnx > =
αen(a+y−1)

2(1 + αena)

[
< u(x, 1), sinnx > +

1

n
< uy(x, 1), sinnx >

]
.

(23)

Thus

| < u(x, y)− wε(x, y), sinnx > | ≤
αen(a+y−1)

2(1 + αena)

[
| < u(x, 1), sinnx > |+ 1

n
| < uy(x, 1), sinnx > |

]
. (24)

Using the inequalities (a+ b)2 ≤ 2a2 + 2b2 and (20), we obtain

‖u(., y)− wε(., y)‖2 =
π

2

∞∑
n=1

| < u(x, y)− wε(x, y), sinnx > |2

≤ 2
π

2

∞∑
n=1

α2e2n(a+y−1)

4(1 + αena)2

[
| < u(x, 1), sinnx > |2 +

1

n2
| < uy(x, 1), sinnx > |2

]
≤ 1

2
α2 1−y

a
[
‖u(., 1)‖2 + ‖uy(., 1)‖2

]
.

Applying the triangle inequality and Theorem 4, we obtain

‖u(., y)−W ε(., y)‖ ≤ ‖u(., y)− wε(., y)‖+ ‖wε(., y)−W ε(., y)‖

≤
√

1

2
α2 1−y

a E2 + 2α−
y
a ε

≤ ε1−y(

√
E2

2
+ 2).

Remark 2 The approximation error depends continuously on the measurement
error for fixed 0 < y < 1. However, as y → 1, the accuracy of regularized solution
becomes progressively lower. This is a common thing in the theory of ill-posed
problems, if we do not have additional conditions on the smoothness of the solution.
To retain the continuous dependence of the solution at y = 1, we introduce a stronger
a priori assumption. We have the next Theorem
Theorem 6. Suppose that there are positive real numbers k,E2 such that

π

4

∞∑
n=1

e2kn
(
| < u(x, 1), sinnx > |2 + | < uy(x, 1), sinnx > |2

)
< E2

2 . (25)
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Let us select α = ε
a

1+k , b = min{1 + k, a}, then one has

‖W ε(., y)− u(., y)‖ ≤ (E2 + 2)ε
b−y
1+k . (26)

for every y ∈ [0, 1].

Proof.
For the first term on the right-hand side of (23), we have

< u(x, y)− wε(x, y), sinnx > =
αen(a+y−1)

2(1 + αena)

[
< u(x, 1), sinnx > +

1

n
< uy(x, 1), sinnx >

]
=

αen(a+y−1−k)

2(1 + αena)
ekn
[
< u(x, 1), sinnx > +

1

n
< uy(x, 1), sinnx >

]
.

Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain

‖u(., y)− wε(., y)‖2 =
π

2

∞∑
n=1

| < u(x, y)− wε(x, y), sinnx > |2

≤ 1

2
α2 1+k−y

a
π

2

∞∑
n=1

e2kn
(
| < u(x, 1), sinnx > |2 +

1

n2
| < uy(x, 1), sinnx > |2

)

≤ 1

2
α2 1+k−y

a
π

2

∞∑
n=1

e2kn
(
| < u(x, 1), sinnx > |2 + | < uy(x, 1), sinnx > |2

)
≤ α2 1+k−y

a E2
2 .

Apply the triangle inequality

‖u(., y)−W ε(., y)‖ ≤ ‖u(., y)− wε(., y)‖+ ‖wε(., y)−W ε(., y)‖

≤
√
α2 1+k−y

a E2
2 + 2α−

y
a ε

≤
√
ε2

1+k−y
1+k E2

2 + 2ε
1+k−y
1+k .

≤ ε
b−y
1+k (E2 + 2).

Remark 3. 1. We separately consider the case 0 ≤ y < 1 and the case y = 1 in
order to emphasize the following facts. For the case 0 ≤ y < 1, the a priori bound
‖u(., 1)‖ ≤ E is sufficient. However, for the case y = 1, the stronger a priori bound
in (25) must be imposed.

2. The best possible worst case error w(ε) for identifying u(x; y) from noisy data
ϕε with ‖ϕ− ϕε‖ ≤ ε under the smoothness assumption ‖u(, 1)‖ ≤ E is

w(ε) = ε cosh

(
y.arcosh(

E

ε
)

)
= Ey(

ε

2
)1−y(1 + 0(1))
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for ε→ 0. And there can be no regularization methods that provide a smaller error
in the worst case sense. There exists special optimal regularization methods that
guarantee this op- timal error bound. These results and more general results under
stronger smoothness assumptions that allow to treat also the case y = 1 may be
found in the papers [12, 16].

