Acta Universitatis Apulensis No. 32/2012
ISSN: 1582-5329 pp. 111-128

INCLUSION THEOREMS INVOLVING WRIGHT’S GENERALIZED
HYPERGEOMETRIC FUNCTIONS AND HARMONIC UNIVALENT
FUNCTIONS
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ABSTRACT. The purpose of this paper is to apply Wright generalized hyper-
geometric (Wgh) functions in defining a linear operator and obtain some inclusion
relationships between the classes of harmonic univalent functions under this linear
operator whenever certain Wgh inequalities with its validity conditions hold. Re-
sults for special cases of Wgh functions are also mentioned.
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1. INTRODUCTION AND PRELIMINARIES

If v and v are real valued harmonic functions in a simply connected domain D
in the complex plane C, then a continuous function f = u + v is called a complex
valued harmonic function in D. Clunie and Sheil-Small [9] introduced a class HS of
complex valued harmonic functions f which are univalent and sense-preserving in
the open unit disk:

A={z:2zeC|z| <1}

and with a normalized representation given by

f(z)=h(z)+g(2)
where

B =3 bt (= 1), ()= g™ || < 1 W
n=1 n=1

are analytic and univalent in A.
For 0<A<1,0<y<land 0<Ek<oo,let HQ(k;v;A) denote a class of
functions f = h + g € HS satisfying the condition:
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h(z)—2'(x)
(1=Nz+A(h() +9()

-1+ (2)

R zh (2) — zg'(2) >k
(1=Nz+A(h(2) +9(2)
and by HCV(k;v) denote a class of functions f = h + 7 € HS, satisfying for any
real ,0 <~y < 1and 0 <k < oo, the condition:

221" (2 2g' () + 229" (=
%{1 " <1 +kei¢> - ii;’r(i)g—(z;'j(;;g | )} =7 ¥

The families HO(k;v; A) and HCV(k;y) were studied, respectively, in [5] and [12]
for results in entirely different directions and with different objectives. Note that
both these families are comprehensive sets that contain various subclasses of HS.
For example, HN (7) = HQ(0;7;0), HS*(v) = HQ(0;7; 1) and HCV(k;~y) = HK(7)
were investigated for different objectives, respectively, in [8], [11] and [7]. Denote
by HR(7), a subclass of f = h+g € HS if and only if zh'(z) — z¢'(2) € HN (7).
Class HR(y) was also studied in [8]. For additional subclasses of HQ(k;~v; ) and
HCV(k;~), one may also refer to the references listed in [5] and [12]. Denote by
THS the subclass of functions f = h + g € ‘HS such that

h(z)=2= 3 |halz" g(2) = Y |gnl2", (4)
n=2 n=1

and let THO(k;v; A) = HO(k;v; M) NTHS and THCV(k;y) = HCV(k;v) N THS.
Also, denote THS*(k;v) = HS*(k;y) N THS, THN () = HN(v) N THS and
THR(y) = HR(y) N THS. Note that various subclasses of THQ(k;v; A) and
THCV(k;~) were earlier defined and studied in [6], [7], [8], [5], [16], [12], and others.
Several inclusion properties involving hypergeometric functions and harmonic
univalent functions have recently been studied by the first author in [1], [3], [4] and
[2]. Involvement of the Wright’s generalized hypergeometric function (Wgh) in the
harmonic univalent functions has recently been investigated in [15], [17] and [14].
Let A; >0 (i=1,2,..,p) and B; >0 (i = 1,2,...,¢) such that 1+ >7 | B; —
>P ,A; > 0. Following the definition and terminology in [23] ([19] and [22]), a
Wright’s generalized hypergeometric (Wgh) function for non-negative integers p and

g, a; € C (‘;T £0,-1,-2,..;i=1,2, ...,p) and
b € C (% £0,-1,-2, .0 =1,2, q) is defined by

0 l (alvAl)v'”?(amAp) ‘Z‘|
P (b1, Br)y .y (bgy By)
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p
s 1 T(a;+nd;) 2"
= 25 (6)
=0 [T T(bi + nBy) n!
i=1
Note that Wgh is an entire function if 1+Y7 ; B;—>? | A; > 0. On the other hand,
q
ff 52
Wgh is an analytic function in |z| < = —if1+ 1 B —>" | A; = 0. However,
IT 47"
i=1
15"
if1+>7 , Bi—>P A =0and |z| = le[l —, then Wgh function is analytic for
Al
i=1

R b — 3P a;} + 252 > L (for details one may refer to [13]).

