ON SOME TOPOLOGICAL PROPERTIES OF NEW TYPE OF DIFFERENCE SEQUENCE SPACES

Çiğdem A. BEKTAŞ and Gülcan ATICİ

ABSTRACT. In this paper, we define the sequence spaces $\ell_{\infty}(\Delta_{m,v})$, $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ $(m \in \mathbb{N})$. Also we give some topological properties and inclusion relations of these sequence spaces.

 $Keywords\colon$ Difference sequence spaces, Solid space, Symmetric space, Completeness.

2000 Mathematics Subject Classification: 40C05, 40A05, 46A45.

1.INTRODUCTION

Let ℓ_{∞} , c and c_0 be the linear spaces of bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by

$$\|x\|_{\infty} = \sup_{k} |x_k|$$

where $k \in \mathbb{N} = \{1, 2, ...\}$, the set of positive integers. The difference sequence spaces

$$X(\Delta) = \{x = (x_k) : \Delta x \in X\}$$

first defined by Kızmaz [1], where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$ and X is any of the sets ℓ_{∞} , c and c_0 , and showed that these are Banach spaces with norm

$$\|x\|_{\Delta} = |x_1| + \sup_k |\Delta x_k|.$$

Then Çolak [2] defined the sequence spaces $\Delta_v(X) = \{x = (x_k) : \Delta_v x \in X\}$, where $\Delta_v x = (\Delta_v x_k) = (v_k x_k - v_{k+1} x_{k+1})$ and is any sequence space, and investigated some topological properties of this spaces.

Tripathy and Esi [3] defined the new type of difference sequence spaces

$$Z(\Delta_m) = \{x = (x_k) : \Delta_m x \in Z\}$$

for $Z = \ell_{\infty}$, c and c_0 , where $m \in \mathbb{N}$ be fixed, $\Delta_m x = (\Delta_m x_k) = (x_k - x_{k+m})$ for all $k \in \mathbb{N}$ and showed that these are Banach spaces with norm

$$||x||_{\Delta_m} = \sum_{r=1}^m |x_r| + \sup_k |\Delta_m x_k|.$$

Definition 1.1.[4] Let X be a sequence space. Then X is called:

(i) Solid (or normal), if $(\alpha_k x_k) \in X$ whenever $(x_k) \in X$ for all sequences (α_k) of scalar with $|\alpha_k| \leq 1$.

(ii) Monotone provided X contains the canonical preimages of all its stepspace.

(iii) Symmetric if $(x_k) \in X$ implies $(x_{\pi(k)}) \in X$, where $\pi(k)$ is a permutation of \mathbb{N} .

(iv) A sequence algebra if $(x_k), (y_k) \in X$ implies $(x_k y_k) \in X$.

(v) Convergence free if $(y_k) \in X$ whenever $(x_k) \in X$ and $y_k = \theta$ whenever $x_k = \theta$.

(vi) For r > 0, nonempty subset V of linear space is said to be absolutely rconvex if $x, y \in V$ and $|\lambda|^r + |\mu|^r \leq 1$ together imply that $\lambda x + \mu x \in V$. A linear topological space X is said to be r-convex if every neighborhood of $\theta \in X$ contains as absolutely r-convex neighborhood of $\theta \in X$ (see for instance [5]).

2. Main Results

Let $v = (v_k)$ be any fixed sequence of nonzero complex numbers. Now we define

$$\ell_{\infty}(\Delta_{m,v}) = \{x = (x_k) : \Delta_{m,v} x \in \ell_{\infty}\},\$$

$$c(\Delta_{m,v}) = \{x = (x_k) : \Delta_{m,v} x \in c\},\$$

$$c_0(\Delta_{m,v}) = \{x = (x_k) : \Delta_{m,v} x \in c_0\}$$

where $m \in \mathbb{N}$ be fixed, $\Delta_{m,v}x = (\Delta_{m,v}x_k) = (v_k x_k - v_{k+m} x_{k+m})$ for all $k \in \mathbb{N}$.

