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DETERMINATION OF STURM–LIOUVILLE OPERATOR ON A
THREE-STAR GRAPH FROM FOUR SPECTRA

I. Dehghani Tazehkand and A. Jodayree Akbarfam

Abstract. In this paper, we study determination of Sturm–Liouville opera-
tor on a three-star graph with the Dirichlet and Robin boundary conditions in the
boundary vertices and matching conditions in the internal vertex from four spectra.
We introduce an adequate Hilbert space formulation in such a way that the prob-
lem under consideration can be interpreted as an eigenvalue problem for a suitable
self-adjoint operator. As spectral characteristics, we consider the spectrum of the
main problem together with the spectra of two Dirichlet–Dirichlet problems and one
Robin–Dirichlet problem on the edges of the graph and investigate their properties
and asymptotic behavior. We prove that if these four spectra do not intersect, then
the inverse problem of recovering the operator is uniquely solvable. We give an
algorithm for the solution of the inverse problem with respect to this quadruple of
spectra.

2000 Mathematics Subject Classification: 34A55, 34B24, 34B45, 34L05.

1. Introduction

This paper is devoted to the study of the determination of Sturm–Liouville op-
erators on a three-star graph with the Dirichlet and Robin boundary conditions
in the boundary vertices and matching conditions in the internal vertex from four
spectra. The considered inverse problem consists of recovering the Sturm–Liouville
operator on a graph from the given spectral characteristics. Differential operators
on graphs(networks, trees) often appear in mathematics, mechanics, physics, geo-
physics, physical chemistry, electronics, nanoscale technology and branches of natu-
ral sciences and engineering(see [2,6,10-12,19,28] and the bibliographies thereof). In
recent years there has been considerable interest in the spectral theory of Sturm–
Liouville operators on graphs(see [5,26,27]). The direct spectral and scattering prob-
lems on compact and noncompact graphs, respectively, were considered in many
publications( see, for example [1,4,8,17,18]). The considered inverse spectral prob-
lem is not studied yet. However, inverse spectral problems of recovering differential
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operators on star-type graphs with the boundary conditions other than considered
here, were studied in [22,24] and other papers. Hochstadt-Liberman type inverse
problems on star-type graphs were investigated in [22,23].

We consider a three-star graph G with vertex set V = {v0, v1, v2, v3} and edge
set E = {e1, e2, e3}, where v1, v2, v3 are the boundary vertices, v0 is the internal
vertex and ej = [vj , v0] for j = 1, 2, 3. We assume that the length of every edge is
equal to a, a > 0. Every edge ej ∈ E is viewed as an interval [0, a]. Parametrize
ej ∈ E by x ∈ [0, a], the following choice of orientation is convenient for us: x = 0
corresponds to the boundary vertices v1, v2, v3 and x = a corresponds to the internal
vertex v0. A function Y on G may be represented as a vector Y (x) = [yj(x)]j=1,2,3,
x ∈ [0, a] and the function yj(x) is defined on the edge ej . Let q(x) = [qj(x)]j=1,2,3

be a function on G which is called the potential and qj(x) ∈ L2(0, a) is a real-valued
function defined on the edge ej . Let us consider the following Sturm–Liouville
equations on G:

−y′′j (x) + qj(x)yj(x) = λ2yj(x), x ∈ [0, a], j = 1, 2, 3, (1)

where λ is the spectral parameter. The functions yj(x) and y′j(x) are absolutely
continuous and satisfy the following matching conditions in the internal vertex v0:

yi(a) = yj(a) for i, j = 1, 2, 3, (continuity condition),
3∑
j=1

y′j(a) + βy1(a, λ) = 0 (Kirchhoff’s condition),

 (2)

where β is a real number. In electrical circuits, (2) expresses Kirchhof’s law; in an
elastic string network, it expresses the balance of tension and so on. Let us denote
by L0 the boundary-value problem for (1) with the matching conditions (2) and the
following boundary conditions at the boundary vertices v1, v2, v3:

y1(0) = y2(0) = y′3(0)− hy3(0) = 0, (3)

where h is a real number.
The problem of small transverse vibrations of a three-star graph consisting of

three inhomogeneous smooth strings joined at the internal vertex with two pendent
ends fixed and one pendent end can move without friction in the directions orthog-
onal to their respective equilibrium positions can be reduced to this problem by
the Liouville transformation. This problem occurs also in quantum mechanics when
one considers a quantum particle subject to the Shrödinger equation moving in a
quasi-one-dimensional graph domain.

In this paper, we study the inverse problem of recovering the potential q(x) =
[qj(x)]j=1,2,3 and the real numbers h and β from the given spectral characteristics.
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Similar inverse spectral problems on star-type graphs with three and arbitrary num-
ber of edges but only with the Dirichlet conditions at the boundary vertices were
considered in [23,24]. As spectral characteristics, we consider the set of eigenvalues
of problem L0 together with the sets of eigenvalues of the following two Dirichlet–
Dirichlet problems and one Robin–Dirichlet problem on the edges of the graph G:{

−y′′j (x) + qj(x)yj(x) = λ2yj(x), x ∈ [0, a],

yj(0) = yj(a) = 0, j = 1, 2,{
−y′′3(x) + q3(x)y3(x) = λ2y3(x), x ∈ [0, a],
y′3(0)− hy3(0) = y3(a) = 0,

which we denote these problems by Lj , j = 1, 2, 3. We obtain conditions for four
sequences of real numbers that enable one to reconstruct the potential q(x) =
[qj(x)]j=1,2,3 and the real numbers h and β so that one of the sequences describes the
spectrum of the boundary-value problem L0 and other three sequences coincide with
the spectra of the problems Lj , j = 1, 2, 3. We give an algorithm for the construc-
tion of the potential and the coefficients of the boundary and matching conditions
corresponding to these four sequences.

Denote by L′j , j = 1, 2, 3 the following boundary-value problems:{
−y′′j (x) + qj(x)yj(x) = λ2yj(x), x ∈ [0, a],

yj(0) = y′j(a) = 0, j = 1, 2,{
−y′′3(x) + q3(x)y3(x) = λ2y3(x), x ∈ [0, a],
y′3(0)− hy3(0) = y′3(a) = 0.

The main idea of the solution of the inverse problem for the considered system is its
reduction to three independent inverse problems of reconstruction of the functions
qj(x) ∈ L2(0, a), j = 1, 2, 3 and h on the basis of two spectra, namely, the spectrum
of the problem Lj and the spectrum of the problem L′j . Since the solutions of the
later inverse problems are known(see [7,Section 1.5], [16, Section 3.4]), this reduction
gives an algorithm for the reconstruction of the potential and coefficients of the
boundary-value problem L0.

This paper has the following structure: In section 2 we formulate the boundary
value problem L0 as an operator in an adequate Hilbert space. In Section 3 the direct
problem is considered. Aspects of the theory of entire and meromorphic functions
are used as tools for a description of the set of eigenvalues of the boundary-value
problem L0 and the spectra of the auxiliary problems Lj , j = 1, 2, 3 associated with
this system. As a consequence we prove that the eigenvalues of the main problem
and the spectra of the auxiliary problems interlace in some sense. In Section 4 we
solve the inverse spectral problem for L0 within the framework of the statement
indicated above.
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2. Operator equation formulation

Let us consider the operator-theoretical interpretation of the problem L0. Denote
by A the operator acting in the Hilbert space H = L2(0, a)⊕L2(0, a)⊕L2(0, a) with
standard inner product 〈., .〉H , according to the formulas

AY = A

 y1(x)
y2(x)
y3(x)

 =

 −y′′1(x) + q1(x)y1(x)
−y′′2(x) + q2(x)y2(x)
−y′′3(x) + q3(x)y3(x)

 , (4)

D(A) =


 y1(x)

y2(x)
y3(x)


∣∣∣∣∣∣∣∣
yj(x) ∈W 2

2 (0, a) for j = 1, 2, 3,
yi(a) = yj(a) for i, j = 1, 2, 3,∑3

j=1 y
′
j(a) + βy1(a) = 0,

y1(0) = y2(0) = y′3(0)− hy3(0) = 0

 , (5)

where W 2
2 (0, a) is a Sobolev space. It is clear that the squares of eigenvalues of the

boundary value problem L0 coincide with those of A.