Wgh functions have an increasingly significant role in various types of appli-
cations (see [19], [20]). Generalized hypergeometric functions, generalized Mittag-
Leffler functions and Bessel-Maitland (Wright generalized Bessel) functions are some
special cases of Wgh functions; one may refer to [21], [22].

In view of the convergence conditions obtained in [13], we consider Wgh functions

(ai, Ai)1p (ci,Ci)ir .
p¥q l (bis B ;2| and s (ds, Di)1s ;2| (defined above by (5)), for positive

q p
integers A;, B;,C;, and D; with the conditions ] BZBZ' > ]I Af" (in case 1 +
i=1 i=1
S T
Vi Bi— YA = 0), ILDY = T167 (in ease 1+ 535, Dy = Xy Ci =
1= 1=
0) and for a; # 0,—1,-2,...;¢ = 1,2,...,p, b; # 0,—1,-2,..;0 = 1,2,...,q, ¢; #
0,-1,-2,..;:=1,2,...,7, d; #0,—1,—-2,...;i = 1,2, ..., s, Following [4] and [6], for
f=h+7ge€HS of the form (1), we define a linear operator:

_ (@i, Ai)1p (¢, Ci)ipr
I = I ’ N ’ . HS HS
( (bi, Bi)i,g ~ (di, Di)1s -

by
If(z) = h(z)¥H(2) + g(z) * G(2) (7)
= z—i—Zthnz”—i—ZW (8)
n=2 n=1
where .
H(Z) — 5 z;l ¥ [ ((IiyAi)l,p ;Z] _ 0, Zn, (9)
l;[lr(ai) PP (bi, Bi)1g ;
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[T (d) N
1= ’L'aoi r n
G(z) =2 ,,17 rts [ ((ccl D.))L ;z] = ZCn z (10)
H F(Cl) iy i) 1s n—1
i=1
and forn € N ={1,2,3,...},
Por a;+(n—1)A; L i+ (n—1)C;
1:[1 ( F((ai) )Ai) 1:[1 ( F((Ci) )Ci)
bn =3 FZ(7-+(n71)B~) P o= s ;7d~+(n71)D.) ' (11)

The purpose of this paper is to find some inclusion relationships between the
classes mentioned above under the linear operator I defined by (7) whenever certain
Wgh inequalities with its validity conditions hold.

2. LEMMAS
In order to obtain our main results, we need following Lemmas.

Lemma 1 /5] If f = h+ g € HS where h and g are defined by (1) and if the

condition

in(k—l—l)—)\(kz—i—’y) in(k+1)+/\(l¢+v)|gn’§1 (12)

h

n=2 n=1

is satisfied for each k (0 <k <00),7(0<y<1)andA(0 <X <1), then f is sense
preserving and harmonic in /\ and f € HQ(k;~; \). Furthermore, f € THQ(k;~vy; \)
if and only if (12) holds.

Lemma 2 [12] If f = h+ g € HS where h and g are defined by (1) and if the

condition

n{n(k+1)—(k+~)} n{n(k+1)+(k+~)}
nZ:jQ T |hn|+nZ:j1 T |

gn| <1 (13)

is satisfied for each k (0 <k <o0), v (0<y<1) and A(0<A<1), then f is
sense preserving and harmonic mapping in AN and f € HCV(k;~y). Furthermore,
f € THCV(k;~) if and only if (13) holds.

