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GLOBAL BEHAVIOR OF A RATIONAL DIFFERENCE EQUATION

Qamar Din

Abstract. In this paper, we investigate the local asymptotic stability, global
stability, the periodic character, semicycle analysis and the boundedness nature of
solutions of the following (k + 1)-order rational difference equation:

xn+1 =
A+Bxn + Cxn−k

1 + xn + xn−k
, n = 0, 1, 2, · · · ,

whereA, B, C are positive real numbers, the initial conditions x−k, x−k+1, · · · , x−1, x0
are arbitrary positive real numbers and k is positive integer. Some numerical exam-
ples are given to illustrate our results.

2000 Mathematics Subject Classification 39A10, 40A05.

1. Introduction

The theory of discrete dynamical systems and difference equations developed greatly
during the last twenty-five years of the twentieth century. Applications of discrete
dynamical systems and difference equations have appeared recently in many areas.
The theory of difference equations occupies a central position in applicable analysis.
There is no doubt that the theory of difference equations will continue to play an
important role in mathematics as a whole. Nonlinear difference equations of or-
der greater than one are of paramount importance in applications. Such equations
also appear naturally as discrete analogues and as numerical solutions of differential
and delay differential equations which model various diverse phenomena in biology,
ecology, physiology, physics, engineering, economics, probability theory, genetics,
psychology and resource management. It is very interesting to investigate the be-
havior of solutions of a higher-order rational difference equation and to discuss the
local asymptotic stability of its equilibrium points. Rational difference equations
have been studied by several authors. Especially there has been a great interest in
the study of the attractivity of the solutions of such equations. For more results for
the rational difference equations, we refer the interested reader to [6–10].
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2. Preliminaries and definitions

Recently, there has been great interest in studying difference equations. One of the
reasons for this is a necessity for some techniques which can be used in investigating
equations arising in mathematical models describing real life situations in many
applied sciences [9, 10].

Su and Li [1] studied the global asymptotic stability of the nonlinear difference
equation:

xn+1 =
α+ βxn

A+Bxn + Cxn−1
.

Saleh and Baha [2] investigated the behavior of nonlinear rational difference equa-
tion:

xn+1 =
βxn + γxn−k
Bxn + Cxn−k

.

Yan, Li and Zhao [3] investigated the boundedness, periodic character, invariant
intervals and the global asymptotic stability of all nonnegative solutions of the dif-
ference equation:

xn+1 =
axn + bxn−k
A+Bxn

.

Tang, Hu and Ma [4] considered the following higher-order nonlinear difference equa-
tion:

xn+1 =
p+ qxn−k

1 + xn + rxn−k
.

Dehghan and Rastegar [5] investigated the qualitative behavior of the higher-order
non-linear difference equation:

yn+1 =
p+ qyn + ryn−k

1 + yn−k
.

To be motivated by the above studies, our aim in this paper is to investigate the
behavior of a rational difference equation:

xn+1 =
A+Bxn + Cxn−k

1 + xn + xn−k
, n = 0, 1, 2, · · · , (1)

whereA, B, C are positive real numbers, the initial conditions x−k, x−k+1, · · · , x−1, x0
are arbitrary positive real numbers and k is positive integer. A difference equation
of order (k + 1) is an equation of the form:

xn+1 = F (xn, xn−1, · · · , xn−k), n = 0, 1, · · · , (2)

36



Q. Din - Global behavior of a rational difference equation

where F is a continuously differentiable function which maps some set Ik+1 into I.
The set I is usually an interval of real numbers.

A solution of the equation (2) is a sequence {xn}∞n=−k which satisfies the equation
(2) for all n ≥ 0.

Definition 1 A solution {xn}∞n=−k of the equation (2) which is constant for all
n ≥ −k is called an equilibrium solution of the equation (2). If xn = x̄ for all
n ≥ −k is an equilibrium solution of the equation (2), then x̄ is an equilibrium
point of the equation (2), or equivalently a point x̄ ∈ I is an equilibrium point of the
equation (2) if

x̄ = F (x̄, x̄, · · · , x̄).

Definition 2 A solution {xn}∞n=−k of difference the equation (2) is bounded and
persists if there exist numbers m and M with 0 < m ≤ M < ∞ such that for
any initial conditions x−k, · · · , x−1, x0 there exists a positive integer n̄ such that
m ≤ xn ≤M for all n ≥ n̄.

Definition 3 (Stability)
(i) An equilibrium point x̄ of the equation (2) is locally stable if for every ε > 0,

there exists δ > 0 such that if {xn}∞n=−k is a solution of the equation (2) with
|x−k − x̄|+ |x1−k − x̄|+ · · ·+ |x0 − x̄| < δ, then |xn − x̄| < ε for all n ≥ −k.

(ii) An equilibrium point x̄ of the equation (2) is locally asymptotically stable if
it is locally stable, and if in addition there exists γ > 0 such that if {xn}∞n=−k is
a solution of Equation (2) with |x−k − x̄| + |x1−k − x̄| + · · · + |x0 − x̄| < γ, then
lim
n→∞

xn = x̄.