Lemma 2.1. D(A) is Dense in H.
Proof. Suppose that F = (f1(x), f2(x), f3(x))t ∈ H is orthogonal to all G =

(g1(x), g2(x), g3(x))t ∈ D(A)(t denotes the transpose of a matrix), i.e.,

〈F,G〉H =
3∑
j=1

∫ a

0
fj(x)gj(x) = 0.

Since C∞0 [0, a] ⊕ 0 ⊕ 0 ⊆ D(A)(Here 0 is a function that identically zero on [0, a]),
then G = (g1(x), 0, 0) ∈ C∞0 [0, a]⊕ 0⊕ 0 is orthogonal to F , i.e.,

〈F,G〉H =

∫ a

0
f1(x)g1(x) = 0.

Since C∞0 [0, a] is dense in L2(0, a), we must have f1(x) = 0. Similarly, we get that
f2(x) = f3(x) = 0. Thus, D(A) is dense in H.

Theorem 2.2. The operator A is self-adjoint in the Hilbert space H.
Proof. Let F = (f1(x), f2(x), f3(x))t and G = (g1(x), g2(x), g3(x))t be arbitrary

elements of D(A). By twice integration by parts, we have

〈AF,G〉H = 〈F,AG〉H +
3∑
j=1

(fjg
′
j − f ′jgj)

∣∣a
0
.
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It follows from (2) and (3) that
∑3

j=1 (fjg
′
j − f ′jgj)

∣∣∣a
0

= 0. This yields,

〈AF,G〉H = 〈F,AG〉H .

Therefore, A is symmetric in H. It remains to show that if (AY, V )H = (Y, U)H
for all Y = (y1(x), y2(x), y3(x))t ∈ D(A), then V ∈ D(A) and AV = U , where V =
(v1(x), v2(x), v3(x))t and U = (u1(x), u2(x), u3(x))t, i.e., (i) vj(x) ∈ W 2

2 (0, a) (j =
1, 2, 3); (ii) v1(0) = v2(0) = v′3(0) − hv3(0) = 0; (iii) vj(a) = vj′(a) (j, j′ = 1, 2, 3);
(iv)

∑3
j=1 v

′
j(a) + βv1(a) = 0; (v) `jyj = uj (j = 1, 2, 3), where `jyj := −y′′j + qjyj .

For all Y ∈ C∞0 (0, a)⊕ 0⊕ 0 ⊆ D(A)(0 denotes the function identically zero on
[0, a] ), we have ∫ a

0
(`1y1)v1dx =

∫ a

0
y1u1dx.

So by standard Sturm–Liouville theory v1(x) ∈ W 2
2 (0, a) and u1 = `1v1. Similarly

we get vj(x) ∈ W 2
2 (0, a) and uj = `jvj (j = 2, 3). Thus (i) and (v) hold. Now using

(v) equation (AY, V )H = (Y,U)H for all Y ∈ D(A) becomes

3∑
j=1

∫ a

0
(`jyj)vjdx =

3∑
j=1

∫ a

0
yj`jvjdx.

However by twice integration by parts, we have

3∑
j=1

∫ a

0
(`jyj)vjdx =

3∑
j=1

∫ a

0
yj`jvjdx+

3∑
j=1

(
yjv
′
j − y′jvj

)∣∣a
0
.

Hence
3∑
j=1

(
yjv
′
j − y′jvj

)∣∣a
0

= 0. (6)

According to Naimark’s patching lemma(see [20, Part II, p. 63, Lemma 2]), there
exists a Y ∈ D(A) such that y′1(0) = 1, y2(0) = y3(0) = y′3(0) = y1(a) = y′1(a) =
y′2(a) = y′2(a) = y3(a) = y′3(a) = 0. Then on account of equality (6), we have
v1(0) = 0. Similarly, we get v2(0) = v′3(0) − hy3(0) = 0. So (ii) holds. Using
Naimark’s patching lemma again one can show that (iii) and (iv) hold. consequently
the operator A is self-adjoint.

Corollary 2.3. The squares of eigenvalues of the boundary value problem L0

are real.
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For all eigenvalues of the boundary-value problem L0 to be real and nonzero, it
is necessary and sufficient that the operator A be strictly positive(A� 0). Further-
more, integrating by parts, we obtain the following equality for any vector function
Y = (y1(x), y2(x), y3(x))t ∈ D(A)(t denotes the transpose of a matrix):

(AY, Y )H =
3∑
j=1

∫ a

0
(|y′j(x)|2 + qj(x)|yj(x)|2)dx+ β|y1(a)|2 + h|y3(0)|2. (7)

Relation (7) yields the following simple sufficient condition for the strict positivity
of the operator A:

qj(x) ≥ ε > 0 a.e. on [0, a], j = 1, 2, 3, β ≥ 0, h ≥ 0.

On the other hand, if A � 0, then setting in turn Y = (y1(x), 0, 0)t ∈ D(A),
Y = (0, y2(x), 0)t ∈ D(A) and Y = (0, 0, y3(x))t ∈ D(A) in (7), we establish that
the eigenvalues of the problems Lj , j = 1, 2, 3 are also real and nonzero. The
strict positivity of the operator A can be realized by shifting the spectral parameter
λ2 − q0, q0 > 0, in (1). For this reason, we assume in what follows without loss of
generality that A � 0. Thus, the eigenvalues of the boundary-value problems L0

and Lj , j = 1, 2, 3 are nonzero real numbers.

3. Direct problem

In this section, we describe the properties of sequences of eigenvalues of the boundary-
value problems L0 and Lj , j = 1, 2, 3 that are necessary for what follows.

Let us denote by cj(x, λ), sj(x, λ), j = 1, 2, 3 the solutions of (1) on the edge ej
which satisfy the initial conditions

c′j(0, λ) = cj(0, λ)− 1 = 0, sj(0, λ) = s′j(0, λ)− 1 = 0. (8)

For each fixed x ∈ [0, a], the functions c
(ν)
j (x, λ) and s

(ν)
j (x, λ), ν = 0, 1, j = 1, 2, 3

are entire in λ. Since {cj(x, λ), sj(x, λ)} is a fundamental system of solutions of (1)
on the edge ej , then the solutions of (1) which satisfy the conditions (3), are

yj(x, λ) = Cjuj(x, λ), j = 1, 2, 3, (9)

where Cj , j = 1, 2, 3 are constants and

uj(x, λ) =

{
sj(x, λ), j = 1, 2,
c3(x, λ) + hs3(x, λ), j = 3.

(10)
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Substituting (9) into (2), we establish that the eigenvalues of the boundary-value
problem L0 are zeros of the entire function

Φ(λ) :=

∣∣∣∣∣∣
u1(a, λ) −u2(a, λ) 0
u1(a, λ) 0 −u3(a, λ)

u′1(a, λ) + βu1(a, λ) u′2(a, λ) u′3(a, λ)

∣∣∣∣∣∣
or

Φ(λ) =
3∑
i=1

(
u′i(a, λ)

3∏
j = 1
j 6= i

uj(a, λ)
)

+ β
3∏
j=1

uj(a, λ). (11)

For what follows, we need the definition presented below:

Definition 3.1.([23]) Let {zk}∞−∞({zk}∞−∞,k 6=0) be a sequence of complex num-
bers of finite multiplicities which satisfy the following conditions: (1) the sequence
is symmetric with respect to the imaginary axis and symmetrically located numbers
possess the same multiplicities; (2) any strip |Re z| ≤ p <∞ contains not more than
a finite number of zk. Then, the following way of enumeration is called proper:

i. z−k = −zk(Re zk 6= 0);

ii. Re zk ≤ Re zk+1;

iii. the multiplicities are taken into account.