Lemma 3 [8/ If f = h+ g € THS where h and g are defined by (4), then the
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condition
[ee] o
> nPlha| + > nPlgn| <1—7 (14)
=2 n=1

holds for v (0 <~ < 1) if and only if f € THR(%).

We next prove the following Lemma to get our main results.

Lemma 4 Let for positive integers A; ,Bj; and for —n # a;,b; € C, n € Ny =
NuU{0}, i=1,2,...p; j=1,2,...,q, 0, be defined by (11). Then for n € N,
f’[ (lail+(n=1)4;)

o< i T0ED
0] q (b;)+(n—1)B;) ’
I LRe)H—D)B) () )

(15)
L(R(,))

Proof. Using the formula ([18 ], p. 240, Eq. (1.26))

W _ (Z)n (“Z 1>n (‘“”2_1>n (A" n=0,1,2, ..

RN < T < (XD

where (), is the Pochhammer symbol, we get for n € N,

'F (bj + (n—1)B;)
bj+B;—1
Bj n—1

L' (b))
b bj +1 n—1)B;
- ‘(Bi>n—1 ( B; >n—1 (Bj)( |

R (b)) R (b; + 1) R(b; + B; — 1) 1),
- ( BJJ )n—l ( JBJ )n—l ( : Bjj )n—l (BJ)( ”

L (R(bj) + (n—1)B))
I (R (b))

and

and

‘F (@i + (n —1)Ai)

I (a;)
(5,

- (%)
B A’L n—1

I (Jai] + (n— 1)Ay)
= T(a)

(Ai)(n_l)Ai

(ai + A; — 1)
Ai n—1
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Hence, we evidently obtain from (11) that

ﬁl ‘F(a#(n—l)Ai) ﬁ D(Jas|+(n—1)4;)

PR = L 1 LT
M 4 r+(m-1)B) | (n— 1) T L T(R(b;)+(n—1)B,) '
]131‘ ] (0 = DE ] LGB - 1)

This proves the result (15) of Lemma 4.
3. MAIN RESULTS

Theorem 1 Let for f € THS and for positive integers A;, B;, C;, and D;, the
operator I be defined by (7) with R (b;) >0 (i =1,2,..,p), R(d;) >0 (: =1,2,..,q).
If, under the validity condition

. &t B; __ 1 A; q ) P o 5 Di _ T C;
(incase [l By = 11 A7, 1+> 1 Bi—> i 1Ai=0 and [[ D;7" = [[ C;", 1+
i=1 i=1 i=1 i=1

Zf:l D; — Zf:l Ci=0):

q p S r
p—q _ 3 r—s _ 3
SRO)-Ylal+ 25052 YR - Ylel+ 52> as)
i=1 =1 i=1 i=1
forj=0,1,

(lail + 7 Ai, Ai)1p ; (leil +7C5, Ci)ir ;
. o1 = U . Dol = W
r¥a (R (b)) + jBi, Bi)1,q ’ o ¥ (R (di) + jD;s, Di)1 s

(17)
satisfy for 0 <~v < 1,0 < k < oo, the Wgh inequality

I1T (% (b))

=L {(e+1) pog+(1-7) 05} +

117 (Jai)
11T (R (d:))
S {k+1) U+ @k t149) B <2-7, (18)

[1T (Jeil)

then ITHN (v) € HCV(k; 7).
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Proof. Let f = h+ g where h and g are of the form (4) belongs to THN (v),
then, using special form of Lemma 1 for A = 0, k = 0, we get the necessary coefficient
inequality:

1-— 1-—
hal € —2 (12 2), Jgal < — (n21). (19)

To show If € HCV(k;~), we need to show by Lemma 2, that

g =y bt D=t} s rdn kD F RNy

n=2 1- v n=1 1- v
(20)
In view of Lemma 4, we denote
7 Dail+(n—1)A) " D(leil+(n=1)Cy)
1 ="y S )
o] < D(R(bs)+(n—1)B;) =Vl Gl < =3 D(R(d:)+(n—1)D;) =
I =rmey (=1 = Fmay (=1
(21)
and hence, for some j € Ny, we obtain identities:
q
« Mreme)
Yo (n—4)j =T ¥, (22)
n=1+4j H r (‘CLZD
=1
S
- IrE@)
Y. (n=j)jm="% 0. (23)
n=1+j I1 T (|ei])
=1