3.The error (26) is the order of Holder type for all y ∈ [0, 1]. As we know,
the convergence rate of εp, (0 < p) is more quickly than the logarithmic order(
ln(1ε )

)−q
(q > 0) when ε → 0. Note that this error is not investigated in [11].

Moreover, we compare the method in [12](Theorem 3.2) and [16](Theorem 3.6) with
optimal methods to conclude that the first method seems to be not of optimal order,
but the second method is an order optimal method.

4. Numerical examples

In this section, some simple examples are devised for verifying the validity of the
proposed method.
Example 1. We consider

uxx + uyy = 0, (x, y) ∈ (0, π)× (0, 1),

u(0, y) = u(π, y) = 0, 0 < y < 1

uy(x, 0) = 0, 0 < x < π

u(x, 0) = ϕ(x) = sinnx, 0 < x < π.

(27)

Then the exact solution to this problem is

u(x, y) =
ey + e−y

2
sinx.

For convenience of computation, we consider the measured data

ϕε(x) =

(√
2

π
ε+ 1

)
ϕ(x),

we have

ϕεn =
2

π

π∫
0

ϕε(x) sinnxdx =


√

2

π
ε+ 1, n = 1

0, n > 1,

(28)

and

‖ϕε − ϕ‖L2(0,π) =

 π∫
0

2

π
ε2 (ϕ(x))2 dx

1/2

=

 2

π
ε2

π∫
0

sin2 xdx

1/2

= ε.
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From (28), and (8) with notice that β =
1

2 ln(
1

ε
)
, we have the regularized solution

of the first method

vε(x, y) =
1

2

(
e

(
1− 1

2 ln 1
ε

)
y

+ e−y

)(√
2

π
ε+ 1

)
sinx. (29)

From (28), and (19) with notice that α = ε2, a = 2 we have the regularized
solution of the second method

W ε(x, y) =
1

2

(
ey

1 + ε2e2
+ e−y

)(√
2

π
ε+ 1

)
sinx. (30)

By applying the method in [11] with notice the expression (28), we have the
regularized solution

wε(x, y) =
1

2

exp


√√√√√ 1

1 +
1

ln2
(
2E
ε

) y
+ exp

−
√√√√√ 1

1 +
1

ln2
(
2E
ε

) y


(√

2

π
ε+ 1

)
sinx

(31)
where E = ‖u(·, 1)‖ =

√
π
8

(
e+ e−1

)
.

If we put

y = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

we get the following Table 1, Table 2, Table 3 show the comparison between the
three methods of error between the regularization solution and the exact solution in
the case 0 < y < 1

Table 1

269



N.H. Tuan and N.V. Hoa - Regularization for a Laplace equation with...

ε = 10−1

The first method The second method The method in [11]

y ‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0 0.1000 0.0534 0.1000

0.1 0.0844 0.0490 0.0990

0.2 0.0669 0.0451 0.0962

0.3 0.0469 0.0417 0.0913

0.4 0.0241 0.0387 0.0843

0.5 0.0020 0.0360 0.0751

0.6 0.0321 0.0337 0.0634

0.7 0.0666 0.0318 0.0490

0.8 0.1064 0.0301 0.0316

0.9 0.1521 0.0288 0.0109

Table 2

ε = 10−5

The first method The second method The method in [11]

y ‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0 10−5 9.9995× 10−6 10−5

0.1 0.0030 1.0050× 10−5 4.4263× 10−4

0.2 0.0066 1.0200× 10−5 0.0018

0.3 0.0109 1.0453× 10−5 0.0041

0.4 0.0161 1.0810× 10−5 0.0074

0.5 0.0222 1.1275× 10−5 0.0117

0.6 0.0294 1.1854× 10−5 0.0172

0.7 0.0378 1.2551× 10−5 0.0239

0.8 0.0476 1.3373× 10−5 0.0320

0.9 0.0591 1.4330× 10−5 0.0415

Table 3
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ε = 10−10

The first method The second method The method in [11]

y ‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0 10−10 10−10 10−10

0.1 0.0015 1.0050× 10−10 2.4733× 10−4

0.2 0.0033 1.0201× 10−10 9.9416× 10−4

0.3 0.0055 1.0453× 10−10 0.0023

0.4 0.0081 1.0811× 10−10 0.0041

0.5 0.0112 1.1276× 10−10 0.0064

0.6 0.0148 1.1855× 10−10 0.0094

0.7 0.0190 1.2552× 10−10 0.0131

0.8 0.0240 1.3374× 10−10 0.0175

0.9 0.0298 1.4331× 10−10 0.0228

In the case y = 1, from (29), (30) we get

vε(x, 1) =
1

2

(
e

(
1− 1

2 ln 1
ε

)
+ e−1

)(√
2

π
ε+ 1

)
sinx,

W ε(x, 1) =
1

2

(
e

1 + ε2e2
+ e−1

)(√
2

π
ε+ 1

)
sinx.