If we take $(v_k) = (1, 1, ...)$, then we obtain $\ell_{\infty}(\Delta_m)$, $c(\Delta_m)$ and $c_0(\Delta_m)$.

Theorem 2.1. The sequence spaces $\ell_{\infty}(\Delta_{m,v})$, $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are normed linear spaces, normed by

$$||x|| = \sum_{r=1}^{m} |v_r x_r| + \sup_k |\Delta_{m,v} x_k|.$$
(2.1)

Proof. We shall prove only for $\ell_{\infty}(\Delta_{m,v})$. The other cases can be proved similarly. Let α , β be scalars and (x_k) , $(y_k) \in \ell_{\infty}(\Delta_{m,v})$. Then

$$\sup_{k} |\Delta_{m,v} x_k| < \infty \text{ and } \sup_{k} |\Delta_{m,v} y_k| < \infty.$$
(2.2)

Hence

$$\sup_{k} |\Delta_{m,v}(\alpha x_k + \beta y_k)| \le |\alpha| \sup_{k} |\Delta_{m,v} x_k| + |\beta| \sup_{k} |\Delta_{m,v} y_k| < \infty$$

by (2.2). Hence $\ell_{\infty}(\Delta_{m,v})$ is a linear space.

Next for $x = \theta$, we have $\|\theta\| = 0$. Conversely, let $\|x\| = 0$. Then $\|x\| = \sum_{r=1}^{m} |v_r x_r| + \sup_k |\Delta_{m,v} x_k| = 0$. Since $v_r \neq 0$ for $\forall r \in \mathbb{N}$, we have $x_r = 0$ for r = 1, 2, ..., m and $|\Delta_{m,v} x_k| = 0$ for all $k \in \mathbb{N}$. Consider k = 1 i.e. $|\Delta_{m,v} x_1| = 0 \Rightarrow |v_1 x_1 - v_{1+m} x_{1+m}| = 0 \Rightarrow x_{1+m} = 0$ ($v_{1+m} \neq 0$), since $x_1 = 0$ ($v_1 \neq 0$). Proceeding in this way we have $x_k = 0$, for all $k \in \mathbb{N}$. After then we write

$$\begin{aligned} \|x+y\| &= \sum_{r=1}^{m} |v_r(x_r+y_r)| + \sup_k |\Delta_{m,v}(x_k+y_k)| \\ &\leq \left(\sum_{r=1}^{m} |v_rx_r| + \sup_k |\Delta_{m,v}x_k|\right) + \left(\sum_{r=1}^{m} |v_ry_r| + \sup_k |\Delta_{m,v}y_k|\right) \\ &= \|x\| + \|y\|. \end{aligned}$$

Finally

$$\|\lambda x\| = \sum_{r=1}^{m} |\lambda v_r x_r| + \sup_k |\Delta_{m,v}(\lambda x_k)|$$

= $|\lambda| \|x\|.$

Hence $\|.\|$ is a norm on the sequence spaces $\ell_{\infty}(\Delta_{m,v})$, $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$. This completes the proof

This completes the proof.

Theorem 2.2. The sequence spaces $\ell_{\infty}(\Delta_{m,v})$, $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are Banach spaces under the norm (2.1).

Proof. Let (x^s) be a Cauchy sequence in $\ell_{\infty}(\Delta_{m,v})$, where $x^s = (x_i^s) = (x_1^s, x_2^s, ...) \in \ell_{\infty}(\Delta_{m,v})$, for each $s \in \mathbb{N}$. Then

$$||x^{s} - x^{t}|| = \sum_{r=1}^{m} |v_{r}(x_{r}^{s} - x_{r}^{t})| + \sup_{k} |\Delta_{m,v}x_{k}^{s} - \Delta_{m,v}x_{k}^{t}| \to 0$$

as $s, t \to \infty$. Hence for given $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\|x^{s} - x^{t}\| = \sum_{r=1}^{m} |v_{r}(x_{r}^{s} - x_{r}^{t})| + \sup_{k} |\Delta_{m,v}x_{k}^{s} - \Delta_{m,v}x_{k}^{t}| < \varepsilon$$
(2.3)

