SOME RESULTS RELATED TO TOPOLOGICAL GROUPS VIA IDEAL TOPOLOGICAL SPACES

Ahmad Al-Omari and E. Hatir

ABSTRACT. An ideal on a set X is a nonempty collection of subsets of X with heredity property which is also closed finite unions. The concept of $\Gamma_{\delta} : \mathcal{P}(X) \to \tau$ defined as follows for every $A \in X$, $\Gamma_{\delta}(A) = \{x \in X : \text{there exists a } U \in \tau^{\delta}(x) \text{ such that } U - A \in \mathcal{I}\}$, was introduced by Al-Omari and Hatir [1]. In this paper, we introduce and study δ *-homeomorphism and Γ_{δ} -homeomorphism. Also we give some application to topological groups using δ -open function and Γ_{δ} -operator.

2000 Mathematics Subject Classification: 54A05 keywords: ideal topological space, δ -open set, Γ_{δ} -operator, topological group

1. INTRODUCTION AND PRELIMINARIES

Ideals in topological spaces have been considered since 1930. This topic has won its importance by Vaidyanathaswamy [13]. In [2] Janković and Hamlett investigated further properties of ideal topological space. In this paper, we investigated δ -local function and its properties in ideal topological space. Moreover, the relationships other local functions [2, 7, 8] are investigated.

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y), always mean topological spaces on which no separation axiom is assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) will denote the closure and interior of A in (X, τ) , respectively. A subset A of a space (X, τ) is said to be regular open (resp. regular closed) [12] if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A is called δ -open [12] if for each $x \in A$, there exists a regular open set G such that $x \in G \subset A$. The complement of a δ -open set is called δ -closed. A point $x \in X$ is called a δ -cluster point of A if $Int(Cl(U)) \cap A \neq \phi$ for each open set V containing x.

The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $\delta Cl(A)$. The δ -interior of A is the union of all regular open sets of X contained in A and it is denoted by $\delta Int(A)$. A is δ -open if $\delta Int(A) = A$. δ -open sets forms a topology τ^{δ} . Actually τ^{δ} is the same as the collection of all δ -open sets of (X, τ) and is denoted by $\delta O(X)$. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$, ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. An ideal topological space is a topological space (X,τ) with an ideal \mathcal{I} on X and if P(X) is the set of all subsets of X, a set operator $(.)^*: P(X) \to P(X)$ called a local function [2, 7] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subset X$, $A^*(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$. We simply write A^* instead of $A^*(\mathcal{I}, \tau)$. X^* is often a proper subset of X. The hypothesis $X = X^*$ [6] is equivalent to the hypothesis $\tau \cap \mathcal{I} = \phi$. For every ideal topological space, there exists a topology $\tau^*(\mathcal{I})$ or briefly τ^* , finer than τ , generated by $\beta(\mathcal{I}, \tau) = \{U - I : U \in \tau \text{ and } I \in \mathcal{I}\}$, but in general $\beta(\mathcal{I},\tau)$ is not always a topology [2]. Additionally, $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(\mathcal{I})$. If \mathcal{I} is an ideal on X then (X, τ, \mathcal{I}) is called an ideal topological space. Let (X, τ, \mathcal{I}) be an ideal topological space. We say that the topology τ is *compatible* with the ideal \mathcal{I} , denoted $\tau \sim \mathcal{I}$, if the following hold for every $A \subset X$, if for every $x \in A$ there exists a $U \in \tau$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$ [2]. Quite recently, Al-Omari and Hatir, [1] defined the $\Gamma_{\delta} : \mathcal{P}(X) \to \tau$ as follows for every $A \in X$, $\Gamma_{\delta}(A) = \{x \in X : \text{there exists a } U \in \tau^{\delta}(x) \text{ such that } U - A \in \mathcal{I}\}.$ In this paper, we introduce and study δ^* -homeomorphism and Γ_{δ} -homeomorphism. Also we give some application to topological groups using δ -open function and Γ_{δ} operator. In [10], Newcomb defines $A = B \mod \mathcal{I}$ if $(A - B) \cup (B - A) \in \mathcal{I}$ and observes that = $[\mod \mathcal{I}]$ is an equivalence relation.

Definition 1. [1] Let (X, τ, \mathcal{I}) be an ideal topological space. A subset A of X is called a Baire set with respect to τ^{δ} and \mathcal{I} , denoted $A \in \mathcal{B}_r(X, \tau, \mathcal{I})$, if there exists a δ -open set U such that $A = U \pmod{\mathcal{I}}$. Let $\mathcal{U}(X, \tau, \mathcal{I})$ be denoted $\{A \subseteq X : \text{there exists } B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I} \text{ such that } B \subseteq A\}$.

2. δ -local functions and Γ_{δ} -operator

Let (X, τ, \mathcal{I}) an ideal topological space and A a subset of X. Then $A^{\delta*}(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \delta O(X, x)\}$ is called δ -local function [5] of A with respect to \mathcal{I} and τ , where $\delta O(X, x) = \{U \in \delta O(X) : x \in U\}$. We denote simply $A^{\delta*}$ for $A^{\delta*}(\mathcal{I}, \tau)$.