If a sequence has even number of pure imaginary elements we exclude the index
zero from enumeration to make it proper.

Throughout section 3, denote

Bj =


1

2

∫ a

0
qj(x)dx, j = 1, 2,

h+
1

2

∫ a

0
q3(x)dx, j = 3.

We introduce the entire function

Ψ(λ) =

3∏
j=1

uj(a, λ). (12)

Let us denote by {λk}∞−∞,k 6=0 the set of zeros of Φ(λ) and by {κk}∞−∞,k 6=0 the set

of zeros of the function Ψ(λ). Denote by {ν(j)k }
∞
−∞,k 6=0, j = 1, 2, 3 the sets of zeros
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of the functions uj(a, λ), j = 1, 2, 3, respectively. It is clear from (12) that the

set {κk}∞−∞,k 6=0 is the union of the sets
⋃3
j=1{ν

(j)
k }

∞
−∞,k 6=0, i.e., the spectra of the

auxiliary problems Lj , j = 1, 2, 3. According to the remark presented in Section 1,

all numbers λk, ν
(j)
k , j = 1, 2, 3 and κk are real and nonzero. We enumerate the sets

{λk}∞−∞,k 6=0, {ν
(j)
k }

∞
−∞,k 6=0, j = 1, 2, 3 and {κk}∞−∞,k 6=0 in the proper way(λ−k = −λk,

λk ≤ λk+1, ν
(j)
−k = −ν(j)k , ν

(j)
k < ν

(j)
k+1 for j = 1, 2, 3 and κ−k = −κk, κk ≤ κk+1).

Note that the sets of eigenvalues {ν(j)k }
∞
−∞,k 6=0, j = 1, 2, 3 behave asypmtotically as

follows(see [16, section 1.5]):

ν
(j)
k =

kπ

a
+
Bj
πk

+
δ
(j)
k

k
, j = 1, 2, (13)

ν
(3)
k =

π
(
k − 1

2

)
a

+
B3

π
(
k − 1

2

) +
δ
(3)
k

k
, (14)

where {δ(j)k }
∞
−∞k 6=0 ∈ l2 for j = 1, 2, 3.

Let us denote by Ld, d > 0 the class(introduced in [13, p. 149]) of entire functions
of exponential type ≤ d whose restrictions on the real line belong to L2(−∞,∞).

Lemma 3.2. The functions Φ(λ) and Ψ(λ) can be represented as follows:

Φ(λ) =
2 sinλa− 3 sin3 λa

λ
+ (2B1 + 2B2 + 3B3 + β)

sin2 λa cosλa

λ2

−(B1 +B2)
cos3 λa

λ2
+
ω1(λ)

λ2
, (15)

Ψ(λ) =
sin2 λa cosλa

λ2
− (B1 +B2)

cos2 λa sinλa

λ3
+B3

sin3 λa

λ3
+
ω2(λ)

λ3
, (16)

where ω1(λ), ω2(λ) ∈ L3a.
Proof. Using the formulas of [7, p. 18], [16, p. 9] and taking into account that∫ a

0
f(t) cosλtdt ∈ La,

∫ a

0
f(t) sinλtdt ∈ La

whenever f ∈ L2(0, a) by the Paley-Wiener theorem [3, p. 103], we obtain

uj(a, λ) =
sinλa

λ
+
%j1(λ)

λ
=

sinλa

λ
−Bj

cosλa

λ2
+
%j2(λ)

λ2
, j = 1, 2, (17)

u3(a, λ) = cosλa+ %31(λ) = cosλa+B3
sinλa

λ
+
%32(λ)

λ
(18)

u′j(a, λ) = cosλa+Bj
sinλa

λ
+
σj(λ)

λ
j = 1, 2, (19)

u′3(a, λ) = −λ sinλa+B3 cosλa+ σ3(λ), (20)
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where %j1(λ), %j2(λ), σj(λ), j = 1, 2, 3, are entire functions of class La. Substituting
(17)-(20) into (11) and (12), we get (15) and (16).

Theorem 3.3. The set {λk}∞−∞,k 6=0 of zeros of Φ(λ) can be represented as the

union of three pairwise disjoint subsequences
⋃3
j=1{λ

(j)
k }
∞
−∞,k 6=0 which being enumer-

ated in the following way: λ
(1)
−k = −λ(1)k , λ

(2)
−k = −λ(3)k , λ

(3)
−k = −λ(2)k and λ

(j)
k ≤ λ

(j)
k+1

for j = 1, 2, 3, behave asymptotically as follows:

λ
(1)
k =

kπ

a
+
B1 +B2

2kπ
+
γ
(1)
k

k
, (21)

λ
(j)
k =

kπ + (−1)j sin−1
√

2
3

a
+

3B1 + 3B2 + 6B3 + 2β

12kπ
+
γ
(j)
k

k
, j = 2, 3,

(22)

where {γ(j)k }
∞
−∞,k 6=0 ∈ l2 for j = 1, 2, 3.

Proof. In the same way as [22, Lemma 1.3], we can show that the set of zeros

{λk}∞−∞,k 6=0 can be arranged into three pairwise disjoint subsequences {λ(j)k }
∞
−∞,k 6=0,

j = 1, 2, 3 enumerated in the following way: λ
(1)
−k = −λ(1)k , λ

(2)
−k = −λ(3)k , λ

(3)
−k = −λ(2)k

and λ
(j)
k ≤ λ

(j)
k+1 for j = 1, 2, 3, such that {λk}∞−∞,k 6=0 =

⋃3
j=1{λ

(j)
k }
∞
−∞,k 6=0, and

λ
(1)
k =

kπ

a
+ ε

(1)
k , (23)

λ
(j)
k =

kπ + (−1)j sin−1
√

2
3

a
+ ε

(j)
k , j = 2, 3, (24)

where ε
(j)
k = o(1), as k →∞ for j = 1, 2, 3. It is not difficult to see that

ε
(j)
k = O

(
1

k

)
, k →∞, j = 1, 2, 3. (25)

Substituting (23) into λ
(1)
k Φ(λ

(1)
k ) = 0, then from (15) and taking into account that

the function ω1(λ) is bounded on the real axis by the Paley-Wiener theorem, we
obtain

λ
(1)
k Φ(λ

(1)
k ) = (−1)k

(
2 sin ε

(1)
k a− 3 sin3 ε

(1)
k a
)

+(−1)ka(2B1 + 2B2 + 3B3 + β)
sin2 ε

(1)
k a cos ε

(1)
k a

kπ

−(−1)ka(B1 +B2)
cos3 ε

(1)
k a

kπ
+
aω1(λ

(1)
k )

kπ
+O

(
1

k2

)
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= (−1)k2 sin ε
(1)
k a+O

(
1

k

)
= 0, k →∞.

This yields sin ε
(1)
k a = O

(
1
k

)
. Thus, ε

(1)
k = O

(
1
k

)
. Similarly, we can show that

ε
(j)
k = O

(
1
k

)
for j = 2, 3. Substituting (23) into the equation λ

(1)
k Φ(λ

(1)
k ) = 0

where Φ(λ) is given by (15), by expanding the left-hand side of resulting equation in

power series and taking into account (25) and {ω1(λ
(1)
k )}∞−∞,k 6=0 ∈ l2(see [16, Lemma

1.4.3]), we obtain

2ε
(1)
k a− a(B1 +B2)

kπ
+
τk
k

= 0,

where {τk}∞−∞,k 6=0 ∈ l2. Solving this equation we get (21). In the same way, we get
(22).

To compare necessary conditions on a sequence to be the spectrum of the boundary-
value problem L0 with the sufficient condition which will be obtained in Section 4,
we need more precise asymptotics.

