SOME RESULTS OF p-VALENT FUNCTIONS DEFINED BY INTEGRAL OPERATORS

Gulsah Saltik Ayhanoz and Ekrem Kadioglu

Abstract. In this paper, we derive some properties for $\mathcal{G}_{p, n, l, \delta}(z)$ and $\mathcal{F}_{p, n, l, \delta}(z)$ considering the classes $M T\left(p, \beta_{i}, \mu_{i}\right), K D\left(p, \beta_{i}, \mu_{i}\right)$ and $N_{p}(\gamma)$. Two new subclasses $K D \mathcal{F}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ and $K D \mathcal{G}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ are defined. Necessary and sufficient conditions for a family of functions f_{i} and g_{i}, respectively, to be in the $K D \mathcal{F}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ and $K D \mathcal{G}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ are defined. As special cases, the properties of $\int_{0}^{z} \prod_{i=1}^{n}\left(f^{\prime}(t)\right)^{\delta} d t$ and $\int_{0}^{z} \prod_{i=1}^{n}\left(\frac{f(t)}{t}\right)^{\delta} d t$ are given.

2000 Mathematics Subject Classification: 30C45.
Key Words and Phrases. Analytic functions; Integral operators; β uniformly p-valently starlike and β uniformly p-valently convex functions.

1. Introduction and preliminaries

Let \mathcal{A}_{p} denote the class of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{m=p+1}^{\infty} a_{m} z^{m}, \quad(p \in \mathbb{N}=\{1,2, \ldots,\}) \tag{1}
\end{equation*}
$$

which are analytic in the open disc $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$. Also denote T_{p} the subclass of \mathcal{A}_{p} consisting of functions whose nonzero coefficients, from the second one, are negative and has the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{m=p+1}^{\infty} a_{m} z^{m}, \quad a_{m} \geq 0, \quad(p \in \mathbb{N}=\{1,2, \ldots,\}) . \tag{2}
\end{equation*}
$$

Also $\mathcal{A}_{1}=\mathcal{A}, T_{1}=T$.
A function $f \in \mathcal{A}_{p}$ is said to be p-valently starlike of order $\alpha(0 \leq \alpha<p)$ if and only if

$$
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \quad(z \in \mathcal{U}) .
$$

We denote by $\mathcal{S}_{p}^{*}(\alpha)$, the class of all such functions. On the other hand, a function $f \in \mathcal{A}_{p}$ is said to be p-valently convex of order $\alpha(0 \leq \alpha<p)$ if and only if

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, \quad(z \in \mathcal{U}) .
$$

Let $\mathcal{C}_{p}(\alpha)$ denote the class of all those functions which are p-valently convex of order α in \mathcal{U}.

Note that $\mathcal{S}_{p}^{*}(0)=\mathcal{S}_{p}^{*}$ and $\mathcal{C}_{p}(0)=\mathcal{C}_{p}$ are, respectively, the classes of p-valently starlike and p-valently convex functions in \mathcal{U}. Also, we note that $\mathcal{S}_{1}^{*}(0)=\mathcal{S}^{*}$ and $\mathcal{C}_{1}=\mathcal{C}$ are, respectively, the usual classes of starlike and convex functions in \mathcal{U}.

Let $\mathcal{N}_{p}(\gamma)$ be the subclass of \mathcal{A}_{p} consisting of the functions f which satisfy the inequality

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\gamma, \quad(z \in \mathcal{U}), \gamma>p \tag{3}
\end{equation*}
$$

Also $\mathcal{N}_{1}(\gamma)=\mathcal{N}(\gamma)$. For $p=1$, this class was studied by Owa (see [12]) and Mohammed (see [9]).

For a function $f \in \mathcal{A}_{p}$, we define the following operator

$$
\begin{gather*}
D^{0} f(z)=f(z) \\
D^{1} f(z)=\frac{1}{p} z f^{\prime}(z) \\
\vdots \tag{4}\\
D^{k} f(z)=D\left(D^{k-1} f(z)\right),
\end{gather*}
$$

where $k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. The differential operator D^{k} was introduced by Shenan et al. (see [18]). When $p=1$, we get Sălăgean differential operator (see [15]).

We note that if $f \in \mathcal{A}_{p}$, then

$$
D^{k} f(z)=z^{p}+\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{k} a_{m} z^{m}, \quad(p \in \mathbb{N}=\{1,2, \ldots\})(z \in \mathcal{U}) .
$$

We also note that if $f \in T_{p}$, then

$$
D^{k} f(z)=z^{p}-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{k} a_{m} z^{m}, \quad(p \in \mathbb{N}=\{1,2, \ldots\})(z \in \mathcal{U}) .
$$

Let $M T(p, \beta, \mu)$ be the subclass of \mathcal{A}_{p} consisting of the functions f which satisfy the analytic characterization

$$
\begin{equation*}
\left|\frac{z\left(D^{l_{i}} f(z)\right)^{\prime}}{D^{l_{i}} f(z)}-p\right|<\beta\left|\mu \frac{z\left(D^{l_{i}} f(z)\right)^{\prime}}{D^{l_{i}} f(z)}+p\right| \tag{5}
\end{equation*}
$$

for some $0<\beta \leq p, 0 \leq \mu<p, l_{i} \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $z \in \mathcal{U}$. For $p=1$, $l_{1}=l_{2}=\ldots=l_{n}=0$ for all $i=\{1,2, \ldots, n\}$ this class was studied (see [2]).