Remark 1. [5]

- 1. The simplest ideals are $\{\phi\}$ and $\mathcal{P}(X) = \{A : A \subset X\}$. It can be deduce that $A^{\delta*}(\{\phi\}) = \delta Cl(A) \neq Cl(A)$ and $A^{\delta*}(\mathcal{P}(X)) = \phi$ for every $A \subset X$.
- 2. If $A \in \mathcal{I}$, then $A^{\delta *} = \phi$.
- 3. Neither $A \subset A^{\delta *}$ nor $A^{\delta *} \subset A$ in general.

Theorem 1. [5] Let (X, τ, \mathcal{I}) be an ideal topological space, then the following properties are equivalent:

- 1. $\tau^{\delta} \cap \mathcal{I} = \phi$;
- 2. If $I \in \mathcal{I}$, then $\delta Int(I) = \phi$;
- 3. For every $G \in \tau^{\delta}$, $G \subseteq G^{\delta *}$;
- 4. $X = X^{\delta *}$.

Theorem 2. [5] Let (X, τ, \mathcal{I}) an ideal topological space and A, B subsets of X. Then for δ -local functions the following properties hold:

- 1. If $A \subset B$, then $A^{\delta *} \subset B^{\delta *}$,
- 2. $A^{\delta *} = \delta Cl(A^{\delta *}) \subset \delta Cl(A)$ and $A^{\delta *}$ is δ -closed,
- 3. $(A^{\delta*})^{\delta*} \subset A^{\delta*}$,
- $4. \ (A \cup B)^{\delta *} = A^{\delta *} \cup B^{\delta *},$
- 5. $A^{\delta *} B^{\delta *} = (A B)^{\delta *} B^{\delta *} \subset (A B)^{\delta *},$
- 6. If $U \in \tau^{\delta}$, then $U \cap A^{\delta *} = U \cap (U \cap A)^{\delta *} \subset (U \cap A)^{\delta *}$,
- 7. If $U \in \mathcal{I}$, then $(A U)^{\delta *} = A^{\delta *} = (A \cup U)^{\delta *}$,
- 8. If $A \subseteq A^{\delta *}$, then $A^{\delta *} = \delta Cl(A^{\delta *}) = \delta Cl(A)$.

Theorem 3. [5] Let (X, τ, \mathcal{I}) be an ideal topological space, then the following are equivalent:

1. $\tau \sim^{\delta} \mathcal{I}$,

- If a subset A of X has a cover of δ-open sets each of whose intersection with A is in I, then A is in I,
- 3. For every $A \subset X$, if $A \cap A^{\delta *} = \phi$, $A \in \mathcal{I}$,
- 4. For every $A \subset X$, if $A A^{\delta *} \in \mathcal{I}$,
- 5. For every $A \subset X$, if A contains no nonempty subset B with $B \subset B^{\delta*}$, then $A \in \mathcal{I}$.

Let us denote $\beta(\mathcal{I}, \tau) = \{V - I_o : V \in \delta O(X), I_o \in \mathcal{I}\}$, simplicity $\beta(\mathcal{I}, \tau)$ for β .

Theorem 4. [5] Let (X, τ) be a space, \mathcal{I} an ideal on X. Then β is a basis for $\tau^{\delta*}$.

Theorem 5. [5] Let (X, τ, \mathcal{I}) be an ideal topological space. If τ is δ -compatible with \mathcal{I} , then the following equivalent properties hold:

- 1. For every $A \subseteq X$, $A \cap A^{\delta *} = \phi$ implies that $A^{\delta *} = \phi$.
- 2. For every $A \subseteq X$, $(A A^{\delta *})^{\delta *} = \phi$.
- 3. For every $A \subseteq X$, $(A \cap A^{\delta*})^{\delta*} = A^{\delta*}$.

Theorem 6. [1] Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties hold:

- 1. If $A \subseteq X$, then $\Gamma_{\delta}(A)$ is δ -open.
- 2. If $A \subseteq B$, then $\Gamma_{\delta}(A) \subseteq \Gamma_{\delta}(B)$.
- 3. If $A, B \in X$, then $\Gamma_{\delta}(A \cap B) = \Gamma_{\delta}(A) \cap \Gamma_{\delta}(B)$.
- 4. If $U \in \tau^{\delta *}$, then $U \subseteq \Gamma_{\delta}(U)$.
- 5. If $A \subseteq X$, then $\Gamma_{\delta}(A) \subseteq \Gamma_{\delta}(\Gamma_{\delta}(A))$.
- 6. If $A \subseteq X$, then $\Gamma_{\delta}(A) = \Gamma_{\delta}(\Gamma_{\delta}(A))$ if and only if $(X A)^{\delta *} = ((X A)^{\delta *})^{\delta *}$.

If A ∈ I, then Γ_δ(A) = X - X^{δ*}.
If A ⊆ X, then A ∩ Γ_δ(A) = Int^{δ*}(A).
If A ⊆ X, I ∈ I, then Γ_δ(A - I) = Γ_δ(A).
If A ⊆ X, I ∈ I, then Γ_δ(A ∪ I) = Γ_δ(A).
If (A - B) ∪ (B - A) ∈ I, then Γ_δ(A) = Γ_δ(B).