Theorem 3.4. Let qj(x) ∈ W 1
2 (0, a) for j=1,2,3. Then the subsequences of

Theorem 3.3 behave asymptotically as follows:

λ
(1)
k =

kπ

a
+
B1 +B2

2kπ
+
γ
(1)
k

k2
, (26)

λ
(j)
k =

kπ + (−1)j sin−1
√

2
3

a
+

3B1 + 3B2 + 6B3 + 2β

12kπ
+
γ
(j)
k

k2
, j = 2, 3,

(27)

where {γ(j)k }
∞
−∞,k 6=0 ∈ l2 for j = 1, 2, 3.

Proof. If qj(x) ∈ W 1
2 (0, a), twice integrating by parts the formulas of [7, p. 18]

and [16, p. 9], we obtain

uj(a, λ) =
sinλa

λ
−Bj

cosλa

λ2
+Dj

sinλa

λ3
+
%j(λ)

λ3
, j = 1, 2, (28)

u3(a, λ) = cosλa+B3
sinλa

λ
+D3

cosλa

λ2
+
%3(λ)

λ2
, (29)

u′j(a, λ) = cosλa+Bj
sinλa

λ
+D′j

cosλa

λ2
+
σj(λ)

λ2
, j = 1, 2, (30)

u′3(a, λ) = −λ sinλa+B3 cosλa+D′3
sinλa

λ
+
σ3(λ)

λ
, (31)
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where Dj , D
′
j , j = 1, 2, 3 are constants and %j(λ), σj(λ), j = 1, 2, 3 are entire

functions of class La. Substituting (28)-(31) into (11) we obtain

Φ(λ) =
2 sinλa− 3 sin3 λa

λ
+ (2B1 + 2B2 + 3B3 + β)

sin2 λa cosλa

λ2

−(B1 +B2)
cos3 λa

λ2
+ E1

sin3 λa

λ3
+ E2

cos2 λa sinλa

λ3
+
ω3(λ)

λ3
,

(32)

where E1, E2 are constants and ω3(λ) ∈ L3a. Substituting (21) into the equation

λ
(1)
k Φ(λ

(1)
k ) = 0 where Φ(λ) is given by (32) and by expanding the left-hand side

of resulting equation in power series, we get (26). Analogously, we obtain (27).
Theorem 3.4 is proved.

Remark 3.5. Under the conditions of Theorem 3.4, the spectra {ν(j)k }
∞
−∞,k 6=0 of

the boundary-value problems Lj for j = 1, 2, 3 behave asymptotically as follows(see
[16, p. 75]):

ν
(j)
k =

kπ

a
+
Bj
πk

+
δ
(j)
k

k2
, j = 1, 2, (33)

ν
(3)
k =

π
(
k − 1

2

)
a

+
B3

π
(
k − 1

2

) +
δ
(3)
k

k2
, (34)

where {δ(j)k }
∞
−∞,k 6=0 ∈ l2 for j = 1, 2, 3.

For investigation of direct and inverse spectral problems, methods of the theory
of entire and meromorphic functions are widely used. For this reason, we give several
notation and definitions for what follows.

If Ω ⊆ C is an open set, we denote by H(Ω) the set of all functions which are
analytic in Ω and by M(Ω) the set of all functions meromorphic in Ω.

Definition 3.6.([25]) Let K ⊆M(C) and let ϕ,ψ ∈ H(C).

i. The pair (ϕ,ψ) is called a 1-K-pair, if ψ−1ϕ ∈ K and ϕ and ψ have no common
zeros.

ii. Let n ∈ N and n ≥ 2. The pair (ϕ,ψ) is called an n-K-pair, if ψ−1ϕ ∈ K,
there exist 1-K-pairs (ϕ1, ψ1), . . . , (ϕn, ψn) such that

ψ =
n∏
i=1

ψi, ϕ =
n∑
i=1

(
ϕi
∏
j = 1
j 6= i

ψj

)
,

and no representation of this kind is possible with less than n many 1-K-pairs.
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Definition 3.7.([25] A function f ∈ H(C \ R) is said to be of Nevanlinna class
N if

i. f(z) = f(z) for z ∈ C \ R;

ii. Im f(z) ≥ 0 for Im z > 0.

Definition 3.8.([25]) The class N ep of essentially positive Nenalinna functions
is defined as the set of all functions f ∈ N which are analytic in C \ [0,∞) with
possible exception of finitely many poles. Moreover, the class N ep

− is defined as the
set of all functions f ∈ N such that for some b ∈ R we have f ∈ H(C \ [b,∞)) and
f(z) ≤ 0 for z ∈ (−∞, b).

It is easy to check that N ep
− ⊆ N ep.

Definition 3.9. ([15]) An entire function ω(z) of exponential type σ > 0 is said
to be a function of sine-type if it satisfies the following conditions:

i. all the zeros of ω(z) lie in a strip |Im z| < h <∞;

ii. for some h1 and all z ∈ {λ : Im z = h1}, the following equalities hold:

0 < m ≤ |ω(z)| ≤M <∞;

iii. the type of ω(z) in the lower half-plane coincides with that in the upper half-
plane.

Let us introduce the entire functions

ϕj(z) = −u′j(a,
√
z)− β

3
uj(a,

√
z), j = 1, 2, 3, (35)

ψj(z) = uj(a,
√
z), j = 1, 2, 3, (36)

ϕ(z) = −Φ(
√
z), ψ(z) = Ψ(

√
z). (37)

Using (11) and (12) we obtain

ϕ(z) =

3∑
i=1

(
ϕi(z)

3∏
j = 1
j 6= i

ψj(z)
)
, ψ(z) =

3∏
j=1

ψj(z) (38)
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and consequently

ϕ(z)

ψ(z)
=

3∑
j=1

ϕj(z)

ψj(z)
. (39)

Lemma 3.10.
1. The zeros of the functions ϕj(z) and ψj(z) (j = 1, 2, 3) are real;
2. The functions ϕj(z) and ψj(z)(j = 1, 2, 3) have no common zeros.

Proof. The zeros of ϕj(z), j = 1, 2, 3 coincide with the squares of the eigenvalues
of the boundary-value problems{

−y′′j (x) + qj(x)yj(x) = λ2yj(x), x ∈ [0, a],

yj(0) = y′j(a) + β
3 yj(a) = 0, j = 1, 2,{

−y′′3(x) + q3(x)y3(x) = λ2y3(x), x ∈ [0, a],

y′3(0)− hy3(0) = y′3(a) + β
3 y3(a) = 0,

respectively, and the zeros of ψj(z) coincide with the squares of the eigenvalues
of the boundary-value problems Lj , j = 1, 2, 3, respectively. These problems are
self-adjoint and it follows from [20, Part I, Theorem 3] that the squares of their
eigenvalues are real. Assertion 1 is proved. To prove assertion 2, let z0 be a common
zero of ϕj(z) and ψj(z). Using to Lagrange identity(see [20, Part II, p. 50]) for
solutions uj(a,

√
z) and uj(a,

√
z0) of (1) we obtain

(z − z0)
∫ a

0
uj(x,

√
z)uj(x,

√
z0)dx =

(
uj(x,

√
z)u′j(x,

√
z0)− u′j(x,

√
z)uj(x,

√
z0)
)∣∣a

0

= ϕj(z)ψj(z0)− ϕj(z0)ψj(z).

For z → z0 we get∫ a

0
u2j (x,

√
z0)dx = ϕ̇j(z0)ψj(z0)− ϕj(z0)ψ̇j(z0) = 0,

where ϕ̇j(z) = d
dzϕj(z) and ψ̇j(z) = d

dzψj(z). This implies that uj(x,
√
z0) ≡ 0

which is a contradiction. Therefore, ϕj(z) and ψj(z) have no common zeros.

Lemma 3.11. The functions
ϕj(z)
ψj(z)

, j = 1, 2, 3 and ϕ(z)
ψ(z) are of the Nevanlinna

class N .
Proof. Let j ∈ {1, 2, 3} . Using the Lagrange identity for the solution uj(a,

√
z)

of (1), we have(
u′j(x,

√
z)uj(x,

√
z)− u′j(x,

√
z)uj(x,

√
z))
)∣∣∣a

0
= 2iIm z

∫ a

0
|uj(x,

√
z)|2dx. (40)
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Since

Im
(
u′j(a,

√
z)uj(a,

√
z)− u′j(a,

√
z)uj(a,

√
z)
)

= −2|uj(a,
√
z)|2Im

u′j(a,
√
z)

uj(a,
√
z)
,

then (40) yields

−Im
u′j(a,

√
z)

uj(a,
√
z)

= Im z

∫ a
0 |uj(x,

√
z)|2dx

|uj(a,
√
z)|2

, Im z 6= 0.