By applying the method in [11] with the expression (29), we have the regularized
solution in case y = 1

W ε(x, 1) =
1

2

exp


√√√√√√

1

1 +
1

ln2
(
E
ε

(
ln E

ε

)−1)


+ exp


−
√√√√√√

1

1 +
1

ln2
(
E
ε

(
ln E

ε

)−1)



×
(√

2

π
ε+ 1

)
sinx

where E = ‖uy(·, 1)‖ =
√

π
8

(
e− e−1

)
.

We have the following Table 4, Table 5, Table 6 show the comparison between
the three methods of error between the regularization solution and the exact solution
in the case y = 1

Table 4
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ε = 10−1

The first method The second method The method in [11]

‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0.2047 0.0277 0.0136

Table 5

ε = 10−5

The first method The second method The method in [11]

‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0.0723 1.5× 10−5 0.0527

Table 6

ε = 10−10

The first method The second method The method in [11]

‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0.0365 10−10 0.0289

Example 2. In this example, we take g(x) = 0 and the exact data ϕ(x) =
∞∑
n=1

2

n coshn
sinnx. It is easy to verify that

u(x, y) =

∞∑
n=1

2 coshny

n coshn
sinnx

is the exact solution of the problem (1). That is u(x, y) satisfies

uxx + uyy = 0, (x, y) ∈ (0, π)× (0, 1),

u(0, y) = u(π, y) = 0, 0 < y < 1

uy(x, 0) = 0, 0 < x < π

u(x, 0) =
∞∑
n=1

2

n coshn
sinnx, 0 < x < π.

(32)

For simplicity in computation, the measured data ϕε(x) is given by

ϕε(x) = ϕ(x) + ε(2− x),

we have

ϕεn =
2

π

π∫
0

ϕε(x) sinnxdx

=
2

π

 π∫
0

∞∑
m=1

2

m coshm
sinmx sinnxdx+

ε(π − 2)(−1)n

n
+

2ε

n

 . (27)
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Note that
π∫

0

sinmx sinnxdx =

{π
2
, if m = n

0, if m 6= n.
(34)

From (33), (8) with notice that β =
1

2 ln(
1

ε
)

and (34), we have the regularized

solution of the first method

vε(x, y) =
∞∑
n=1

1

2

[
e

(
n− n2

2 ln 1
ε

)
y

+ e−ny

] [
2

n coshn
+
ε(π − 2)(−1)n

n
+

2ε

n

]
sinnx.

(35)
From (33), (19) with notice that α = ε2, a = 2 and (34), we have the regularized

solution of the second method

W ε(x, y) =
∞∑
n=1

1

2

(
eny

1 + ε2e2n
+ e−ny

)
.

[
2

n coshn
+
ε(π − 2)(−1)n

n
+

2ε

n

]
sinnx.

(36)
By applying the method in [11] with the expression (33) and notice that (34),

we have the regularized solution

wε(x, y) =

∞∑
n=1

1

2

exp


√√√√√ n2

1 +
n2

ln2
(
2E
ε

) y
+ exp

−
√√√√√ n2

1 +
n2

ln2
(
2E
ε

) y

×

[
2

n coshn
+
ε(π − 2)(−1)n

n
+

2ε

n

]
sinnx. (28)

where E =
π
√
π√
3
.

If we put

y = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

we get the following Table 7, Table 8, Table 9 show the comparison between the
three methods of error between the regularization solution and the exact solution in
the case 0 < y < 1.
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Table 7

ε = 10−1

The first method The second method The method in [11]

y ‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0 0.2790 0.1367 0.2790

0.1 0.2190 0.1041 0.2858

0.2 0.1787 0.0937 0.3081

0.3 0.1392 0.0986 0.3514

0.4 0.1047 0.1202 0.4253

0.5 0.1039 0.1604 0.5437

0.6 0.1701 0.2238 0.7262

0.7 0.2977 0.3212 0.9987

0.8 0.4963 0.4752 1.3941

0.9 0.8144 0.7401 1.9345
Table 8

ε = 10−5

The first method The second method The method in [11]

y ‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0 2.7904× 10−5 2.6725× 10−5 2.7904× 10−5