Theorem 7. [1] Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim^{\delta} \mathcal{I}$. Then $\Gamma_{\delta}(A) = \bigcup \{\Gamma_{\delta}(U) : U \in \tau^{\delta}, \Gamma_{\delta}(U) - A \in \mathcal{I} \}.$

Proposition 1. [1] Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim^{\delta} \mathcal{I}$, $A \subseteq X$. If N is a nonempty δ -open subset of $A^{\delta*} \cap \Gamma_{\delta}(A)$, then $N - A \in \mathcal{I}$ and $N \cap A \notin \mathcal{I}$.

Theorem 8. [1] Let (X, τ, \mathcal{I}) be an ideal topological space. Then $\tau \sim^{\delta} \mathcal{I}$ if and only if $\Gamma_{\delta}(A) - A \in \mathcal{I}$ for every $A \subseteq X$.

Proposition 2. [1] Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau^{\delta} \cap \mathcal{I} = \phi$. The following properties are equivalent:

- 1. $A \in \mathcal{U}(X, \tau, \mathcal{I});$
- 2. $\Gamma_{\delta}(A) \cap \delta Int(A^{\delta^*}) \neq \phi;$
- 3. $\Gamma_{\delta}(A) \cap A^{\delta *} \neq \phi;$
- 4. $\Gamma_{\delta}(A) \neq \phi;$
- 5. $Int^{\delta*}(A) \neq \phi;$
- 6. There exists $N \in \tau^{\delta} \{\phi\}$ such that $N A \in \mathcal{I}$ and $N \cap A \notin \mathcal{I}$.

3. δ *-homeomorphisms

Given an ideal topological space (X, τ, \mathcal{I}) a topology denoted by $\langle \Gamma_{\delta}(\tau) \rangle$, coarser than τ^{δ} is generated by the basis $\Gamma_{\delta}(\tau) = \{\Gamma_{\delta}(U) : U \in \tau^{\delta}\}$

Definition 2. Let (X, τ, \mathcal{I}) and (Y, σ, \mathcal{J}) be an ideal topological spaces. A bijection $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is called

- 1. δ^* -homeomorphism if $f: (X, \tau^{\delta^*}) \to (Y, \sigma^{\delta^*})$ is a homeomorphism.
- 2. Γ_{δ} -homeomorphism if $f: (X, \Gamma_{\delta}(\tau)) \to (Y, \Gamma_{\delta}(\sigma))$ is a homeomorphism.

Definition 3. A function $f : (X, \tau) \to (Y, \sigma)$ is called

- 1. δ -continuous [11] if the inverse image of δ -open set is δ -open.
- 2. δ -open if the image of δ -open set is δ -open.

Theorem 9. Let (X, τ, \mathcal{I}) and (Y, σ, \mathcal{J}) be an ideal topological spaces with $f : (X, \tau) \to (Y, \Gamma_{\delta}(\sigma))$ is a δ -continuous injection, $\sigma \sim^{\delta} \mathcal{J}$ and $f^{-1}(\mathcal{J}) \subseteq \mathcal{I}$. Then $\Gamma_{\delta}(f(A)) \subseteq f(\Gamma_{\delta}(A))$ for every $A \subseteq X$.

Proof. Let $y \in \Gamma_{\delta}(f(A))$ where $A \subseteq X$. Then by Theorem 7, there exists $V \in \sigma^{\delta}$ such that $y \in \Gamma_{\delta}(V)$ and $\Gamma_{\delta}(V) - f(A) \in \mathcal{J}$. Now we have $f^{-1}(\Gamma_{\delta}(V)) \in \tau^{\delta}(f^{-1}(y))$ with $f^{-1}[\Gamma_{\delta}(V) - f(A)] \in \mathcal{I}$, then $f^{-1}[\Gamma_{\delta}(V)] - A \in \mathcal{I}$ and $f^{-1}(y) \in \Gamma_{\delta}(A)$ and hence $y \in f(\Gamma_{\delta}(A))$, and the proof is complete. \Box

Theorem 10. Let (X, τ, \mathcal{I}) and (Y, σ, \mathcal{J}) be an ideal topological spaces with $f : (X, \Gamma_{\delta}(\tau)) \to (Y, \sigma, \mathcal{J})$ an δ -open bijective, $\tau \sim^{\delta} \mathcal{I}$ and $f(\mathcal{I}) \subseteq \mathcal{J}$. Then $f(\Gamma_{\delta}(A)) \subseteq \Gamma_{\delta}(f(A))$ for every $A \subseteq X$.