We note that (16) ensures the convergence of p\Ilg and , ¥’ for j = 0,1. Thus, by
(19), (21) and using identities (22), (23) for j = 0,1, we obtain

Si < S kA ) (k) Iut S e )+ (k4
n=2

n=1
e S =D R+ D+ (L=}t S (= 1) (k4 1)+ 2+ 147} 7
n=2 n=1
T1T (R (b))
= S {+1) U+ (1) 0} - (1-7)
{10 a)
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{e1) LWL+ @k +147) 08} <1,

if (18) holds. This proves Theorem 1.

In a similar manner, on applying Lemma 1 for A = 1, we can prove following
result:

Theorem 2 Under the same hypothesis and the same validity condition of The-
orem 1, if Wgh inequality

ﬁlr@%(bi)) ot ) _ﬁlraﬁ(dz)) o
= U+ U+ = PVt Vg <2, (24)
firgay "7 T ga)

holds, then for 0 <~y < 1,0 < k < oo, ITHS*(k;~v) C HCV(k;7).

Further, on applying Lemma 2 and Lemma 1 for A = 1, we get following theorem,
the proof is based on the similar lines of the proof of Theorem 1, hence, we omit its
proof.

Theorem 3 Under the same hypothesis of Theorem 1, if, under the validity

.. . 4 B; P A; q p s D;
condition (in case [] B = [ A7, 1+ Bi—>"7 A4 =0 and [[ D;”" =

T
11 G 14305 Di = iy G = 0)
1=

q P S T
p—q 1 r— s 1
DR =Y el + 75— >0 Y R(d) = Y e+ —— >3, (25)
= = i=1 i=1
p\Ifg, VY defined in (17) (for j = 0), satisfy Wgh inequality
q S
1T (R (bi)) . 1T (R (di)) .
= U+ ¥ <2 (26)
11 (ai) T (1)

then for 0 < v < 1,0 < k < oo, ITHCV(k;~y) C HCV(k;~y) and ITHS*(k;~)
C HS*(k; 7).
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Theorem 4 Under the same hypothesis of Theorem 1, if, under the validity
q p S

condition (in case ] B = 1] A% 14+ 3% B =P A, =0 and [[ DP' =
i=1 i=1 i=1

11 €' 1+ 5, Di = 5 G =0)

q P S T
p—q _ 1 r—s 1
Z%(bi)—2|ai’+T>§7 Z%(di)—Z\Ci"F 5 >§7 (27)
i=1 i=1 i=1 i=1
for j=0,1,
(lail +jAs, Ai)1p, (1 +4,1) _ j
prte l (R(b) +jBis Bug, (2+5,1) 7|+ = eetVern o (8)
(leil +3Cs, Ci)1r, (L +5,1) _ j
e [ (R(d)+iDi D (2+4.1) 1] 7 = reten o (29)
satisfy for 0 <~v < 1,0 < k < oo, Wgh inequality
q
firme) 1 0
T {(1 k) pr1¥g +(1-7) p+1q’q+1} +
,ljlf(lai!)
1T (R(d)
=l {+8) Wl + @h+149) 008, }<2-9,  (30)
{17 (ei)

then ITHN (v) € HS*(k;~).