Definition 1. A function $f \in \mathcal{A}_{p}$ is said to be in the class $K D(p, \beta, \mu)$ if satisfies the following inequality:

$$
\begin{equation*}
\Re\left\{1+\frac{z\left(D^{l_{i}} f(z)\right)^{\prime \prime}}{\left(D^{l_{i}} f(z)\right)^{\prime}}\right\} \geq \mu\left|1+\frac{z\left(D^{l_{i}} f(z)\right)^{\prime \prime}}{\left(D^{l_{i}} f(z)\right)^{\prime}}-p\right|+\beta \tag{6}
\end{equation*}
$$

for some $0 \leq \beta<p, \mu \geq 0, l_{i} \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $z \in \mathcal{U}$. For $p=1$, $l_{1}=l_{2}=\ldots=l_{n}=0$ for all $i=\{1,2, \ldots, n\}$ this class was studied (see [17], [9]).

Definition 2. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}$ for all $i=\{1,2, \ldots, n\}, n \in \mathbb{N}$. We define the following general integral operators

$$
\begin{gather*}
\mathcal{I}_{p, n}^{l, \delta}\left(f_{1}, f_{2}, \ldots, f_{n}\right): \mathcal{A}_{p}^{n} \rightarrow \mathcal{A}_{p} \\
\mathcal{I}_{p, n}^{l, \delta}\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\mathcal{F}_{p, n, l, \delta}(z) \\
\mathcal{F}_{p, n, l, \delta}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{D^{l_{i}} f_{i}(t)}{t^{p}}\right)^{\delta_{i}} d t \tag{7}
\end{gather*}
$$

and

$$
\begin{gather*}
\mathcal{J}_{p, n}^{l, \delta}\left(g_{1}, g_{2}, \ldots, g_{n}\right): \mathcal{A}_{p}^{n} \rightarrow \mathcal{A}_{p} \\
\mathcal{J}_{p, n}^{l, \delta}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=\mathcal{G}_{p, n, l, \delta}(z) \\
\mathcal{G}_{p, n, l, \delta}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{\left(D^{l_{i}} g_{i}(t)\right)^{\prime}}{p t^{p-1}}\right)^{\delta_{i}} d t \tag{8}
\end{gather*}
$$

where $f_{i}, g_{i} \in \mathcal{A}_{p}$ for all $i=\{1,2, \ldots, n\}$ and D is defined by (4).
Remark 1. (7) integral operator was studied and introduced by Saltık et al. (see [16]). We note that if $l_{1}=l_{2}=\ldots=l_{n}=0$ for all $i=\{1,2, \ldots, n\}$, then the integral operator $\mathcal{F}_{p, n, l, \delta}(z)$ reduces to the operator $F_{p}(z)$ which was studied by Frasin (see [6]). Upon setting $p=1$ in the operator (7), we can obtain the integral operator $D^{k} F(z)$ which was studied by Breaz (see [5]) and Breaz (see [4]). For $p=1$ and $l_{1}=l_{2}=\ldots=l_{n}=0$ in (7), the integral operator $\mathcal{F}_{p, n, l, \delta}(z)$ reduces to the operator $F_{n}(z)$ which was studied by Breaz, Breaz (see [2]) and Mohammed (see
[10]). Observe that $p=n=1, l_{1}=0$ and $\delta_{1}=\delta$, we obtain the integral operator $I_{\delta}(f)(z)$ which was studied by Pescar and Owa (see [13]), D. Breaz (see [5]) and Mohammed (see [11]) for $\delta_{1}=\delta \in[0,1]$ special case of the operator $I_{\delta}(f)(z)$ was studied by Miller, Mocanu and Reade (see [8]). For $p=n=1, l_{1}=0$ and $\delta_{1}=1$ in (7), we have Alexander integral operator $I(f)(z)$ in (see [1]).

Remark 2. (8) integral operator was studied and introduced by Saltık et al. (see [16]). For $l_{1}=l_{2}=\ldots=l_{n}=0$ in (8) the integral operator $\mathcal{G}_{p, n, l, \delta}(z)$ reduces to the operator $G_{p}(z)$ which was studied by Frasin (see [6]). For $p=1$ and $l_{1}=$ $l_{2}=\ldots=l_{n}=0$ in (8), the integral operator $\mathcal{G}_{p, n, l, \delta}(z)$ reduces to the operator $G_{\delta_{1}, \delta_{2}, \ldots, \delta_{n}}(z)$ which was studied by Breaz, Breaz and Owa (see [3]) and Mohammed (see [10]). Observe $p=n=1, l_{1}=0$ and $\delta_{1}=\delta$, we obtain the integral operator $G(z)$ which was introduced and studied by Pfaltzgraff (see [14]), Mohammed (see [11]), D.Breaz (see [5]) and Kim and Merkes (see [7]).