Proof. Let $A \subseteq X$ and let $y \in f(\Gamma_{\delta}(A))$. Then $f^{-1}(y) \in \Gamma_{\delta}(A)$ and there exists $V \in \tau^{\delta}$ such that $f^{-1}(y) \in \Gamma_{\delta}(V)$ and $\Gamma_{\delta}(V) - A \in \mathcal{I}$ by Theorem 7. Now $f(\Gamma_{\delta}(V)) \in \sigma^{\delta}(y)$ and $f(\Gamma_{\delta}(V)) - f(A) = f[\Gamma_{\delta}(V) - A] \in f(\mathcal{I}) \subseteq \mathcal{J}$. Thus $y \in \Gamma_{\delta}(f(A))$, and the proof is complete. \Box

Theorem 11. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be a bijection with $f(\mathcal{I}) = \mathcal{J}$. Then the following properties are equivalent:

- 1. f is δ *-homeomorphism;
- 2. $f(A^{\delta*}) = [f(A)]^{\delta*}$ for every $A \subseteq X$;

3. $f(\Gamma_{\delta}(A)) = \Gamma_{\delta}(f(A))$ for every $A \subseteq X$.

Proof. (1) \Rightarrow (2) Let $A \subseteq X$. Assume $y \notin f(A^{\delta*})$. This implies that $f^{-1}(y) \notin A^{\delta*}$, and hence there exists $U \in \tau^{\delta}(f^{-1}(y))$ such that $U \cap A \in \mathcal{I}$. Consequently $f(U) \in \sigma^{\delta*}(y)$ and $f(U) \cap f(A) \in \mathcal{J}$, then $y \notin [f(A)]^{\delta*}(\mathcal{J}, \sigma^{\delta*}) = [f(A)]^{\delta*}(\mathcal{J}, \sigma)$. Thus $[f(A)]^{\delta*} \subseteq f(A^{\delta*})$. Now assume $y \notin [f(A)]^{\delta*}$. This implies there exists a $V \in \sigma^{\delta*}(y)$ such that $V \cap f(A) \in \mathcal{J}$, then $f^{-1}(V) \in \tau^{\delta*}(f^{-1}(y))$ and $f^{-1}(V) \cap A \in \mathcal{I}$. Thus $f^{-1}(y) \notin A^{\delta*}(\mathcal{I}, \tau^{\delta*}) = A^{\delta*}(\mathcal{I}, \tau^{\delta})$ and $y \notin f(A^{\delta*})$. Hence $f(A^{\delta*}) \subseteq [f(A)]^{\delta*}$ and $f(A^{\delta*}) = [f(A)]^{\delta*}$. (2) \Rightarrow (3) Let $A \subseteq X$. Then $f(\Gamma_{\delta}(A)) = f[X - (X - A)^{\delta*}] = Y - f(X - A)^{\delta*} =$ $Y - [Y - f(A)]^{\delta*} = \Gamma_{\delta}(f(A))$. (3) \Rightarrow (1) Let $U \in \tau^{\delta*}$. Then $U \subseteq \Gamma_{\delta}(U)$ by Theorem 6 and $f(U) \subseteq f(\Gamma_{\delta}(U)) =$ $\Gamma_{\delta}(f(U))$. This shows that $f(U) \in \sigma^{\delta*}$ and hence $f: (X, \tau^{\delta*}) \to (Y, \sigma^{\delta*})$ is $\tau^{\delta*}$ -open.

Similarly, $f^{-1}: (Y, \sigma^{\delta^*}) \to (X, \tau^{\delta^*})$ is σ^{δ^*} -open and, f is δ^* -homeomorphism. \Box

Theorem 12. Let (X, τ, \mathcal{I}) be an ideal topological space, then $\langle \Gamma_{\delta}(\tau^{\delta*}) \rangle = \langle \Gamma_{\delta}(\tau^{\delta}) \rangle$.

Proof. Note that for every $U \in \tau^{\delta}$ and for every $I \in \mathcal{I}$, we have $\Gamma_{\delta}(U-I) = \Gamma_{\delta}(U)$. Consequently, $\Gamma_{\delta}(\beta) = \Gamma_{\delta}(\tau^{\delta})$ and $\langle \Gamma_{\delta}(\beta) \rangle = \langle \Gamma_{\delta}(\tau^{\delta}) \rangle$. It follows directly from Theorem 11 of [4] that $\langle \Gamma_{\delta}(\beta) \rangle = \langle \Gamma_{\delta}(\tau^{\delta*}) \rangle$, hence the theorem is proved.

Theorem 13. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be a bijection with $f(\mathcal{I}) = \mathcal{J}$. Then the following are hold:

- 1. If f is a δ *-homeomorphism, then f is a Γ_{δ} -homeomorphism.
- 2. If $\tau \sim^{\delta} \mathcal{I}$ and $\sigma \sim^{\delta} \mathcal{J}$ and f is a Γ_{δ} -homeomorphism, then f is a $\delta^{*-homeomorphism}$.