Proof. Let f € THN (v) where h and g are of the form (4), then on using Lemma
1 for special values of the parameters that is for A = 0,k = 0, we have (19). To
prove the result, again by Lemma 1 (for A = 1), we need to show

5= 3 HEED RNy gy 5o R EEDEEED), (1 cr

n=2 n=1

Hence, on using (19), (21) and identities

- P | U0
_21;(”—])] P = . 101 (32)
S T ()
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o0 . [Ilf(%(di)) ,
> (n—Jj); s = r1¥iiy, (33)
n=1+j I1 T (leil)
=1
for j = 0,1, we get
o0 o0 19” o0 n
Sy < 1+an—1 (1—7)27+(1+k‘)2(n—1)%+

n=2 n=2

(2k+1+7) Z T

n=1
11T (R b))
= {1+ F) 1y + (1=9) pa ¥}~ (1-9)
T (i)
I1T (R (dy))
+121717 {(1 + k) r+1‘1li+1 + (2k +1+ ’7) 7“+1‘1J2+1} < 1,
T (fes)

if (30) holds. This proves Theorem 4.
We obtain following theorem which is a direct consequence of Theorem 4.

Theorem 5 Under the same hypothesis of Theorem 4, if Wgh inequality (30)
holds, then for 0 <~ < 1,0 <k < oo, ITHR(y) C HCV(k;7).

Similar to the proof of Theorem 4, we can also prove the following result:
Theorem 6 Under the same hypothesis of Theorem 1, if, under the validity
q p s
condition (in case ] BzBi =11 Af‘i, 1+ B, =3P A, =0 and [] DiDi =
i=1 i=1 i=1

,1:11 Oicia 14+ D;—>i,Ci=0)

Al . - 4
;8% Z |a;] + > Zﬂ% 5 (34)
p+1\Pg+1, r+1\IJ§+1 defined in (28) and (29) for j = 0, satisfy Wgh inequality
q S
free) Are@)
S ¥+t ¥ <2 (35)
flr(a) T ()
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then for 0 < v < 1,0 < k < oo, ITHCV(k;v) C HS*(k; 7).

Theorem 7 Under the same hypothesis of Theorem 1, and if under the validity

p s
condition (in case H BB = ]I AiAi, 1+, B, =YY 4, =0 and I] DZ-DZ' =
i=1 i=1 i=1

,1:[1 Ciciv 1+ 4D —3i1Ci=0)

q D p—q 1 & — S 1
Zﬂ%(bi)—Z\ai\+T>—§,Zﬂ%(di) Zycz|+ >y (36)

=1 =1 =1 =1
for j=0,1,
(|al’+jA27Al) ,p>(1+j7 )7(1+j) ) . . J
p”wq”lmwi)ﬂ&,&) @124 0 T e G0

(lesl +3Cs, Ci)1ps (L4 5,1) , (1 +4,1) L j
T+2ws+2 [ (?R (dz) +Di,Di)17s,(2+j, 1),(2+], 1) 1 L= T+2\II 2 (38)

satisfy Wah inequality

Z:; {(1 + k) p+2‘I/;+2 + (1 —7) p+2\112+2} +
11 T (as])
1T (R(d)
= [(1 k) 2 Wy + (26 + 14 7) r+2\1’2+2] <2—7, (39
11 T (lei])

then for 0 <~v < 1,0 <k < oo, ITHR(y) C HS*(k;~).

Proof. If f = h+g where h and g are of the form (4), belongs to THR(7), then
by Lemma 3, we get

1—7 1—7
Il < =51 (122), Jgal <~ (n21). (40)

n2

To prove the result, we need to show (31). Hence, using (40), (21) and the identities

i (n_gj)jﬁn _ i

1 .
D p+2\P?]+27 (41)
et {17 (la)
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= (n—j) i :
Z n2 b = =5 r+2¥5 o, (42)
n=1+j .1:[11“ (les])
for j = 0,1, we get
> I, > 9, © Mn
Sy < (I+k)) (n-1)—=4+10-7)> 5 +0A+k) D (n—1)—F+
n=2 n n=2 n n=2 n
k147
n=1
q
.le(%(bi))
= =5 [(1 +k) pr2¥qpp +(1—7) p+2‘1’2+2} —(1=7)
{17 (Jes)
1T (R (d:))
+=5 (14 k) 2 @lin + 2k +147) 11290, <1,
1T (fei])

if (39) holds. This proves Theorem 7.