Now, by using the equations (7) and (8) and the Definition 1 we introduce the following two new subclasses of $K D(p, \beta, \mu)$.

Definition 3. A family of functions $f_{i}, i=\{1,2, \ldots, n\}$ is said to be in the class $K D \mathcal{F}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ if satisfies the inequality:

$$
\begin{equation*}
\Re\left\{1+\frac{z\left(D^{l_{i}} \mathcal{F}_{p, n, l, \delta}(z)\right)^{\prime \prime}}{\left(D^{l_{i}} \mathcal{F}_{p, n, l, \delta}(z)\right)^{\prime}}\right\} \geq \mu\left|1+\frac{z\left(D^{l_{i}} \mathcal{F}_{p, n, l, \delta}(z)\right)^{\prime \prime}}{\left(D^{l_{i}} \mathcal{F}_{p, n, l, \delta}(z)\right)^{\prime}}-p\right|+\beta, \tag{9}
\end{equation*}
$$

for some $0 \leq \beta<p, \mu \geq 0, l_{i} \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $z \in \mathcal{U}$ where $\mathcal{F}_{p, n, l, \delta}$ is defined in (7).

Definition 4. A family of functions $g_{i}, i=\{1,2, \ldots, n\}$ is said to be in the class $K D \mathcal{G}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ if satisfies the inequality:

$$
\begin{equation*}
\Re\left\{1+\frac{z\left(D^{l_{i}} \mathcal{G}_{p, n, l, \delta}(z)\right)^{\prime \prime}}{\left(D^{l_{i}} \mathcal{G}_{p, n, l, \delta}(z)\right)^{\prime}}\right\} \geq \mu\left|1+\frac{z\left(D^{l_{i}} \mathcal{G}_{p, n, l, \delta}(z)\right)^{\prime \prime}}{\left(D^{l_{i}} \mathcal{G}_{p, n, l, \delta}(z)\right)^{\prime}}-p\right|+\beta, \tag{10}
\end{equation*}
$$

for some $0 \leq \beta<p, \mu \geq 0, l_{i} \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $z \in \mathcal{U}$ where $\mathcal{G}_{p, n, l, \delta}$ is defined in (8).

2. Sufficient conditions of the operator $F_{p, n, l, \delta}(z)$

First, in this section we prove a sufficient condition for the integral operator $\mathcal{F}_{p, n, l, \delta}(z)$ to be in the class $\mathcal{N}_{p}(\eta)$.

Theorem 1. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \mu_{i}<p$, $0<\beta_{i} \leq p$ and $f_{i} \in \mathcal{A}_{p}$ for all $i=\{1,2, \ldots, n\}$. If $\left|\frac{\left(D^{\left.l_{i} f_{i}\right)^{\prime}(z)}\right.}{D^{l_{i} f_{i}(z)}}\right|<M_{i}$ and $f_{i} \in$ $M T\left(p, \beta_{i}, \mu_{i}\right)$, then the integral operator

$$
F_{p, n, l, \delta}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{D^{l_{i}} f_{i}(t)}{t^{p}}\right)^{\delta_{i}} d t,
$$

is in $\mathcal{N}_{p}(\eta)$, where

$$
\begin{equation*}
\eta=\sum_{i=1}^{n} \delta_{i} \beta_{i}\left(p+\mu_{i} M_{i}\right)+p . \tag{11}
\end{equation*}
$$

Proof. From the definition (7), we observe that $\mathcal{F}_{p, n, l, \delta}(z) \in \mathcal{A}_{p}$. On the other hand, it is easy to see that

$$
\begin{equation*}
\mathcal{F}_{p, n, l, \delta}^{\prime}(z)=p z^{p-1} \prod_{i=1}^{n}\left(\frac{D^{l_{i}} f_{i}(z)}{z^{p}}\right)^{\delta_{i}} . \tag{12}
\end{equation*}
$$

Now, we differentiate (12) logarithmically and multiply by z, we obtain

$$
1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}=p+\sum_{i=1}^{n} \delta_{i}\left(\frac{z\left(D^{l_{i}} f_{i}\right)^{\prime}(z)}{D^{l_{i}} f_{i}(z)}-p\right) .
$$

We calculate the real part from both terms of the above expression and obtain

$$
\Re\left\{1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}\right\}=\sum_{i=1}^{n} \delta_{i} \Re\left\{\frac{z\left(D^{l_{i}} f_{i}\right)^{\prime}(z)}{D^{l_{i}} f_{i}(z)}-p\right\}+p
$$

Since $\Re w \leq|w|$, then

$$
\Re\left\{1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}\right\} \leq \sum_{i=1}^{n} \delta_{i}\left|\frac{z\left(D^{l_{i}} f_{i}\right)^{\prime}(z)}{D^{l_{i}} f_{i}(z)}-p\right|+p .
$$