Proof. (1) Assume $f: (X, \tau^{\delta*}) \to (Y, \sigma^{\delta*})$ is a $\delta*$ -homeomorphism, and let $\Gamma_{\delta}(U)$ be a basic open set in $\langle \Gamma_{\delta}(\tau^{\delta}) \rangle$ with $U \in \tau^{\delta}$. Then $f(\Gamma_{\delta}(U)) = \Gamma_{\delta}(f(U))$ by Theorem 11. Then $f(\Gamma_{\delta}(U)) \in \Gamma_{\delta}(\sigma^{\delta*})$, but $\langle \Gamma_{\delta}(\tau^{\delta*}) \rangle = \langle \Gamma_{\delta}(\tau^{\delta}) \rangle$ by Theorem 12. Thus $f: (X, \Gamma_{\delta}(\tau)) \to (Y, \Gamma_{\delta}(\sigma))$ is δ -open. Similarly, $f^{-1}: (Y, \Gamma_{\delta}(\sigma)) \to (X, \Gamma_{\delta}(\tau))$ is δ -open and f is Γ_{δ} -homeomorphism.

(2) Assume f is a Γ_{δ} -homeomorphism, then $f(\Gamma_{\delta}(A)) = \Gamma_{\delta}(f(A))$ for every $A \subseteq X$ by Theorems 9 and 10. Thus f is a δ *-homeomorphism by Theorem 11. \Box

4. Some results related to topological groups

Given a topological group $(X, \tau, .)$ and an ideal \mathcal{I} on X, denoted $(X, \tau, \mathcal{I}, .)$ and $x \in X$, we denote by $x\mathcal{I} = \{xI : I \in \mathcal{I}\}$. We will say \mathcal{I} is left translation invariant if for every $\in X$ we have $x\mathcal{I} \subseteq \mathcal{I}$. Observe that if \mathcal{I} is left translation invariant then $x\mathcal{I} = \mathcal{I}$ for every $x \in X$. We defined \mathcal{I} to be right translation invariant if and only if $\mathcal{I}x = \mathcal{I}$ for every $x \in X$ [3].

Lemma 1. Let (X, τ) and (X, σ) be two topological spaces and \mathscr{F} be a collection of δ -open mappings from X to Y. Let $U \in \tau^{\delta} - \phi$ and $\phi \neq A \subseteq U$. If $f(U) \in \mathscr{F}(A) = \{f(A) : f \in \mathscr{F}\}$ for every $f \in \mathscr{F}$, Then $\mathscr{F}(A) \in \sigma^{\delta} - \phi$.

Proof. Let $y \in \mathscr{F}(A)$, then there exist $f \in \mathscr{F}$ such that $y \in f(A)$. Now, $A \subseteq U$, then $f(A) \subseteq f(U)$ and $y \in f(U)$. Then f(U) is δ -open in (Y, σ) (as f is δ -open map). So there exists $V \in \sigma^{\delta}(y)$ such that $y \in V \subseteq f(U) \subseteq \mathscr{F}(A)$. So $\mathscr{F}(A) \in \sigma^{\delta} - \phi$. \Box

Theorem 14. Let (X, τ) and (X, σ) be two topological spaces and \mathcal{I} be an ideal (X, τ) with $\tau \sim^{\delta} \mathcal{I}$ and $\tau^{\delta} \cap \mathcal{I} = \phi$. Moreover, let $U \in \tau^{\delta} - \phi$, $A \subseteq X$, $U \subseteq A^{\delta*} \cap \Gamma_{\delta}(A)$ and \mathscr{F} be a non-empty collection of δ -open mappings from X to Y. Suppose $y \in \mathscr{F}(U) \Rightarrow U \cap \mathscr{F}^{-1}(y) \notin \mathcal{I}$, where $\mathscr{F}^{-1}(y) = \cup \{f^{-1}(y) : f \in \mathscr{F}\}$. Then $\mathscr{F}(U \cap A) \in \sigma^{\delta} - \phi$.

Proof. Since U is a non-empty δ -open set contained in $A^{\delta*} \cap \Gamma_{\delta}(A)$ and $\tau \sim^{\delta} \mathcal{I}$, by Proposition 1 it follows that $U - A \in \mathcal{I}$ and $U \cap A \notin \mathcal{I}$. For any $y \in \mathscr{F}(U)$, $U \cap \mathscr{F}^{-1}(y) \notin \mathcal{I}$ (by hypothesis) and we have $U \cap \mathscr{F}^{-1}(y) = U \cap \mathscr{F}^{-1}(y) \cap (A \cup A^c) = [U \cap \mathscr{F}^{-1}(y) \cap A] \cup [U \cap \mathscr{F}^{-1}(y) \cap A^c] \subseteq [U \cup \mathscr{F}^{-1}(y) \cap A] \cup (U - A)$ (where A^c = complement of A). Since $U \cap \mathscr{F}^{-1}(y) \notin \mathcal{I}$ and $U - A \in \mathcal{I}$, we have $U \cap \mathscr{F}^{-1}(y) \cap A \notin \mathcal{I}$. Then for any $y \in \mathscr{F}(U), U \cap \mathscr{F}^{-1}(y) \cap A \neq \phi$. Now for a given $f \in \mathscr{F}, z \in f(U) \Rightarrow z \in \mathscr{F}(U)$, then there exist $x \in U \cap A$ and $x \in g^{-1}(z)$ for some $g \in \mathscr{F}$, where $z = g(x) \Rightarrow z \in g(U \cap A,$ and $z \in \mathscr{F}(U \cap A)$. Hence $f(U) \subseteq \mathscr{F}(U \cap A)$, for all $f \in \mathscr{F}$. Then $\mathscr{F}(U \cap A) \in \sigma^{\delta} - \phi$ by Lemma 1.