for all $s, t \ge n_0$. Hence we obtain $|v_k(x_k^s - x_k^t)| < \varepsilon$ and since $v_k \ne 0$ for all $k \in \mathbb{N}$ we have $|x_k^s - x_k^t| < \varepsilon$ for all $s, t \ge n_0$ and k = 1, 2, ..., m. Therefore (x_k^t) is a Cauchy sequence in \mathbb{C} for each $k \in \mathbb{N}$. Since \mathbb{C} is a complete space, (x_k^t) is a convergent in \mathbb{C} for k = 1, 2, ..., m. Let $\lim_{t \to \infty} x_k^t = x_k$ say for each $k \in \mathbb{N}$.

From (2.3) we have

$$\left|\Delta_{m,v}x_k^s - \Delta_{m,v}x_k^t\right| < \varepsilon$$

for all $s, t \geq n_0$ and all $k \in \mathbb{N}$. Hence $(\Delta_{m,v} x_k^t)$ is a Cauchy sequence in \mathbb{C} for all $k \in \mathbb{N}$. Thus $(\Delta_{m,v} x_k^t)$ is a convergent in \mathbb{C} and let $\lim_{t\to\infty} \Delta_{m,v} x_k^t = y_k$ say for each $k \in \mathbb{N}$.

Then we have

$$\lim_{t \to \infty} \sum_{r=1}^{m} \left| v_r (x_r^s - x_r^t) \right| = \sum_{r=1}^{m} \left| v_r (x_r^s - x_r) \right| < \varepsilon$$

 $s \geq n_0$, and

$$\lim_{t \to \infty} \left| v_k x_k^s - v_k x_k^t - (v_{k+m} x_{k+m}^s - v_{k+m} x_{k+m}^t) \right| = \left| v_k x_k^s - v_k x_k - (v_{k+m} x_{k+m}^s - v_{k+m} x_{k+m}) \right| < \varepsilon$$

for all $k \in \mathbb{N}$ and $s \ge n_0$. Hence for all $s \ge n_0$, we have

$$\sup_{k} |\Delta_{m,v} x_k^s - \Delta_{m,v} x_k| < \varepsilon.$$

Thus we obtain by

$$\sum_{r=1}^{m} |v_r(x_r^s - x_r)| + \sup_k |\Delta_{m,v} x_k^s - \Delta_{m,v} x_k| < 2\varepsilon$$

and $(x^s - x) \in \ell_{\infty}(\Delta_{m,v})$ for all $s \ge n_0$. Since $\ell_{\infty}(\Delta_{m,v})$ is a linear space, we have $x = x^s - (x^s - x) \in \ell_{\infty}(\Delta_{m,v})$, for all $s \ge n_0$. Therefore $\ell_{\infty}(\Delta_{m,v})$ is complete.

It can be shown that $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are closed subspaces of $\ell_{\infty}(\Delta_{m,v})$. Therefore these sequence spaces are Banach spaces with norm (2.1).

Theorem 2.3. The sequence spaces $\ell_{\infty}(\Delta_{m,v})$, $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are BK-spaces with the same norm as in (2.1).

Proof. These sequence spaces showed to be Banach space in Theorem 2.2. Now let

$$||x^n - x|| \to 0$$

as $n \to \infty$. Then

$$|x_k^n - x_k| \to 0 \ (n \to \infty)$$

for $k \leq m$ and

$$\|\Delta_{m,v}(x_k^n - x_k)\| \to 0 \ (n \to \infty)$$

for all $k \in \mathbb{N}$. Here also we obtain $|x_k^n - x_k| \to 0 \ (n \to \infty)$ for all $k \in \mathbb{N}$. Hence sequence spaces $\ell_{\infty}(\Delta_{m,v})$, $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are BK-spaces.

Theorem 2.4. (i) $X(\Delta) \subset X(\Delta_{m,v})$, for $X = \ell_{\infty}$, c, c_0 and the inclusions are strict.