Thus,

Im

(
−
u′j(a,

√
z)

uj(a,
√
z)

)
≥ 0 for Im z > 0

and consequently

Im
ϕj(z)

ψj(z)
= Im

(
−
u′j(a,

√
z)

uj(a,
√
z)
− β

3

)
≥ 0 for Im z > 0. (41)

Also, according to Lemma 3.10 the zeros of ϕj(z) and ψj(z) are real and hence
ϕj(z)
ψj(z)

∈ H(C \ R). Therefore
ϕj(z)
ψj(z)

∈ N . Now it follows from (39) and (41) that
ϕ(z)
ψ(z) ∈ H(C \ R) and

Im
ϕ(z)

ψ(z)
=

3∑
j=1

Im
ϕj(z)

ψj(z)
≥ 0 for Im z > 0.

Consequently ϕ(z)
ψ(z) ∈ N . Lemma 3.11 is proved.

Lemma 3.12. The functions
ϕj(z)
ψj(z)

, j = 1, 2, 3 and ϕ(z)
ψ(z) are of the class N ep

− .

Proof. By virtue of the formulas (17)-(20) we get

uj(a,
√
z) =

e
√
|z|a

2
√
|z|

(1 + o(1)) , z → −∞, j = 1, 2,

u3(a,
√
z) =

e
√
|z|a

2
(1 + o(1)) , z → −∞,

u′j(a,
√
z) =

e
√
|z|a

2
(1 + o(1)) , z → −∞, j = 1, 2,

u′3(a,
√
z) =

√
|z|e
√
|z|a

2
(1 + o(1)) , z → −∞.
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Using these asymptotics we obtain from (35) and (36)

ϕj(z)

ψj(z)
= −

√
|z| (1 + o(1)) , z → −∞, j = 1, 2, 3,

and consequently

lim
z→−∞

ϕj(z)

ψj(z)
= −∞, j = 1, 2, 3. (42)

It follows form Lemma 3.10, Lemma 3.11 and (42) that there exist real numbers
bj ∈ R, j = 1, 2, 3 such that

ϕj(z)

ψj(z)
∈ N ∩H(C \ [bj ,∞)),

ϕj(z)

ψj(z)
< 0 for z ∈ (−∞, bj). (43)

Therefore,
ϕj(z)
ψj(z)

∈ N ep
− for j = 1, 2, 3.

Now using (39) and (43) and Lemma 3.11 we conclude that

ϕ(z)

ψ(z)
∈ N ∩H(C \ [b,∞)),

ϕ(z)

ψ(z)
=

3∑
j=1

ϕj(z)

ψj(z)
< 0 for z ∈ (−∞, b),

where b = min{b1, b2, b3}. Thus, ϕ(z)
ψ(z) ∈ N

ep
− . Lemma 3.12 is proved.

Theorem 3.13 The sequences {λk}∞−∞,k 6=0 and {κk}∞−∞,k 6=0 satisfy the following
conditions:
1. 0 < λ1 < κ1 ≤ λ2 ≤ κ2 ≤ · · · ≤ λk ≤ κk ≤ · · · (λ−k = −λk, κ−k = −κk);
2. κk = λk+1 if and only if λk+1 = κk+1 for k ∈ N;
3. The maximal multiplicity of κk is 3.

Proof. Denote N̊ ep
− := M(C) ∩ N ep

− . The functions uj(a,
√
z) and u′j(a,

√
z)

are entire in z and hence in view of Lemma 3.12,
ϕj(z)
ψj(z)

∈ N̊ ep
− for j = 1, 2, 3 and

ϕ(z)
ψ(z) ∈ N̊

ep
− . Also, by Lemma 3.10 the functions ϕj(z), ψj(z) have no common zeros.

Therefore the pairs (ϕj , ψj), j = 1, 2, 3 are 1-N̊ ep
− -pairs and consequently, in view

of (38) the pair (ϕ,ψ) is an m-N̊ ep
− -pair with some m ≤ 3(see Definition 3.6). On

the other hand by virtue of (37), the squares of the zeros of Φ(λ) and Ψ(λ) coincide
with the zeros of ϕ(z) and ψ(z), respectively. Now the assertions of Theorem 3.13
immediately follows from [25, Corollary 4.6].

4. Inverse problem

In the present section, we study the problem of reconstruction of the potential q(x) =
[qj(x)]j=1,2,3 and the real numbers h, β from the given spectral characteristics. Let
us denote by Q the class of sets {[qj(x)]j=1,2,3, h, β} which satisfy the following
conditions:
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i. qj(x), j = 1, 2, 3 are real-valued functions from L2(0, a);

ii. h, β ∈ R;

iii. the operator A constructed via (4), (5) is strictly positive.

Theorem 4.1. Let the following conditions be satisfied :

1. Three sequences {ν(j)k }
∞
−∞,k 6=0, j = 1, 2, 3 of real numbers are such that

i. ν
(j)
−k = −ν(j)k , ν

(j)
k < ν

(j)
k+1, ν

(j)
k 6= 0 for all k ∈ N and j = 1, 2, 3;

ii. {ν(i)k }
∞
−∞,k 6=0

⋂
{ν(j)k }

∞
−∞,k 6=0 = ∅ for i 6= j, i, j = 1, 2, 3;

iii.

ν
(j)
k =

πk

a
+
Bj
πk

+
δ
(j)
k

k2
, j = 1, 2, (44)

ν
(3)
k =

π
(
k − 1

2

)
a

+
B3

π
(
k − 1

2

) +
δ
(3)
k

k2
, (45)

where Bj are real constants, Bi 6= Bj for i 6= j and {δ(j)k }
∞
−∞,k 6=0 ∈ l2 for j = 1, 2, 3.

2. A sequence {λk}∞−∞,k 6=0 of real numbers(λ−k = −λk, λk ≤ λk+1, λk 6= 0 for
all k ∈ N) can be represented as the union of three pairwise disjoint subsequences

{λk}∞−∞,k 6=0 =
⋃3
j=1{λ

(j)
k }
∞
−∞,k 6=0 (λ

(1)
−k = −λ(1)k , λ

(2)
−k = −λ(3)k , λ

(3)
−k = −λ(2)k and

λ
(j)
k ≤ λ

(j)
k+1 for j = 1, 2, 3) which behave asymptotically as follows:

λ
(1)
k =

kπ

a
+
B1 +B2

2kπ
+
γ
(1)
k

k2
, (46)

λ
(j)
k =

kπ + (−1)j sin−1
√

2
3

a
+
B0

kπ
+
γ
(j)
k

k2
, j = 2, 3, (47)

where B0 is a real constant and {γ(j)k }
∞
−∞,k 6=0 ∈ l2 for j = 1, 2, 3.

3. The sequences {λk}∞−∞,k 6=0 and {κk}∞−∞ :=
⋃3
j=1{ν

(j)
k }

∞
−∞,k 6=0

⋃
{0}(κ−k = −κk,

κk < κk+1) interlace in the following strict sense:

· · · < κ−2 < λ−2 < κ−1 < λ−1 < κ0 = 0 < λ1 < κ1 < λ2 < κ2 < · · · . (48)

Then there exists a unique set {[qj(x)]j=1,2,3, h, β} ∈ Q such that the sequence
{λk}∞−∞,k 6=0 coincides with the spectrum of the boundary-value problem L0, where
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β = 6B0−3
2B1−3

2B2−3B3, h = B3−(1/2)
∫ a
0 q3(x)dx and the sequences {ν(j)k }

∞
−∞,k 6=0,

j = 1, 2, 3 coincides with the spectra of the boundary-value problems Lj, j = 1, 2, 3,
respectively.