Lemma 2. Let \mathcal{I} be an ideal space on a topological group $(X, \tau, .)$ such that \mathcal{I} is left or right translation invariant and $\tau \sim^{\delta} \mathcal{I}$. Then $\mathcal{I} \cap \tau^{\delta} = \phi$.

Proof. Since $X \notin \mathcal{I}$ and $\tau \sim^{\delta} \mathcal{I}$, by Theorem 3 there exist $x \in X$ such that for all $U \in \tau^{\delta}(x), U = U \cap X \notin \mathcal{I}$ (1) Let $V \in \mathcal{I} \cap \tau^{\delta}$. If $V = \phi$ we have nothing to show. Suppose $V \neq \phi$. Without loss of

generality we may assume that $e \in V$ (e denoted the identity of X). For $y \in V$ then $y^{-1}V \in \tau^{\delta}$ and $y^{-1}V \in y^{-1}\mathcal{I}$ so that $y^{-1}V \in \mathcal{I}$ where $e \in y^{-1}V$. Thus $xV \in \tau^{\delta}$ and $xV \in x\mathcal{I}$ and hence $xV \in \mathcal{I}$. Thus $xV \in \tau^{\delta} \cap \mathcal{I}$, where xV is a neighbourhood of x, which is contradicting (1) and hence $\mathcal{I} \cap \tau^{\delta} = \phi$.

Lemma 3. Let \mathcal{I} be a left (right) translation invariant ideal on a topological group $(X, \tau, .)$ and $x \in X$. Then for any $A \subseteq X$ the following hold:

- 1. $x\Gamma_{\delta}(A) = \Gamma_{\delta}(xA)$. (resp. $\Gamma_{\delta}(A)x = \Gamma_{\delta}(Ax)$),
- 2. $xA^{\delta *} = (xA)^{\delta *}$ (resp. $A^{\delta *}x = (Ax)^{\delta *}$).

Proof. We assume that \mathcal{I} is left translation invariant, the proof for the case when \mathcal{I} is right translation invariant would be similar.

(1) We first note that for any two subsets A and B of X, x(A - B) = xA - xB. In fact, $y \in x(A - B)$, then y = xt, for some $t \in A - B$. Now $t \in A$ then $xt \in xA$. But $xt \in xB \Rightarrow xt = xb$ for some $b \in B \Rightarrow t = b \in B$ a contradiction. So $y = xt \in xA - xB$. Again, $y \in xA - xB \Rightarrow y \in xA$ and $y \notin xB \Rightarrow y = xa$ for some $a \in A$ and $xa \notin xB \Rightarrow a \notin B \Rightarrow y = xa$, where $a \in A - B \Rightarrow y \in x(A - B)$.

Now, $y \in \Gamma_{\delta}(A) \Rightarrow y \in xU$ for some $U \in \tau^{\delta}$ with $U - A \in \mathcal{I}$. Then $xU = V \in \tau^{\delta}$ and $x(U - A) = xU - xA \in \mathcal{I}$ where $xU \in \tau^{\delta}$. Then $y \in V$, where $V \in \tau^{\delta}$ and $V - xA \in \mathcal{I} \Rightarrow y \in \bigcup \{V \in \tau^{\delta} : V - xA \in \mathcal{I}\} = \Gamma_{\delta}(xA)$. Thus $x\Gamma_{\delta}(A) \subseteq \Gamma_{\delta}(xA)$.

Conversely, let $y \in \Gamma_{\delta}(xA) = \bigcup \{ U \in \tau^{\delta} : U - xA \in \mathcal{I} \} \Rightarrow y \in U \in \tau^{\delta}$, where $U - xA \in \mathcal{I}$. Put $V = x^{-1}U$. Then $V \in \tau^{\delta}$. Now $x^{-1}y \in V$ and $V - A = x^{-1}U - A = x^{-1}(U - xA) \in \mathcal{I} \Rightarrow x^{-1}y \in \Gamma_{\delta}(A) \Rightarrow y \in x\Gamma_{\delta}(A)$. Thus $\Gamma_{\delta}(xA) \subseteq x\Gamma_{\delta}(A)$ and hence $x\Gamma_{\delta}(A) = \Gamma_{\delta}(xA)$

(2) In view of (1) $x\Gamma_{\delta}(X-A) = \Gamma_{\delta}(x(X-A))$, then $x[X-A^{\delta*}] = X - (xA)^{\delta*}$ and $X - xA^{\delta*} = X - (xA)^{\delta*}$ thus $xA^{\delta*} = (xA)^{\delta*}$.