Since $f_{i} \in M T\left(p, \beta_{i}, \mu_{i}\right)$ for all $i=\{1,2, \ldots, n\}$, we have

$$
\begin{align*}
\Re\left\{1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}\right\} & \leq \sum_{i=1}^{n} \delta_{i} \beta_{i}\left|\mu_{i} \frac{z\left(D^{l_{i}} f_{i}\right)^{\prime}(z)}{D^{l_{i}} f_{i}(z)}+p\right|+p, \tag{13}\\
& \leq \sum_{i=1}^{n} \delta_{i} \beta_{i} \mu_{i}\left|\frac{z\left(D^{l_{i}} f_{i}\right)^{\prime}(z)}{D^{l_{i}} f_{i}(z)}\right|+p \sum_{i=1}^{n} \delta_{i} \beta_{i}+p .
\end{align*}
$$

Since (13) and $\left|\frac{\left(D^{l_{i} f_{i}}\right)^{\prime}(z)}{D^{t_{i} f_{i}(z)}}\right|<M_{i}$, we obtain
$\Re\left\{1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}\right\}<\sum_{i=1}^{n} \delta_{i} \beta_{i} \mu_{i} M_{i}+p \sum_{i=1}^{n} \delta_{i} \beta_{i}+p=\sum_{i=1}^{n} \delta_{i} \beta_{i}\left(p+\mu_{i} M_{i}\right)+p$.
Hence $F_{p, n, l, \delta}(z) \in \mathcal{N}_{p}(\eta), \eta=\sum_{i=1}^{n} \delta_{i} \beta_{i}\left(p+\mu_{i} M_{i}\right)+p$.
Remark 3.For $p=1, l_{i}=0$ for all $i=\{1,2, \ldots, n\}$ in Theorem 1, we obtain Theorem 1 (see [9]).

Putting $p=1$ in Theorem 1, we have
Corollary 1. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \mu_{i}<$ $1,0<\beta_{i} \leq 1$ and $f_{i} \in \mathcal{A}$ for all $i=\{1,2, \ldots, n\}$. If $\left|\frac{\left(D^{l} f_{i}\right)^{\prime}(z)}{D^{l} f_{i}(z)}\right|<M_{i}$ and $f_{i} \in$ $M T\left(1, \beta_{i}, \mu_{i}\right)$ then the integral operator

$$
F_{1, n, l, \delta}(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(\frac{D^{l_{i}} f_{i}(t)}{t}\right)^{\delta_{i}} d t
$$

is in $\mathcal{N}(\eta)$, where

$$
\eta=\sum_{i=1}^{n} \delta_{i} \beta_{i}\left(1+\mu_{i} M\right)+1 .
$$

Putting $p=n=1, l_{1}=0, \delta_{1}=\delta, \mu_{1}=\mu, \beta_{1}=\beta, M_{1}=M$ and $f_{1}=f$ in Theorem 1, we have

Corollary 2. Let $\delta \in \mathbb{R}^{+}, 0 \leq \mu<1,0<\beta \leq 1$ and $f \in \mathcal{A}$. If $\left|\frac{f^{\prime}(z)}{f(z)}\right|<M$ and $f \in M T(1, \beta, \mu)$ then the integral operator $\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\delta}$ is in $\mathcal{N}(\eta)$, where $\eta=$ $\delta \beta(1+\mu M)+1$.

3.Sufficient conditions of the operator $G_{p, n, l, \delta}(z)$

Next, in this section we give a condition for the integral $\mathcal{G}_{p, n, l, \delta}(z)$ to be $p-$ valently convex.

Theorem 2. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, \mu_{i} \geq 0$, $g_{i} \in K D\left(p, \beta_{i}, \mu_{i}\right)$ and let $\beta_{i} \geq 0$ be real number with the property $0 \leq \beta_{i}<p$ for all $i=\{1,2, \ldots, n\}$. Moreover suppose that $0<\sum_{i=1}^{n} \delta_{i}\left(p-\beta_{i}\right) \leq p$, then the integral operator

$$
\mathcal{G}_{p, n, l, \delta}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{\left(D^{l_{i}} g_{i}(t)\right)^{\prime}}{p t^{p-1}}\right)^{\delta_{i}} d t,
$$

is convex order of $\sigma=p-\sum_{i=1}^{n} \delta_{i}\left(p-\beta_{i}\right)$.
Proof. From the definition (8), we observe that $\mathcal{G}_{p, n, l, \delta}(z) \in \mathcal{A}_{p}$. On the other hand, it is easy to see that

$$
\begin{equation*}
\mathcal{G}_{p, n, l, \delta}^{\prime}(z)=p z^{p-1} \prod_{i=1}^{n}\left(\frac{\left(D^{l_{i}} g_{i}(z)\right)^{\prime}}{p z^{p-1}}\right)^{\delta_{i}} . \tag{14}
\end{equation*}
$$

Now, we differentiate (14) logarithmically and make the similar operators to the proof of the Theorem 2, we obtain

$$
1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}=p+\sum_{i=1}^{n} \delta_{i}\left(\frac{z\left(D^{l_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{l_{i}} g_{i}(z)\right)^{\prime}}-p+1\right) .
$$