Proof. Denote by

{ρ(0)k }
∞
−∞,k 6=0 := {πk − ξ

a
}∞−∞,k 6=0

⋃
{πk + ξ

a
}∞−∞,k 6=0, ξ := sin−1

√
2

3
,

{ρk}∞−∞,k 6=0 := {λ(2)k }
∞
−∞,k 6=0

⋃
{λ(3)k }

∞
−∞,k 6=0.

It is possible to enumerate {ρ(0)k }
∞
−∞,k 6=0 and {ρk}∞−∞,k 6=0 in the proper way(ρ

(0)
−k =

−ρ(0)k , ρ
(0)
k < ρ

(0)
k+1 and ρ−k = −ρk, ρk ≤ ρk+1). Let us construct the following entire

functions:

uj(λ) = a
∞∏
1

(
a2

π2k2
(ν

(j)2
k − λ2)

)
, j = 1, 2, (49)

u3(λ) =

∞∏
1

(
a2

π2(k − 1/2)2
(ν

(3)2
k − λ2)

)
, (50)

φ1(λ) = a
∞∏
1

(
a2

π2k2
(λ

(1)2
k − λ2)

)
, (51)

φ2(λ) = 2

∞∏
1

(
1

ρ
(0)2
k

(ρ2k − λ2)

)
. (52)

Using [21, Lemma 2.1], we obtain

uj(λ) =
sinλa

λ
−Bj

cosλa

λ2
+ Fj

sinλa

λ3
+
fj(λ)

λ3
, j = 1, 2, (53)

where Fj , j = 1, 2 are constants and fj(λ) ∈ La for j = 1, 2. In the same way as
[21, Lemma 2.1] we can prove that

u3(λ) = cosλa+B3
sinλa

λ
+ F3

cosλa

λ2
+
f3(λ)

λ2
, (54)

φ1(λ) =
sinλa

λ
−
(
B1 +B2

2

)
cosλa

λ2
+G1

sinλa

λ3
+
g1(λ)

λ3
, (55)

φ2(λ) = 2− 3 sin2 λa+ 3B0
sin 2λa

λ
+G2

2− 3 sin2 λa

λ2
+
g2(λ)

λ2
, (56)

where F3, Gj , j = 1, 2 are constants and f3(λ), g1(λ) ∈ La and g2(λ) ∈ L2a.
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Let us set

X
(j)
k := ν

(j)
k

(
φ1(ν

(j)
k )φ2(ν

(j)
k )

ui(ν
(j)
k )u3(ν

(j)
k )
− cos ν

(j)
k a−Bj

sin ν
(j)
k

ν
(j)
k

)
, i, j = 1, 2, i 6= j, (57)

X
(3)
k :=

(
φ1(ν

(3)
k )φ2(ν

(3)
k )

u1(ν
(3)
k )u2(ν

(3)
k )

+ ν
(3)
k sin ν

(3)
k a−B3 cos ν

(3)
k a

)
. (58)

where the numbers Bj , j = 1, 2, 3 can be determined by

Bj = lim
k→∞

kπ

(
ν
(j)
k −

πk

a

)
, j = 1, 2, (59)

B3 = lim
k→∞

π

(
k − 1

2

)(
ν
(3)
k −

π
(
k − 1

2

)
a

)
. (60)

It is clear that X
(j)
−k = −X(j)

k for j = 1, 2 and X
(3)
−k = X

(3)
k .

To complete the proof we need the following lemma.

Lemma 4.2.

{X(j)
k }

∞
−∞,k 6=0 ∈ l2 for j = 1, 2, 3. (61)

Proof. Substituting (44) into (53)-(56), we obtain

u2(ν
(1)
k ) = (−1)k

a2(B1 −B2)

π2k2
+
ζ
(1)
k

k3
, (62)

u3(ν
(1)
k ) = (−1)k

(
1− a2B2

1

2π2k2
+
a2B1B3

π2k2
+
a2F3

π2k2

)
+
ζ
(2)
k

k2
, (63)

φ1(ν
(1)
k ) = (−1)k

a2(B1 −B2)

π2k2
+
ζ
(3)
k

k3
, (64)

φ2(ν
(1)
k ) = 2 +

ζ
(4)
k

k
, (65)

where {ζ(j)k }
∞
−∞,k 6=0 ∈ l2 for j = 1, 4. Also, Using (44), we obtain the asymptotic

relation

cos ν
(1)
k a+B1

sin ν
(1)
k

ν
(1)
k

= (−1)k
(

1 +
ηk
k

)
, (66)
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where {ηk}∞−∞,k 6=0 ∈ l2. If we substitute (62)-(66) into (57), then we conclude that

{X(1)
k }

∞
−∞,k 6=0 ∈ l2. Analogously we can show that {X(2)

k }
∞
−∞,k 6=0 ∈ l2. We show

that {X(3)
k }

∞
−∞,k 6=0 ∈ l2. Let us substitute (45) into (53)-(56). We obtain

uj(ν
(3)
k ) =

(−1)k+1

ν
(3)
k

(
1 +

ζ ′
(j)
k

k

)
, j = 1, 2, (67)

φ1(ν
(3)
k ) =

(−1)k+1

ν
(3)
k

(
1 +

ζ ′
(3)
k

k

)
, (68)

φ2(ν
(3)
k ) = −1 +

ζ ′
(4)
k

k
, (69)

where {ζ ′(j)k }
∞
−∞,k 6=0 ∈ l2 for j = 1, 4. Furthermore, taking into account (45), we

have

ν
(3)
k sin ν

(3)
k a−B3 cos ν

(3)
k a = (−1)k+1ν

(3)
k

(
1 +

η′k
k

)
, (70)

where {η′k}∞−∞,k 6=0 ∈ l2. Using (67)-(70) in (58), the assertion of Lemma 4.2 for
j = 3 follows.

Now Since the functions λuj(λ), j = 1, 2 and u3(λ) are sine-type functions

(see Definition 3.9) and by virtue of (44), (45) and (48), inf
k 6=p
|ν(j)k − ν

(j)
p | > 0 for

j = 1, 2, 3(and hence the zeros of λuj(λ), j = 1, 2 and u3(λ) are simple), the Lagrange
interpolation series

λuj(λ)
∞∑
−∞
k 6= 0

X
(j)
k

dλuj(λ)
dλ

∣∣∣
λ=ν

(j)
k

(λ− ν(j)k )
, j = 1, 2 (71)

and

u3(λ)
∞∑
−∞
k 6= 0

X
(3)
k

du3(λ)
dλ

∣∣∣
λ=ν

(3)
k

(λ− ν(3)k )
(72)

constructed on the basis of the sequences {X(j)
k }

∞
−∞,k 6=0, define functions εj(λ) ∈ La,

j = 1, 2, 3, respectively(see [14, Theorem A]). Using these functions, we define the
even entire functions

vj(λ) = cosλa+Bj
sinλa

λ
+
εj(λ)

λ
, j = 1, 2, (73)

v3(λ) = −λ sinλa+B3 cosλa+ ε3(λ). (74)
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It follows directly from (71) and (72) that εj(ν
(j)
k ) = X

(j)
k for j = 1, 2, 3 and hence

vj(ν
(j)
k ) =

φ1(ν
(j)
k )φ2(ν

(j)
k )

ui(ν
(j)
k )u3(ν

(j)
k )

, i, j = 1, 2, i 6= j, (75)

v3(ν
(3)
k ) =

φ1(ν
(3)
k )φ2(ν

(3)
k )

u1(ν
(3)
k )u2(ν

(3)
k )

. (76)

Let us denote by {µ(j)k }
∞
−∞,k 6=0 the set of zeros of the functions vj(λ), j = 1, 2, 3,

respectively. These sets are symmetric with respect to the real axis and to the

imaginary axis. Hence, we number the zeros in the proper way: µ
(j)
−k = −µ(j)k ,

Reµ
(j)
k ≤ Reµ

(j)
k+1 for all k ∈ N and the multiplicity are taken into account(we shall

prove that all µ
(j)2
k are real and all µ

(j)
k are simple except for µ

(j)
1 , if µ

(j)
1 = µ

(j)
−1 = 0).