Theorem 15. Let $(X, \tau, .)$ be a topological group and \mathcal{I} be an ideal on X such that $\tau \sim^{\delta} \mathcal{I}$. Let $P \in \mathcal{U}(X, \tau, \mathcal{I})$ and $Q \in \mathcal{P}(X) - \mathcal{I}$. Let $U, V \in \tau^{\delta}$ such that $U \cap Q^{\delta *} \neq \phi$, $V \cap \delta Int(P^{\delta *}) \cap \Gamma_{\delta}(P) \neq \phi$. If $A = U \cap Q \cap Q^{\delta *}$ and $B = V \cap \delta Int(P^{\delta *}) \cap P \cap \Gamma_{\delta}(P)$ then the following hold:

1. If \mathcal{I} is right translation invariant, then $A^{-1}B$ is a non-empty δ -open set contained in $Q^{-1}P$.

2. If \mathcal{I} is left translation invariant, then BA^{-1} is a non-empty δ -open set contained in PQ^{-1} .

Proof. (1) Since X is a topological group, $\tau \sim^{\delta} \mathcal{I}$ and \mathcal{I} is right translation invariant, we have by Lemma 2, $\mathcal{I} \cap \tau^{\delta} = \phi$. Now by Theorem 2 $(U \cap Q \cap Q^{\delta*})^{\delta*} \subseteq (U \cap Q)^{\delta*}$ and by Theorem 5 we get $(U \cap Q \cap (U \cap Q)^{\delta*})^{\delta*} = (U \cap Q)^{\delta*}$. Hence $(U \cap Q \cap Q^{\delta*})^{\delta*} = (U \cap Q)^{\delta*}$ $(U \cap Q)^{\delta*}$ (1) Thus by Theorem 2 we have $U \cap Q^{\delta*} = U \cap (U \cap Q)^{\delta*} \subseteq (U \cap Q)^{\delta*} = (U \cap Q \cap Q^{\delta*})^{\delta*} \supseteq$ $U \cap Q^{\delta*} \supseteq U \cap Q^{\delta*} \cap Q = A$ i.e. $A \subseteq A^{\delta*}$. For each $a \in A$, define $f_a : X \to X$ given by $f_a(x) = a^{-1}x$, and $\mathscr{F} = \{f_a : a \in A\}$. Since $A \neq \phi$, $\mathscr{F} \neq \phi$ and each f_a is a homeomorphism. Let $G = V \cap \delta Int((P)^{\delta*}) \cap \Gamma_{\delta}(P)$. Now it is sufficient to show that $G \cap \mathscr{F}^{-1}(y) \notin \mathcal{I}$ for every $y \in \mathscr{F}(G)$. Because then by Theorem 14, $\mathscr{F}(G \cap P) = \mathscr{F}(B) = A^{-1}B$ is a non-empty δ -open set in X contained in $Q^{-1}P$. Let $y \in \mathscr{F}(G)$. Then $y = a^{-1}x$ for some $a \in A$ and $x \in G \Rightarrow \mathscr{F}^{-1}(y) = Aa^{-1}x$. Thus $x \in Aa^{-1}x \subseteq A^{\delta*}a^{-1}x$ (as $A \subseteq A^{\delta*}) \subseteq (Aa^{-1}x)^{\delta*}$ (by Lemma 3) $= (\mathscr{F}^{-1}(y))^{\delta*} \Rightarrow$ $N_x \cap \mathscr{F}^{-1}(y) \notin \mathcal{I}$ for some $N_x \in \tau^{\delta}(x)$. So in particular, as (2) is similar to (1). \Box

Corollary 1. Let $(X, \tau, .)$ be a topological group and \mathcal{I} be an ideal on X such that $\tau \sim^{\delta} \mathcal{I}$. Let $P \in \mathcal{U}(X, \tau, \mathcal{I})$ and $Q \in \mathcal{P}(X) - \mathcal{I}$.

- 1. If \mathcal{I} is right translation invariant, then $[Q \cap Q^{\delta*}]^{-1}[P \cap \delta Int(P^{\delta*}) \cap \Gamma_{\delta}(P)]$ is a non-empty δ -open set contained in $Q^{-1}P$.
- 2. If \mathcal{I} is left translation invariant, then $[P \cap \delta Int(P^{\delta^*}) \cap \Gamma_{\delta}(P)][Q \cap Q^{\delta^*}]^{-1}$ is a non-empty δ -open set contained in PQ^{-1} .

Proof. We only show that $Q^{\delta*} \neq \phi$ and $P \cap \delta Int(P^{\delta*}) \cap \Gamma_{\delta}(P) \neq \phi$, the rest follows from Theorem 15 by taking U = V = X. In fact, if $Q^{\delta*} = \phi$, then $Q \cap Q^{\delta*} = \phi$ which gives in view of Theorem 3, $Q \in \mathcal{I}$, a contradiction.