(ii) $c_0(\Delta_{m,v}) \subset c(\Delta_{m,v}) \subset \ell_{\infty}(\Delta_{m,v})$ and the inclusions are strict.

Proof. (i) The proof is obtain for m = 1 and $v_k = 1$ for all $k \in \mathbb{N}$.

To show the inclusions are strict consider the following example.

Example 1. Let m = 2, $v_k = 1$ for all $k \in \mathbb{N}$ and consider the sequence (x_k) defined by $x_k = 1$ for k odd and $x_k = 0$ for k even. Then the sequence (x_k) belongs to $c_0(\Delta_{m,v})$ but does not belong to $c_0(\Delta)$.

Let m = 1, $v_k = \frac{1}{k}$ for all $k \in \mathbb{N}$ and $x = (k^2)$. Then the sequence (x_k) belongs to $c(\Delta_{m,v}) \subset \ell_{\infty}(\Delta_{m,v})$ but does not belong to $c(\Delta) \subset \ell_{\infty}(\Delta)$.

(ii) The inclusion $c_0(\Delta_{m,v}) \subset c(\Delta_{m,v})$ is obvious. Now let $x \in c(\Delta_{m,v})$. Since $\Delta_{m,v}(x_k) \in c \subset \ell_{\infty}$, we obtain $x \in \ell_{\infty}(\Delta_{m,v})$. Thus $c(\Delta_{m,v}) \subset \ell_{\infty}(\Delta_{m,v})$.

To show the inclusions are strict consider the following example.

Example 2. Let m = 1, $v_k = 1$ for all $k \in \mathbb{N}$ and $x_k = k$. Then the sequence (x_k) belongs to $c(\Delta_{m,v})$ but does not belong to $c_0(\Delta_{m,v})$.

Let m = 1, $v_k = 1$ for all $k \in \mathbb{N}$ and consider the sequence (x_k) defined by $x_k = 1$ for k odd and $x_k = 0$ for k even. Then the sequence (x_k) belongs to $\ell_{\infty}(\Delta_{m,v})$ but does not belong to $c(\Delta_{m,v})$.

Theorem 2.5. The sequence spaces $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are closed subsets in $\ell_{\infty}(\Delta_{m,v})$.

Proof. Since $c \in \ell_{\infty}$, then $c(\Delta_{m,v}) \subset \ell_{\infty}(\Delta_{m,v})$ by Theorem 2.4 (ii). Now we show that $\overline{c(\Delta_{m,v})} = \overline{c}(\Delta_{m,v})$, where $\overline{c(\Delta_{m,v})}$, the closure of $c(\Delta_{m,v})$ and \overline{c} , the closure of c. Let $x \in \overline{c(\Delta_{m,v})}$, then there exists a sequence (x^n) in $c(\Delta_{m,v})$ such that

$$||x^n - x|| \to 0 \ (n \to \infty)$$

in $c(\Delta_{m,v})$, and so

$$\sum_{r=1}^{m} |v_r(x^n - x_r)| + \sup_k |\Delta_{m,v} x_k^n - \Delta_{m,v} x_k| \to \infty \ (n \to \infty)$$

in c. Thus $\Delta_{m,v}x \in \overline{c}$. Hence $x \in \overline{c}(\Delta_{m,v})$. Conversely if $x \in \overline{c}(\Delta_{m,v})$, then $\Delta_{m,v}(x) \in \overline{c}$. Since c is closed, $x \in c(\Delta_{m,v}) \subset \overline{c(\Delta_{m,v})}$. Hence $x \in \overline{c(\Delta_{m,v})}$. This completes the proof.

The proof of $c_0(\Delta_{m,v})$ is similar to that of $c(\Delta_{m,v})$.

Theorem 2.6. The sequence spaces $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are separable spaces.

Proof. The proof is similar to that of Theorem 2.5.

Theorem 2.7. The sequence spaces $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are nowhere dense subsets of $\ell_{\infty}(\Delta_{m,v})$.