It follows from (73) and (74) that

µ
(j)
k =

π
(
k − 1

2

)
a

+
Bj

π
(
k − 1

2

) +
θ
(j)
k

k
, j = 1, 2, (77)

µ
(3)
k =

(k − 1)π

a
+
B3

kπ
+
θ
(3)
k

k
, (78)

where {θ(j)k }
∞
−∞,k 6=0 ∈ l2 for j = 1, 2, 3.

Proposition 4.3. The following inequalities are valid:

µ
(j)2
1 < ν

(j)2
1 < µ

(j)2
2 < ν

(j)2
2 < · · · , j = 1, 2, 3. (79)

Proof. In the same way as proof of [22, Proposition 2.3], we can show that

(−1)k
φ1(ν

(j)
k )φ2(ν

(j)
k )

ui(ν
(j)
k )u3(ν

(j)
k )

> 0, i, j = 1, 2, i 6= j,

(−1)k
φ1(ν

(3)
k )φ2(ν

(3)
k )

u1(ν
(3)
k )u2(ν

(3)
k )

> 0.

From these inequalities and (75) and (76), it follows that

(−1)kvj(ν
(j)
k ) > 0, j = 1, 2, 3. (80)

Let j ∈ {1, 2, 3} be fixed. It follows from (80) that between consecutive ν
(j)
k ’s there

is an odd number(with account of multiplicities) of µ
(j)
k ’s. Suppose that there are
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three or more of them between ν
(j)
k and ν

(j)
k+1. Then comparing (77) and (78) with

(44) and (45), we conclude that there are no µ
(j)
p ’s between some ν

(j)
k′ and ν

(j)
k′+1

where k 6= k′, a contradiction. Thus, ν
(j)2
1 < µ

(j)2
2 < ν

(j)2
2 < · · ·. If vj(0) > 0,

then 0 < µ
(j)
1 < ν

(j)
1 . If vj(0) = 0, then µ

(j)
1 = 0. If vj(0) < 0, then µ

(j)
1 is a pure

imaginary number and hence µ
(j)2
1 < ν

(j)2
1 . Proposition 4.3 is proved.

Let j ∈ {1, 2}. It follows from (79) and the asymptotic relations (44) and (77)

that the sequences {ν(j)k }
∞
−∞,k 6=0 and {µ(j)k }

∞
−∞,k 6=0 satisfy the conditions of [16, The-

orem 3.4.1]. Thus, there exists a unique real-valued function qj(x) ∈ L2(0, a) such

that {ν(j)k }
∞
−∞,k 6=0 and {µ(j)k }

∞
−∞,k 6=0 are the spectra of the boundary-value prob-

lems Lj and L′j , respectively. An algorithm for the reconstruction of this potential
qj(x) is as follows(see [16, Section 3.4]): Without loss of generality, let us assume

that µ
(j)2
1 > 0, otherwise we apply a shift. The function

ej(λ) = eiλa (vj(λ)− iλuj(λ))

is the so-called Jost function of the corresponding prolonged Sturm–Liouville prob-
lem on the semi-axis:

−y′′j (x) + q̃j(x)yj(x) = λ2yj(x), x ∈ [0,∞), yj(0) = 0,

where

q̃j(x) =

{
qj(x) if x ∈ [0, a]
0 if x ∈ (a,∞).

Then we construct the S-function of the problem on the semi-axis:

Sj(λ) =
ej(−λ)

ej(λ)

and the function

Fj(x) =
1

2π

∫ ∞
−∞

(1− Sj(λ))eiλxdλ.

Solving the Marchenko integral equation

Kj(x, t) + Fj(x+ t) +

∫ ∞
x

Kj(x, s)Fj(x+ s)ds = 0, t > x

we find the unique solution Kj(x, t) and

qj(x) = −2
dKj(x, x)

dx
, x ∈ [0, a].
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The two sequences {ν(3)k }
∞
−∞,k 6=0 and {µ(3)k }

∞
−∞,k 6=0 satisfy(due to (45), (78) and

(79)) the conditions of [7, Theorem 1.5.4]. Thus, there exists a unique real-valued

function q3(x) ∈ L2(0, a) and a unique real number h such that {ν(3)k }
∞
−∞,k 6=0 and

{µ(3)k }
∞
−∞,k 6=0 are the spectra of the boundary-value problems L3 and L′3, respectively.

Below we give the algorithm of recovering of q3(x) as it is described in [7, Section 1.5].
Calculate the so-called weight numbers {αk}∞1 of the problem L′3 by

αk =
1

2µ
(3)
k

v̇3(µ
(3)
k )u3(µ

(3)
k ),

where v̇3(λ) = d
dλv3(λ). If µ

(3)
1 = 0, then v̇3(µ

(3)
1 ) = 0 and we set α1 = 1

2 v̈3(0)u3(0)

where v̈(λ) = d2

dλ2
v3(λ). Construct the function

F (x, t) =
∞∑
k=1

(
cosµ

(3)
k x cosµ

(3)
k t

αk
− cos(k − 1)x cos(k − 1)t

α0
k

)
,

where

α0
k =

{
a
2 , k > 1
a, k = 1.

Then using the unique solution of the Gel’fand–Levitan integral equation

K3(x, t) + F (x, t) +

∫ x

0
K3(x, s)F (s, t)ds = 0, 0 ≤ t ≤ x ≤ a,

we find

q3(x) = 2
dK3(x, x)

dx
, h = K3(0, 0) = B3 −

1

2

∫ a

0
q3(x)dx.

To find β, we compare (27) and (47) and set

β = 6B0 −
3

2
B1 −

3

2
B2 − 3B3, (81)

where B0 can be determined by

B0 = lim
k→∞

kπ

λ(2)k − kπ + sin−1
√

2
3

a

 . (82)

Now we prove that the spectrum of the problem L0 which is generated by the ob-
tained [qj(x)]j=1,2,3, h and β coincides with {λk}∞−∞,k 6=0. Due to [16, Theorem 3.4.1]
and [7, Theorem 1.5.4], the spectra of the problems Lj , j = 1, 2, 3 which are gen-

erated by the obtained [qj(x)]j=1,2,3 and h coincide with {ν(j)k }
∞
−∞,k 6=0, j = 1, 2, 3,
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respectively. The function uj(a, λ)(j = 1, 2, 3) where uj(x, λ) is the solution of (1)
with obtained [qj(x)]j=1,2,3 and h which satisfy the initial conditions (3), coincide
with uj(λ), since they have the same zeros and the same asymptotics. Also, since
u′j(a, λ) and vj(λ)(j = 1, 2, 3) have the same asymptotics and according to [16, The-
orem 3.4.1] and [7, Theorem 1.5.4] have the same zeros, hence they coincide. Thus,

the values of the function Φ(λ)(defined by (11)) at λ = ν
(j)
k coincide with

φ1(ν
(j)
k )φ2(ν

(j)
k )

for all k ∈ Z \ {0} and all j = 1, 2, 3, i.e., with the corresponding values of the
function φ1(λ)φ2(λ). This implies that the entire function

∆(λ) := Φ(λ)− φ1(λ)φ2(λ) (83)

of exponential type 3a can be represented as follows:

∆(λ) = t(λ)
3∏
j=1

uj(a, λ), (84)

where t(λ) is an entire function. Using (16), (54) and (55) we have

∆(λ) = t(λ)

(
sin2 λa cosλa

λ2
− (B1 +B2)

cos2 λa sinλa

λ3
+B3

sin3 λa

λ3
+
ω1(λ)

λ3

)
,

(85)