Again, $P \in \mathcal{U}(X, \tau, \mathcal{I}) \Rightarrow \delta Int(P^{\delta*}) \cap \Gamma_{\delta}(P) \neq \phi$ (by Lemma 2 and Proposition 2) $\Rightarrow \delta Int(P^{\delta*}) \cap \Gamma_{\delta}(P) \in \tau^{\delta} - \phi$. Now, $\delta Int(P^{\delta*}) \cap \Gamma_{\delta}(P) = [P \cap \delta Int(P^{\delta*}) \cap \Gamma_{\delta}(P)] \cup$ $[P^{c} \cap \delta Int(P^{\delta*}) \cap \Gamma_{\delta}(P)] \notin \mathcal{I}$ (by Lemma 2). Then $[P^{c} \cap \delta Int(P^{\delta*}) \cap \Gamma_{\delta}(P)] \subseteq$ $[P^{c} \cap \Gamma_{\delta}(P)] = \Gamma_{\delta}(P) - P \in \mathcal{I}$ by Theorem 8. Thus $P \cap \delta Int(P^{\delta*}) \cap \Gamma_{\delta}(P) \notin \mathcal{I}$ and hence $P \cap \delta Int(P^{\delta*}) \cap \Gamma_{\delta}(P) \neq \phi$.

Corollary 2. Let $(X, \tau, .)$ be a topological group and \mathcal{I} be an ideal on X such that $\mathcal{I} \cap \tau^{\delta} = \phi$ and $P \in \mathcal{U}(X, \tau, \mathcal{I})$.

- 1. If \mathcal{I} is left translation invariant, then $e \in \delta Int(P^{-1}P)$.
- 2. If \mathcal{I} is right translation invariant, then $e \in \delta Int(PP^{-1})$.
- 3. If \mathcal{I} is left as well as right translation invariant, then $e \in \delta Int(PP^{-1} \cap P^{-1}P)$.

Proof. It suffices to prove (1) only. We have, $P \in \mathcal{U}(X, \tau, \mathcal{I})$ then there exist $Q \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I}$ such that $Q \subseteq P$. Now for any $x \in X$, $\Gamma_{\delta}(Q)x \cap \Gamma_{\delta}(Q) = \Gamma_{\delta}(Qx) \cap \Gamma_{\delta}(Q) = \Gamma_{\delta}(Qx) \cap \Gamma_{\delta}(Q) \neq \phi$, then $Qx \cap Q \neq \phi$. Now, if $x \in [\Gamma_{\delta}(Q)]^{-1}[\Gamma_{\delta}(Q)]$ then $x = y^{-1}z$ for some $y, z \in \Gamma_{\delta}(Q)$, then yx = z = t (say) $\Rightarrow t \in \Gamma_{\delta}(Q)x$ and $t \in \Gamma_{\delta}(Q) \Rightarrow \Gamma_{\delta}(Q)x \cap \Gamma_{\delta}(Q) \neq \phi \Rightarrow$ $x \in \{x \in X : \Gamma_{\delta}(Q)x \cap \Gamma_{\delta}(Q) \neq \phi\}$ then $[\Gamma_{\delta}(Q)]^{-1}[\Gamma_{\delta}(Q)] \subseteq \{x \in X : \Gamma_{\delta}(Q)x \cap \Gamma_{\delta}(Q) \neq \phi\}$ $\Gamma_{\delta}(Q) \neq \phi\} \subseteq \{x \in X : Qx \cap Q \neq \phi\} \subseteq Q^{-1}Q \subseteq P^{-1}P$. Since $\Gamma_{\delta}(Q) \neq \phi$ by Proposition 2 as $Q \in \mathcal{U}(X, \tau, \mathcal{I})$ and $\Gamma_{\delta}(Q)$ is δ -open for any $Q \subseteq X$, we have $e \in [\Gamma_{\delta}(Q)]^{-1}[\Gamma_{\delta}(Q) \subseteq \delta Int(P^{-1}P)$.

References

- [1] A. Al-Omari and E. Hatir, On Γ_{δ} -operator in ideal topological spaces (submitted).
- [2] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- [3] T. R. Hamlett and D. Rose, Remarks on some theorems of banach, mcshans, and pettis, Rocky Mountain J. of Math., 22 (4) (1992), 1329-1339.
- [4] T. R. Hamlett and D. Jankovic, Ideals in topological spaces and the set operator Ψ, Boll. Un. Mat. Ital. (7) 4-B (1990), 863-874.
- [5] E. Hatir, A. Al-Omari and S. Jafari, δ -local function and its properties in ideal topological spaces (submitted).
- [6] E. Hayashi, topologies defined by local properties, Math. ann., 156(1964), 205-215.
- [7] K. Kuratowski, Topology I, Warszawa, 1933,

- [8] M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. of Advanced Research in Pure Math., 2(2010), 36-42.
- [9] N. Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [10] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
- [11] T. Noiri, On δ -continuous functions, J. Korean Math. Soc., 16 (2) 1990, 161-166.
- [12] N. V. Veličko, H-closed topological spaces, Amer. Math. soc. Transl., 2(78)(1968), 103-118.
- [13] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.
- [14] S. Yuksel, A. Acikgoz and T. Noiri, On δ - \mathcal{I} -continuous functions, Turkish J. of Math., 29(2005), 39-51.

Ahmad Al-Omari Department of Mathematics Al al-Bayt University P.O. Box 130095, Mafraq 25113, Jordan email:*omarimutah1@yahoo.com* (corresponding author)

E. Hatir Education Faculty Selcuk University Meram-Konya, Turkey email:hatir10@yahoo.com