Proof. Suppose that $\overset{o}{\overline{c}} = \varnothing$, but $\overline{c(\Delta_{m,v})} \neq \varnothing$. Then \overline{c} contains no neighborhood and $B(a) \subset \overline{c(\Delta_{m,v})}$, where B(a) is a neighborhood of center a and radius r. Hence

$$a \in B(a) \subset \overline{c(\Delta_{m,v})} = \overline{c}(\Delta_{m,v}).$$

This implies that $\Delta_{m,v}(a) \in \overline{c}$. So

$$B(\Delta_{m,v}(a)) \cap c \neq \emptyset.$$

This contradicts to $\overset{o}{\overline{c}} = \varnothing$. Hence $\overline{c(\Delta_{m,v})} = \varnothing$. The proof of $c_0(\Delta_{m,v})$ is similar to that of $c(\Delta_{m,v})$.

The proofs of the following theorems are obtained by using the same technique of Tripathy and Esi [3], therefore we give it without proof.

Theorem 2.8. The sequence spaces $\ell_{\infty}(\Delta_{m,v})$, $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are not solid, not monotone and not convergence free.

Theorem 2.9. The sequence spaces $\ell_{\infty}(\Delta_{m,v})$, $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are not symmetric for m > 1.

Theorem 2.10. The sequence spaces $\ell_{\infty}(\Delta_{m,v})$, $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are not sequence algebra.

Proof. The proof follows from the following examples.

Example 3. Let m = 1, $v_k = 1$ for all $k \in \mathbb{N}$, $x_k = k$ and $y_k = k$ for all $k \in \mathbb{N}$. Then $x, y \in c(\Delta) \subset \ell_{\infty}(\Delta)$, but $(x, y) \notin c(\Delta) \subset \ell_{\infty}(\Delta)$.

Let m = 1, $v_k = \frac{1}{k}$ for all $k \in \mathbb{N}$, $x_k = k$ and $y_k = k$ for all $k \in \mathbb{N}$. Then $x, y \in c_0(\Delta_{m,v})$, but $(x,y) \notin c_0(\Delta_{m,v})$.

Theorem 2.11. The sequence spaces $\ell_{\infty}(\Delta_{m,v})$, $c(\Delta_{m,v})$ and $c_0(\Delta_{m,v})$ are 1-convex.

Proof. If $0 < \delta < 1$, then $V = \{x = (x_k) : ||x|| \le \delta\}$ is an absolutely 1-convex set, for $x, y \in V$ and $|\lambda| + |\mu| \le 1$, then

$$\begin{aligned} \|\lambda x + \mu y\| &= \sum_{r=1}^{m} |v_r(\lambda x_r + \mu y_r)| + \sup_k |\Delta_{m,v}(\lambda x_k + \mu y_k)| \\ &\leq |\lambda| \|x\| + |\mu| \|y\| \le \delta(|\lambda| + |\mu|) \le \delta. \end{aligned}$$

This completes the proof.

References

[1] H. Kızmaz, On certain sequence spaces. Canad. Math.Bull., 24, (1981), 169-176.

[2] R. Çolak, On Some Generalized Sequence Spaces, Commun. Fac. Sci. Uni.
 Ank. Series A₁, 38, (1989), 35-46.

[3] B.C. Tripathy, and A. Esi, A New Type of Difference Sequence spaces, Int. J. Sci. & Tech., 1(1), (2006), 11-14.

[4] P. K. Kamthan, and M. Gupta, *Sequence spaces and series*, Lecture Notes in Pure and Applied Mathematics, 65, Marcel Dekker Incorporated, New York, 1981.

[5] I.J. Maddox and J.W. Roles, Absolute convexity in certain topological linear spaces, Proc.Camb.Phil.Soc., 66, (1969), 541-545.

[6] I.J. Maddox, *Elements of Functional Analysis*, Cambridge University Press, Cambridge, London and New York, 1970.

Çiğdem A. BEKTAŞ

Department of Mathematics Firat University, Elazig, 23119, TURKEY. email: cigdemas 78@hotmail.com

Gülcan ATICI Department of Mathematics Muş Alparslan University, Muş, 49100, TURKEY. email:gatici23@hotmail.com