Remark 1 Taking k£ = 0 in the Main Results, we can directly obtain sufficient
Wgh inequalities for If € HK(y) (HS*(v)) whenever f € THN(v) (THR(7))
(THS* (7)) (THK(7))-

3. RESULTS ON SOME SPECIAL CASES

In particular, if we take A; = 1, ¢ = 1,2,3,..,p; B; = 1,4 =1,2,3,..,¢q and
Ci=141=1,23,.,r;, D; = 1,47 = 1,2,3,..,s, the operator I defined by (7)
reduces to the operator J which involve generalized hypergeometric (gh) functions
»Fy ()1, :z| and ,.Fj l (ci)1r ;z] forp<g+1land r <s-+1;and for f =

(0i)1,q (di)1,s
h+g e HS, it is defined by

J(z) =z pF, [ ((ZZ;?Z ;21 x h(z)+ 2z . Fs [ EZ%?Z ;z] xg(z) € HS. (43)

)
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The gh function ,Fj is defined by

q
I'(b;
qu l (ai)Lp ,Z‘| _ zl;Il ( ) pd’q l (aial)lm ,Z‘|
(bi)l,q f—)[lr (ai) (bi: 1)141
N p
00 Zl:ll(ai)n 2"
= > 5 :
n=0 [T (bi)n n!
=1

which is an entire function if p < ¢ + 1; and if p = ¢+ 1 it is analytic in A; and if
p=q+ 1,z € IA, it is analytic if R{>7_, b, — >, a;} > 0.

Thus, on taking A; =1, i=1,2,3,...,p; B;=1,1=1,2,3,..,qand C; =1, i =
1,2,3,..,7; D;=1,1=1,2,3,..,s in the Main Results, we obtain following results:

Corollary 1 Let for f € THS, the operator J be defined by (43) with R (b;) >
0 (i=1,2,..,p), R(d;) >0 (i=1,2,..,q). Under the validity condition (in case
p=q+1l,r=s+1)

q p S T
Z?R(bz)—z‘azl >1,Z%(di>—z‘ci’>l, (44)
i=1 i=1 i=1 i=1
if for j=0,1,
(las| +3)1p : (Jeil + ) :
F, NP1 = L F) L F 21| = L FY 45
oFy l (R (b) + )1 & (R (d5) + g 45)
satisfy for some 0 < v < 1,0 < k < 00, gh inequality
p T
11 lasl 11 [eil
(k+1) o pFy + (1 =) pFg+ (k+1) ——— ,F/ +
112 (0) 1% ()

2k +147) F)<(2-7)
then JTHN () C HCV(k; 7).

Corollary 2 Under the same hypothesis and under the same validity condition
(44) of Corollary 1, if gh inequality

P r

11 lasl 11 |eil
=L Fl 4+ PO+ EL— R+ FY <2, (46)
| 19%(1%) iHI?R(di)
ra -
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holds, then for 0 <~y < 1,0 <k < oo, JTHS*(k;v) C HCV(k;7).

Corollary 3 Under the same hypothesis of Corollary 1 and (in case p=q+1
R (di) -

r=s+1) under the validity conditions >1_; R (b;) — 1lail >0, 5
iz leil >0, if B F, q, +FO defined by (45) (forj =0), satzsfy gh mequalzty
N P (47)

then for 0 < v < 1,0 < k < oo, JTHCV(k;y) C HCV(k;7y) and JTHS*(k;7)

C HE* (k5 7).
Corollary 4 Under the same hypothesis of Corollary 1, and (in case p = q+1

r = s+ 1) under the validity condition

Z?R(bZ)—Z\(m >O,Z%(di>—z‘ci’>0, (48)
=1 i=1

i=1 =1
if for j =0,1,
(‘GZ| +j>1,p71+j . F—
p+1Fq+1 [ (%(bl) +j)1yq72+j ,]. L= P+1Fq+1’ (4.9)
¢l + ] 71+ ‘
(‘ ’L’ ])17]7 '7 1] N = T+1FS+1 (50)

T Fs - >
o +1[(%(dz’)+3)1,q72+3

satisfy for some 0 < v < 1,0 < k < o0, gh inequality

P
1:[ |az’
(1+F) q_ p+1F+1+(1_ )p+1F
2 1 R (0,
1:[1|C1|
+(1 +k7) %T+IF+1+(2k+1+7) r+1F+1<2 s
H (di

then ITHN (v) € HS*(k;v) and ITHR(vy) C HCV(k;7).