We calculate the real part from both terms of the above expression and obtain

$$
\Re\left\{1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}\right\}=\sum_{i=1}^{n} \delta_{i} \Re\left\{1+\frac{z\left(D^{l_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{l_{i}} g_{i}(z)\right)^{\prime}}\right\}-p \sum_{i=1}^{n} \delta_{i}+p .
$$

Since $g_{i} \in K D\left(p, \beta_{i}, \mu_{i}\right)$ for all $i=\{1,2, \ldots, n\}$, we have

$$
\Re\left\{1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}\right\}>\sum_{i=1}^{n} \delta_{i}\left(\mu_{i}\left|1+\frac{z\left(D^{l_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{l_{i}} g_{i}(z)\right)^{\prime}}-p\right|+\beta_{i}\right)-p \sum_{i=1}^{n} \delta_{i}+p .
$$

Since $\delta_{i} \mu_{i}\left|1+\frac{z\left(D^{l_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{\left.l_{i} g_{i}(z)\right)^{\prime}}\right.}-p\right|>0$, we obtain

$$
\Re\left\{1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}\right\} \geq p-\sum_{i=1}^{n} \delta_{i}\left(p-\beta_{i}\right),
$$

which implies that $\mathcal{G}_{p, n, l, \delta}(z)$ is $p-$ valently convex of order $\sigma=p-\sum_{i=1}^{n} \delta_{i}\left(p-\beta_{i}\right)$.
Remark 4. Setting $p=1, l_{i}=0$ and $g_{i}=f_{i}$ for all $i=\{1,2, \ldots, n\}$ in Theorem 2, we have obtain Theorem 2 in (see [9]).

Putting $p=1$ in Theorem 2, we have
Corollary 3. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, \mu_{i} \geq 0$, $g_{i} \in K D\left(1, \beta_{i}, \mu_{i}\right)$ and let $\beta_{i} \geq 0$ be real number with the property $0 \leq \beta_{i}<1$ for all $i=\{1,2, \ldots, n\}$. Moreover suppose that $0<\sum_{i=1}^{n} \delta_{i}\left(1-\beta_{i}\right) \leq 1$, then the integral operator $\mathcal{G}_{1, n, l, \delta}(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(\left(D^{l_{i}} g_{i}(t)\right)^{\prime}\right)^{\delta_{i}} d t$ is convex order of $\sigma=1-$ $\sum_{i=1}^{n} \delta_{i}\left(1-\beta_{i}\right)$.

Putting $p=n=1, l_{1}=0, \delta_{1}=\delta, \mu_{1}=\mu, \beta_{1}=\beta$ and $g_{1}=g$ in Theorem 2, we have

Corollary 4. Let $\delta \in \mathbb{R}^{+}, \mu \geq 0, g \in K D(1, \beta, \mu)$ and let $\beta \geq 0$ be real number with the property $0 \leq \beta<1$. Moreover suppose that $0<\delta(1-\beta) \leq 1$, then the integral operator $\mathcal{G}_{1,1,0, \delta}(z)=\int_{0}^{z}\left(g^{\prime}(t)\right)^{\delta} d t$ is convex order of $\sigma=1-\delta(1-\beta)$.
4. A NECESSARY AND SUFFFICIENT CONDITION FOR A FAMILY OF ANALYTIC

$$
\text { FUNCTIONS } f_{i} \in K D F_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)
$$

In this section, we give a necessary and sufficient condition for a family of functions $f_{i} \in K D \mathcal{F}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$. Before embarking on the proof of our result, let us calculate the expression $\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}$, required for proving our result.

Recall that, from (7), we have

$$
\begin{equation*}
\mathcal{F}_{p, n, l, \delta}^{\prime}(z)=p z^{p-1} \prod_{i=1}^{n}\left(\frac{D^{l_{i}} f_{i}(z)}{z^{p}}\right)^{\delta_{i}} \tag{15}
\end{equation*}
$$

Now, we differentiate (15) logarithmically and multiply by z, we obtain

$$
1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}-p=\sum_{i=1}^{n} \delta_{i}\left(\frac{z\left(D^{l_{i}} f_{i}\right)^{\prime}(z)}{D^{l_{i}} f_{i}(z)}-p\right)
$$

Let $D^{l_{i}} f_{i}(z)=z^{p}-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m}$,

$$
\left(D^{l_{i}} f_{i}\right)^{\prime}(z)=p z^{p-1}-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-1} \text { and we get }
$$

$$
\begin{equation*}
1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}-p=\sum_{i=1}^{n} \delta_{i}\left[\frac{p z^{p}-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m}}{z^{p}-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m}}-p\right] \tag{16}
\end{equation*}
$$

$$
=-\sum_{i=1}^{n} \delta_{i}\left[\frac{\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}}(m-p) a_{m, i} z^{m-p}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m-p}}\right]
$$