φ1(λ)φ2(λ) =
2 sinλa− 3 sin3 λa

λ
+ (6B0 +

1

2
B1 +

1

2
B2)

sin2 λa cosλa

λ2

−(B1 +B2)
cos3 λa

λ2
+ E′1

sin3 λa

λ3
+ E′2

cos2 λa sinλa

λ3
+
ω2(λ)

λ3
,

(86)

where E′1, E
′
2 are constants and ω1(λ), ω2(λ) ∈ L3a. Substituting (32), (85) and (86)

into (83) and using (81), we obtain

t(λ)
(
λ sin2 λa cosλa− (B1 +B2) cos2 λa sinλa+B3 sin3 λa+ ω1(λ)

)
= (E1 − E′1) sin3 λa+ (E2 − E′2) cos2 λa sinλa+ ω3(λ), (87)

where ω3(λ) ∈ L3a. Since the functions sin3 λa, cos2 λa sinλa, ω1(λ) and ω3(λ) are
bounded on the real axis, hence relation (87) implies that t(λ) ≡ 0 and from (83), it
follows that Φ(λ) = φ1(λ)φ2(λ). Consequently, the sequence {λk}∞−∞,k 6=0 coincides
with the spectrum of the boundary-value problem L0. The operator A constructed
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by (4), (5) using the obtained [qj(x)]j=1,2,3, h and β is strictly positive, because it
is self-adjoint and its spectrum is positive. The uniqueness of the solution of the
inverse problem follows from the fact that formulas (71) and (72) establishes one-to-
one correspondence between l2 and La(see [14, Theorem A]). The proof of Theorem
3.1 is finished.

Remark 4.4. If condition 1(ii) of Theorem 4.1 fails, i.e., the sets {ν(j)k }
∞
−∞,k 6=0,

j = 1, 2, 3 are not pairwise disjoint(consequently, the condition 3 fails too), either
the uniqueness or the existence result of mentioned theorem can also fails, for the
same reasons as in the case of three spectra(see [9,21]). If the sequences {λk}∞−∞,k 6=0

and {κk}∞−∞ =
⋃3
j=1{ν

(j)
k }

∞
−∞,k 6=0

⋃
{0} are not pairwise disjoint and satisfy the

statements of Theorem 4.1, then the solution of the inverse problem exists but is
not unique.

Acknowledgments

The authors wish to express gratitude to Professor V. Pivovarchik for helpful discus-
sions during the preparation of the manuscript. This research is done with financial
support of research office of the University of Tabriz.

References

[1] V. Adamyan. Scattering matrices for microschemes, Oper. Theory Adv.
Appl., 59:1–10, 1992.

[2] G. Berkolaiko, E. Bogomolny and J. Keating, Star graphs and Seba biliards,
J. Phys. A: Math. Gen., 34 (2001), 335–350.

[3] R. P. BOAS, Entire Functions. Academic Press, New York, 1954.
[4] R. Carlson, Hills equation for a homogeneous tree, Electron. J. Differential

Equations, 23 (1997), 1–30.
[5] S. Currie, Spectral Theory of Differential Operators on Graphs. PhD Thesis,

University of the Witwatersrand, Johannesburg, 2006.
[6] M. D. Faddeev and B. S. Pavlov, Model of free electrons and the scattering

problem, Theoret. and Math. Phys., 55(1983), 485–492.
[7] G. Freiling and V. A. Yurko, Inverse Sturm–Liouville Problems and Their

Applications, Nova Science Publishers, New York, 2001.
[8] N. Gerasimenko and B. Pavlov, Scattering problems on non-compact graphs,

Theoretical and Mathematical Physics, 74 (1988), 230–240.
[9] F. Gesztesy and B. Simon, On the determination of a potential from three

spectra, In Differential operators and spectral theory, volume 189 of Amer. Math.
Soc. Transl. Ser. 2, pages 85–92, Amer. Math. Soc., Providence, RI, 1999.

172



I. Dehghani Tazehkand and A. Jodayree Akbarfam - Determination of Sturm-...

[10] V. Kostrykin and R. Schrader, Kirchhoffs rule for quantum wires, J. Phys.
A: Math. Gen., 32(1999), 595–630.

[11] P. Kuchment, Differential and psuedo-differential operators on graphs as
models of mesoscopic systems, In Analysis and Applications—ISAAC 2001 (Berlin),
Volume 10 of Int. Soc. Anal. Appl. Comput., pages 7–30. Kluwer Acad. Publ.,
Dordrecht, 2003.

[12] P. Kuchment, Graph models for waves in thin structures, Waves Random
Media, 12 (2002), R1-R24.

[13] B. Ja. Levin, Lectures on Entire Functions. Translations of Mathematical
Monographs Vol. 150, Amer. Math. Soc., Providence, RI, 1996.

[14] B. Ja. Levin and Yu. I. Lyubarskii, Interpolation by entire functions of
special classes and related expansions in series of exponents, Izv. Acad. Sci. USSR,
Ser. Mat., 39(3)(1975), 657–702( in Russion); English transl.: Math. USSR Izv.,
9(3)(1975), 621–6629.

[15] B.Ya. Levin and I.V. Ostrovskii, On small perturbations of the set of roots
of a sinus-type function, Izv. Akad. Nauk USSR Ser. Mat., 43:87–110, 1979(in
Russian); English transl.: Math. USSR Izv., 14(1) (1980), 79–101.

[16] V.A. Marchenko, Sturm–Liouville Operators and Applications. Naukova
Dumka, Kiev, 1977; English transl., Birkhauser, Basel, 1986.

[17] Yu. B. Melnikov and B. S. Pavlov, Two-body scattering on a graph and
application to simple Nanoelectronic devices, J. Math. Phys., 36 (1995), 2813–2838.

[18] Yu. B. Melnikov and B. S. Pavlov, Scattering on graphs and one-dimensional
approximations to N-dimensional Schrodinger operators, J. Math. Phys., 42(3)
(2001), 1202–1228.

[19] E. Montrol, Quantum theory on a network, J. Math. Phys., 11 (1970),
635–648.

[20] N. Naimark, Linear Differential Operators, Parts I and II. Frederick Ungar
Publishing Co., New York, 1968.

[21] V. Pivovarchik, An inverse Sturm–Liouville problem by three spectra,Integral
Equations Operator Theory, 34 (1999), 234–243.

[22] V. Pivovarchik, Inverse problem for the Sturm–Liouville equation on a simple
graph, SIAM J. Math. Anal., 32(4) (2000), 801–819.

[23] V. Pivovarchik, Direct and inverse three-point Sturm–Liouville problem with
parameter dependent boundary conditions, Asymptotic Anal., 26 (2001), 219–238.

[24] V. Pivovarchik, Inverse problem for the Sturm–Liouville equation on a star-
shaped graph, Math. Nachr., 280(13-14) (2007), 1595-1619.

[25] V. Pivovarchik and H. Woracek, Sums of Nevanlinna functions and differ-
ential equations on star-shaped graphs, Oper. Matrices, 3(4) (2009), 451-501.

[26] Yu. V. Pokornyi and A. V. Borovskikh, Differential equations on networks

173



I. Dehghani Tazehkand and A. Jodayree Akbarfam - Determination of Sturm-...

(geometric graphs), J. Math. Sci. (NY), 119 (2004), 691–718.
[27] Yu. Pokornyi and V. Pryadiev, The qualitative Sturm–Liouville theory on

spatial networks, J. Math. Sci. (NY), 119 (2004), 788–835.
[28] K. Ruedenberg and C.W. Scherr, Free-electron network model for conjugated

systems: I. Theory, J. Chem. Phys., 21 (1953), 1565–1581.
[29]C. F. Yang, Inverse spectral problems for the Sturm–Liouville operator on a

d-star garph, J. math. Anal. Appl., 365(2)(2010), 742–749.

I. Dehghani Tazehkand1 and A. Jodayree Akbarfam2

Faculty of Mathematical Sciences
University of Tabriz
Tabriz 51664, Iran
emails:1isadehghani@gmail.com, 2akbarfam@yahoo.com

174