Corollary 5 Under the same hypothesis of Corollary 1, and if (in case p = q+1

r = s+ 1) under the validity condition

zq:%(bi)>max{0,—l—l—zp:|ai|} Z% >max{0,—1—|—zr:|ci\}, (51)
=1 i=1

=1
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p+1Fg+1, r+1Fg+1 defined by (49) and (50) for j = 0, satisfy gh inequality
p+1Fz?+1 + r+1FsO+1 <2, (52)
then for 0 <~v < 1,0 <k < oo, JTHCV(k;y) C HS*(k;7).

Corollary 6 Under the same hypothesis of Corollary 1, and if (in case p = q+1,
r = s+ 1) under the validity condition

q

Z%(bl) > max {O,—l +i|ail} ,i%(di) > max {O,—l +i |CZ\} ,
i=1 i=1

=1 =1
for j=0,1,
(lasl +i)1p 1+ 5,1 4+35 _ j
P+2Fq+2 [ (éR (bz) +j)1,q,2+j72+j ) - p+2Fq+2a
(leil + p 1 +5,1+5 _ j

satisfy for some 0 < v < 1,0 < k < 0o, gh inequality

p
.1:[1 |a]
(1 + k)zq_i p+2Fql+2 + (1 - ’Y) p+2Fg+2
4 T R (b;)
=1
1:[ (Jeil
+(1+ k) —— rr2Flo + 2k +147) r2Fls <27,
4 T (R (d;
i=1

then JTHR(y) C HS*(k;7).

Remark 2 Similar to the earlier Remark 1, taking & = 0 in the above Corollaries,
we can directly obtain sufficient gh inequalities for Jf € HK(y) (HS*(7)) whenever
fETHN(Y) (THR()) (THS*(v)) (THK(Y))-

Taking p = r = 2 and ¢ = s = 1, J reduces to €2 which involves Gauss’s
hypergeometric functions and for f = h+ g € HS is defined by

Qf(z) =z oF [ alb’la2 ;z] xh(z) + z oF] l 6162162 ;z] xg(z) € HS. (53)
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Results, for the operator €2 can be obtained from Corollaries 1-6 , by adopting the
similar way as it is used in [2], [3], [4] etc.

By choosing p=g=r=s=1and ay = A1 = ¢; = C7 = 1, the operator I
reduces to the operator E and for f = h + g € HS, is defined by

Ef(z) =21 (b) B, [e]*h(z)+2 T (di) Ep, 4 [2]*g(2) € HS,
which involve gneralized Mittag-Leffler functions:
1,1) > 2"
El,l — ( ) . —
Bl,bl [Z] ].wl [ (bl,Bl) 7Z‘| nZZO F(bl +nB1)
and
1,1) > 2"
El,l — ( ’ . — .
D1,dy [Z] 11[)1 [ (thl) ,Z‘| nz:‘; F(dl —|—TLD1)

Further, involving Bessel-Maitland (Wright generalized Bessel) functions:

7] 0
_ z
JIJI —z| = AR ’
V1 [ ] Owl (1 + vy, ,Ul) Z F(l + 1Z1 + n,ul)n'

L i n=0

n

and

oo
2
R = ,
(14 v, p2) Z I'(1 + v 4+ nug)n!

L i n=0

Jorl=2] = ot

an operator B is defined by

Bf(z):=2T(1+uv) J[—z]*h(z)+ 2 T (1+v2) Ji7[—2] % g(2) € HS.

As Mittag-Lefler functions and Bessel-Maitland functions are entire functions, re-
sults based on the Main Results for the operators E and B are quite obvious.
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