Theorem 3. Let the function $f_{i} \in T_{p}$ for $i \in\{1,2, \ldots, n\}$. Then the functions
$f_{i} \in K D \mathcal{F}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ for $i \in\{1,2, \ldots, n\}$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}\left(\frac{m}{p}\right)^{l_{i}}(m-p)(\mu+1) a_{m, i}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i}}\right] \leq p-\beta \tag{17}
\end{equation*}
$$

Proof. First consider

$$
\mu\left|1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}-p\right|-\Re\left\{1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}\right\} \leq(\mu+1)\left|1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}-p\right| .
$$

From (16), we obtain

$$
\begin{aligned}
& (\mu+1)\left|1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}-p\right|, \\
= & (\mu+1)\left|\sum_{i=1}^{n} \delta_{i}\left[\frac{\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}}(m-p) a_{m, i} z^{m-p}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m-p}}\right]\right|, \\
\leq & (\mu+1) \sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}\left(\frac{m}{p}\right)^{l_{i}}(m-p)\left|a_{m, i}\right||z|^{m-p}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}}\left|a_{m, i}\right||z|^{m-p}}\right], \\
\leq & (\mu+1) \sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}\left(\frac{m}{p}\right)^{l_{i}}(m-p) a_{m, i}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i}}\right] .
\end{aligned}
$$

If (17) holds then the above expression is bounded by $p-\beta$ and consequently

$$
\mu\left|1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}-p\right|-\Re\left\{1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}\right\}<-\beta,
$$

which equivalent to

$$
\Re\left\{1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}\right\} \geq \mu\left|1+\frac{z \mathcal{F}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{F}_{p, n, l, \delta}^{\prime}(z)}-p\right|+\beta
$$

Hence $f_{i} \in K D \mathcal{F}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ for $i \in\{1,2, \ldots, n\}$.
Conversely, let $f_{i} \in K D \mathcal{F}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ for $i \in\{1,2, \ldots, n\}$ and prove that (17) holds. If $f_{i} \in K D \mathcal{F}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ for $i \in\{1,2, \ldots, n\}$ and z is real, we get from (7) and (16)

$$
\begin{aligned}
& p-\sum_{i=1}^{n} \delta_{i}\left[\frac{\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}}(m-p) a_{m, i} z^{m-p}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m-p}}\right] \\
\geq & \left.\mu\left|\sum_{i=1}^{n} \delta_{i}\left[\frac{\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}}(m-p) a_{m, i} z^{m-p}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m-p}}\right]\right|\right]+\beta, \\
\geq & \mu \sum_{i=1}^{n} \delta_{i}\left[\frac{(m-p) \sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m-p}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m-p}}\right]+\beta .
\end{aligned}
$$

That is equivalent to

$$
\begin{aligned}
& \sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i} \mu\left(\frac{m}{p}\right)^{l_{i}}(m-p) a_{m, i} z^{m-p}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m-p}}\right]+\sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}\left(\frac{m}{p}\right)^{l_{i}}(m-p) a_{m, i} z^{m-p}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m-p}}\right] \\
\leq & p-\beta
\end{aligned}
$$

The above inequality reduce to

$$
\sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}(\mu+1)\left(\frac{m}{p}\right)^{l_{i}}(m-p) a_{m, i} z^{m-p}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m-p}}\right] \leq p-\beta
$$

Let $z \rightarrow 1^{-}$along the real axis, then we get

$$
\sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}(\mu+1)\left(\frac{m}{p}\right)^{l_{i}}(m-p) a_{m, i}}{1-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i}}\right] \leq p-\beta
$$

which give the required result.
Remark 5. Setting $p=1, l_{i}=0$ for $i \in\{1,2, \ldots, n\}$ in Theorem 3, we have obtain Theorem 3 in (see [9]).

Putting $p=1$ in Theorem 3, we have
Corollary 5.Let the function $f_{i} \in T$ for $i \in\{1,2, \ldots, n\}$. Then the functions $f_{i} \in K D \mathcal{F}_{1, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ for $i \in\{1,2, \ldots, n\}$ if and only if

$$
\sum_{i=1}^{n}\left[\frac{\sum_{m=2}^{\infty} \delta_{i}(m)^{l_{i}}(m-1)(\mu+1) a_{m, i}}{1-\sum_{m=2}^{\infty}(m)^{l_{i}} a_{m, i}}\right] \leq 1-\beta
$$

Putting $p=n=1, l_{1}=0, \delta_{1}=\delta$ and $f_{1}=f$ in Theorem 3, we have
Corollary 6. Let the function $f \in T$. Then the functions $f \in K D \mathcal{F}_{1,1,0}(\beta, \mu, \delta)$ if and only if

$$
\frac{\sum_{m=2}^{\infty} \delta(m-1)(\mu+1) a_{m, 1}}{1-\sum_{m=2}^{\infty} a_{m, 1}} \leq 1-\beta
$$

5.A necessary and suffficient condition for a family of analytic functions

$$
g_{i} \in K D G_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)
$$

In this section, we give a necessary and sufficient condition for a family of functions $g_{i} \in K D \mathcal{G}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$. Let us calculate the expression $\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}$, required for proving our result.