0.1 5.7872× 10−3 2.8003× 10−5 2.9285× 10−4

0.2 1.3876× 10−2 3.5756× 10−5 1.3119× 10−3

0.3 2.5333× 10−2 6.3696× 10−5 3.3247× 10−3

0.4 4.1937× 10−2 1.5910× 10−4 6.9744× 10−3

0.5 6.6725× 10−2 4.8226× 10−4 1.3676× 10−2

0.6 0.1051 1.6232× 10−3 2.6878× 10−2

0.7 0.1678 5.8859× 10−3 5.6691× 10−2

0.8 0.2774 2.2956× 10−2 0.1385

0.9 0.4933 9.9740× 10−2 0.4035
Table 9
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ε = 10−100

The first method The second method The method in [11]

y ‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0 2.7904× 10−100 9.3543× 10−102 2.7904× 10−100

0.1 2.9301× 10−4 1.7770× 10−11 1.1212× 10−6

0.2 7.0961× 10−4 1.3024× 10−11 4.8247× 10−6

0.3 1.3178× 10−3 1.5092× 10−10 1.2342× 10−5

0.4 2.2400× 10−3 1.7813× 10−10 2.6659× 10−5

0.5 3.7143× 10−3 1.4884× 10−10 5.5097× 10−5

0.6 6.2598× 10−3 2.7030× 10−10 1.1790× 10−4

0.7 1.1201× 10−2 2.8086× 10−10 2.8402× 10−4

0.8 2.2862× 10−2 1.8466× 10−10 8.8781× 10−4

0.9 6.2976× 10−2 1.2795× 10−9 5.2159× 10−3

and we have the graphic is displayed in Figures 2, 3, 4, 5, 6, 7, 8, 9, 10 on the
rectangular domain [0, π]× [0, 0.9]

Figure 1: The exact solution.

In the case y = 1, we have the exact solution u(x, 1) = π − x. From (35), (36)
we get the regularized solution of the first method and the second method in case
y = 1

vε(x, 1) =
∞∑
n=1

1

2

[
e

(
n− n2

2 ln 1
ε

)
+ e−n

][
2

n coshn
+
ε(π − 2)(−1)n

n
+

2ε

n

]
sinnx,

W ε(x, 1) =
∞∑
n=1

1

2

(
en

1 + ε2e2n
+ e−n

)[
2

n coshn
+
ε(π − 2)(−1)n

n
+

2ε

n

]
sinnx.

By applying the method in [11] with the expression (33) and notice that (34),
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Figure 2: The regularized solu-
tion with ε = 10−1 by applying
the first method.

Figure 3: The regularized solu-
tion with ε = 10−1 by applying
the second method.

Figure 4: The regularized solu-
tion with ε = 10−1 by applying
the method in [11].

we have the regularized solution in case y = 1

wε(x, 1) =
∞∑
n=1

1

2

exp


√√√√√√

n2

1 +
n2

ln2
(
120
ε

(
ln 120

ε

)−1)


+ exp


−
√√√√√√

n2

1 +
n2

ln2
(
120
ε

(
ln 120

ε

)−1)



×
[

2

n coshn
+
ε(π − 2)(−1)n

n
+

2ε

n

]
sinnx.

We have the following Table 10, Table 11, show the comparison between the
three methods of error between the regularization solution and the exact solution in
the case y = 1
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Figure 5: The regularized solu-
tion with ε = 10−5 by applying
the first method.

Figure 6: The regularized solu-
tion with ε = 10−5 by applying
the second method.

Figure 7: The regularized solu-
tion with ε = 10−5 by applying
the method in [11].

Table 10

ε = 10−10

The first method The second method The method in [11]

‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0.9734 0.4980 0.7239
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Figure 8: The regularized solu-
tion with ε = 10−100 by applying
the first method.

Figure 9: The regularized solu-
tion with ε = 10−100 by applying
the second method.

Figure 10: The regularized solu-
tion with ε = 10−100 by applying
the method in [11].

Table 11

ε = 10−300

The first method The second method The method in [11]

‖vε − u‖ ‖W ε − u‖ ‖wε − u‖
0.4036 9.3464× 10−10 0.2261

and we have the graphic is displayed in Figures 11, 12 in the case y = 1
Looking at from Table 1 to Table 11, a comparison between the three methods,

the error in the second method converges to zero more quickly many times than
the first method and the method in [11]. This shows that our approach has a nice
regularizing effect and give a better approximation with comparison to the paper
[11].
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Figure 11: The exact solution and the regularized solution in three methods with
ε = 10−10.
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Figure 12: The exact solution and the regularized solution in three methods with
ε = 10−300.
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