Recall that, from (8), we have

$$
\begin{equation*}
\mathcal{G}_{p, n, l, \delta}^{\prime}(z)=p z^{p-1} \prod_{i=1}^{n}\left(\frac{\left(D^{l_{i}} g_{i}(z)\right)^{\prime}}{p z^{p-1}}\right)^{\delta_{i}} \tag{18}
\end{equation*}
$$

Now, we differentiate (18) logarithmically and multiply by z, we obtain

$$
1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}-p=\sum_{i=1}^{n} \delta_{i}\left(\frac{z\left(D^{l_{i}} g_{i}(z)\right)^{\prime \prime}}{\left(D^{l_{i}} g_{i}(z)\right)^{\prime}}-p+1\right)
$$

Let $D^{l_{i}} g_{i}(z)=z^{p}-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} a_{m, i} z^{m},\left(D^{l_{i}} g_{i}\right)^{\prime}(z)=p z^{p-1}-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-1}$ and

$$
\begin{align*}
& \left(D^{l_{i}} g_{i}\right)^{\prime \prime}(z)=p(p-1) z^{p-2}-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m(m-1) a_{m, i} z^{m-2}, \text { we } \\
& \tag{19}\\
& 1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}-p \\
& = \\
& \sum_{i=1}^{n} \delta_{i}\left[\frac{p(p-1) z^{p-1}-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m(m-1) a_{m, i} z^{m-1}}{p z^{p-1}-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-1}}-p+1\right], \\
& = \\
& -\sum_{i=1}^{n} \delta_{i}\left[\frac{\sum_{m=p+1}^{\infty}\left(\frac{n}{p}\right)^{l_{i}} m(m-p) a_{m, i} z^{m-p}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-p}}\right] .
\end{align*}
$$

Theorem 4. Let the function $g_{i} \in T_{p}$ for $i \in\{1,2, \ldots, n\}$. Then the functions $g_{i} \in K D \mathcal{G}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ for $i \in\{1,2, \ldots, n\}$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}\left(\frac{m}{p}\right)^{l_{i}} m(m-p)(\mu+1) a_{m, i}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i}}\right] \leq p-\beta \tag{20}
\end{equation*}
$$

Proof. First consider

$$
\mu\left|1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}-p\right|-\Re\left\{1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}\right\} \leq(\mu+1)\left|1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}-p\right| .
$$

From (19), we obtain

$$
\left.\begin{array}{rl}
& (\mu+1)\left|1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}-p\right| \\
= & (\mu+1)\left|\sum_{i=1}^{n} \delta_{i}\left[\frac{\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m(m-p) a_{m, i} z^{m-p}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-p}}\right]\right| \\
\leq & (\mu+1) \sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}\left(\frac{m}{p}\right)^{l_{i}} m(m-p)\left|a_{m, i}\right||z|^{m-p}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m\left|a_{m, i}\right||z|^{m-p}}\right] \\
\leq & (\mu+1) \sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}\left(\frac{m}{p}\right)^{l_{i}} m(m-p) a_{m, i}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i}}\right]
\end{array}\right] .
$$

If (20) holds then the above expression is bounded by $p-\beta$ and consequently

$$
\mu\left|1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}-p\right|-\Re\left\{1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}\right\}<-\beta
$$

which equivalent to

$$
\Re\left\{1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}\right\} \geq \mu\left|1+\frac{z \mathcal{G}_{p, n, l, \delta}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \delta}^{\prime}(z)}-p\right|+\beta
$$

Hence $g_{i} \in K D \mathcal{G}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ for $i \in\{1,2, \ldots, n\}$.
Conversely, let $g_{i} \in K D \mathcal{G}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ for $i \in\{1,2, \ldots, n\}$ and prove that (20) holds. If $g_{i} \in K D \mathcal{G}_{p, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ for $i \in\{1,2, \ldots, n\}$ and z is real, we get from (8) and (19)

$$
\begin{aligned}
& p-\sum_{i=1}^{n} \delta_{i}\left[\frac{\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m(m-p) a_{m, i} z^{m-p}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-p}}\right] \\
\geq & \mu\left|\sum_{i=1}^{n} \delta_{i}\left[\frac{\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m(m-p) a_{m, i} z^{m-p}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-p}}\right]\right|+\beta \\
\geq & \mu \sum_{i=1}^{n} \delta_{i}\left[\frac{\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m(m-p) a_{m, i} z^{m-p}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-p}}\right]+\beta .
\end{aligned}
$$

That is equivalent to

$$
\begin{aligned}
& \sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i} \mu\left(\frac{m}{p}\right)^{l_{i}} m(m-p) a_{m, i} z^{m-p}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-p}}\right]+\sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}\left(\frac{m}{p}\right)^{l_{i}} m(m-p) a_{m, i} z^{m-p}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-p}}\right] \\
\leq & p-\beta
\end{aligned}
$$

The above inequality reduce to

$$
\sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}(\mu+1)\left(\frac{m}{p}\right)^{l_{i}} m(m-p) a_{m, i} z^{m-p}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i} z^{m-p}}\right] \leq p-\beta
$$

Let $z \rightarrow 1^{-}$along the real axis, then we get $\sum_{i=1}^{n}\left[\frac{\sum_{m=p+1}^{\infty} \delta_{i}(\mu+1)\left(\frac{m}{p}\right)^{l_{i}} m(m-p) a_{m, i}}{p-\sum_{m=p+1}^{\infty}\left(\frac{m}{p}\right)^{l_{i}} m a_{m, i}}\right] \leq$ $p-\beta$,
which give the required result.
Remark 6. Setting $p=1, l_{i}=0$ for $i \in\{1,2, \ldots, n\}$ in Theorem 4, we have obtain Theorem 4 in (see [9]).

Putting $p=1$ in Theorem 4, we have

Corollary 7. Let the function $g_{i} \in T$ for $i \in\{1,2, \ldots, n\}$. Then the functions $g_{i} \in K D \mathcal{G}_{1, n, l}\left(\beta, \mu, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ for $i \in\{1,2, \ldots, n\}$ if and only if

$$
\sum_{i=1}^{n}\left[\frac{\sum_{m=2}^{\infty} \delta_{i}(\mu+1)(m)^{l_{i}} m(m-1) a_{m, i}}{1-\sum_{m=2}^{\infty}(m)^{l_{i}} m a_{m, i}}\right] \leq 1-\beta
$$

Putting $p=n=1, l_{1}=0, \delta_{1}=\delta$ and $g_{1}=g$ in Theorem 4, we have
Corollary 8. Let the function $g \in T$. Then the functions $g \in K D \mathcal{G}_{1,1,0}(\beta, \mu, \delta)$ if and only if $\frac{\sum_{m=2}^{\infty} \delta(\mu+1) m(m-1) a_{m, 1}}{1-\sum_{m=2}^{\infty} m a_{m, 1}} \leq 1-\beta$.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics, 17 (1) (1915) 12-22.
[2] D. Breaz and N. Breaz, Two integral operators, Studia Universitatis BabesBolyai. Mathematica, 47 (3) (2002) 13-19.
[3] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Univ. Apulensis Math. Inform., 16 (2008) 11-16.
[4] D. Breaz, H. Ö. Güney and G. S. Sălăgean, A new general integral operator, Tamsui Oxford Journal of Mathematical Sciences, 25 (4) (2009) 407-414.
[5] D. Breaz, Certain integral operators on the classes $M\left(\beta_{i}\right)$ and $N\left(\beta_{i}\right)$, Journal of Inequalities and Applications, vol. 2008, Article ID 719354.
[6] B. A. Frasin, Convexity of integral operators of p-valent functions, Math. Comput. Model., 51 (2010) 601-605.
[7] Y. J. Kim and E. P. Merkes, On an integral of powers of a spirallike function, Kyungpook Mathematical Journal, vol. 12 (1972) 249-252.
[8] S. S. Miller, P. T. Mocanu, and M. O. Reade, Starlike integral operators, Pacific Journal of Mathematics, 79 (1) (1978) 157-168.
[9] A. Mohammed, M. Darus and D. Breaz, Some properties for certain integral operators, Acta Universitatis Apulensis, 23 (2010), pp. 79-89.
[10] A. Mohammed, M. Darus and D. Breaz, On close to convex for certain integral operators, Acta Universitatis Apulensis, No 19/2009, pp. 209-116.
[11] A. Mohammed, M. Darus and D. Breaz, Fractional Calculus for Certain Integral operator Involving Logarithmic Coefficients, Journal of Mathematics and Statics, 5: 2 (2009), 118-122.
[12] S. Owa and H.M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, JIPAM, 3 (3) (2003), 42: 1-13.
[13] V. Pescar and S. Owa, Sufficient conditions for univalence of certain integral operators, Indian Journal of Mathematics, 42 (3) (2000) 347-351.
[14] J. A. Pfaltzgraff, Univalence of the integral of $\left(f^{\prime}(z)\right)^{\lambda}$, Bull. London Math. Soc. 7 (3) (1975) 254-256.
[15] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Mathematics. 1013-Springer Verlag, Berlin Heidelberg and NewYork (1983) 362-372.
[16] G. Saltık, E. Deniz and E. Kadıoğlu, Two New General p-valent Integral Operators, Math. Comput. Model. , 52 (2010) 1605-1609.
[17] S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, Internat. J. Math. Sci. , 55 (2004) 2959-2961.
[18] G. M. Shenan, T. O. Salim and M. S. Marouf, A certain class of multivalent prestarlike functions involving the Srivastava-Saigo-Owa fractional integral operator, Kyungpook Math. J. 44 (2004) 353-362.

Gülşah Saltık Ayhanöz
Department of Mathematics
University of Atatürk
Erzurum, 25240
email:gsaltik@atauni.edu.tr
Ekrem Kadıoğlu
Department of Mathematics
University of Atatürk
Erzurum, 25240
email:ekrem@atauni.edu.tr