(iii) An equilibrium point x̄ of the equation (2) is a global attractor if for every
solution {xn}∞n=−k of the equation (2), we have lim

n→∞
xn = x̄.

(iv) An equilibrium point x̄ of the equation (2) is globally asymptotically stable
if it is locally stable, and x̄ is also global attractor of the equation (2).

(v) An equilibrium point x̄ of the equation (2) is unstable if x̄ is not locally stable.

Definition 4 A solution {xn}∞n=−k is periodic with period p if there exists an integer
p ≥ 1 such that

xn+p = xn for all n ≥ −k. (3)

A solution is periodic with prime period p if p is the smallest positive integer for
which (3) holds.
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3. Linearized stability analysis

Suppose F is continuously differentiable in some open neighborhood of x̄. Let pi =
∂F
∂ui

(x̄, x̄, · · · , x̄) for i = 0, 1, · · · , k denote the partial derivatives of F (u0, u1, · · · , uk)
with respect to ui evaluated at x̄. The equation

zn+1 = p0zn + p1zn−1 + · · ·+ pkzn−k, n = 0, 1, · · · (4)

is called linearized equation of (2) about x̄, and the equation

λk+1 − p0λk − · · · − pk−1λ− pk = 0 (5)

is called characteristic equation of (4) about x̄.
The following result is known as the Linearized Stability Theorem, is very useful

in determining the local stability character of the equilibrium point of the equation
(2).

Lemma 1 [11] Assume that F is continuously differentiable function defined on
some open neighborhood of an equilibrium point x̄ and if all roots of the equation (5)
have absolute value less than one, then the equilibrium point of the equation (2) is
locally asymptotically stable.

The following result is a sufficient condition for all roots of an equation of any order
to lie inside the unit disk.

Lemma 2 [11] Assume that p0, p1, · · · , pk are real numbers such that |p0| + |p1| +
· · ·+ |pk| < 1. Then all roots of the equation (5) lie inside the open unit disk |λ| < 1.

To study the local stability character of the solutions of equation (1), we let I be
some interval of real numbers and let f : I2 → I be a continuously differentiable
function defined by

f(x, y) =
A+Bx+ Cy

1 + x+ y
.

Let x̄ be an equilibrium point of (1), then x̄ = f(x̄, x̄) and this implies that

x̄ =
1

4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
be unique positive equilibrium point of the equation (1). Moreover,

∂f

∂x
(x, y) =

B −A+ (B − C)y

(1 + x+ y)2
,

38



Q. Din - Global behavior of a rational difference equation

and
∂f

∂y
(x, y) =

C −A+ (C −B)x

(1 + x+ y)2
.

Furthermore,

q0 =
∂f

∂x
(x̄, x̄) =

−1− 4A+ C + (2B + 1)
√

8A+ (−1 +B + C)2 −B(1 + 2B + 2C)

8A− 4(B + C)
,

and

q1 =
∂f

∂y
(x̄, x̄) =

−1− 4A+B + (2C + 1)
√

8A+ (−1 +B + C)2 − C(1 + 2B + 2C)

8A− 4(B + C)
.

The linearized equation of (1) about x̄ is given by

yn+1 = q0yn + q1yn−k. (6)

Moreover, characteristic equation of (6) is given by

λk+1 − q0λk − q1 = 0. (7)

Theorem 1 The unique positive equilibrium point

x̄ =
1

4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
of the equation (1) is locally asymptotically stable if one of the following cases holds

(i) B > 2A.

(ii) B < 2A and C < 2A−B.

(iii) B < 2A and C > 2A−B.

Proof. Let P (λ) = λk+1 − q0λk − q1, Φ(λ) = λk+1 and Ψ(λ) = q0λ
k + q1.

(i) Assume that B > 2A and |λ| = 1. Then, one has

|Ψ(λ)| ≤
∣∣∣∣∣−1− 4A+ C + (2B + 1)

√
8A+ (−1 +B + C)2 −B(1 + 2B + 2C)

8A− 4(B + C)

∣∣∣∣∣
+

∣∣∣∣∣−1− 4A+B + (2C + 1)
√

8A+ (−1 +B + C)2 − C(1 + 2B + 2C)

8A− 4(B + C)

∣∣∣∣∣
=

(B − C)
(
−
√

8A+ (B + C − 1)2 +B + C + 1
)

4A− 2(B + C)
< 1.
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Hence, |Ψ(λ)| < 1 = |Φ(λ)| for B > 2A and |λ| = 1.
Then, by Rouche’s Theorem Φ(λ) and Φ(λ) − Ψ(λ) have same number of ze-

roes in an open unit disk |λ| < 1. Hence, all the roots of (7) satisfies |λ| <
1, and it follows from lemma 1 that the unique positive equilibrium point x̄ =
1
4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
of the equation (1) is locally asymptoti-

cally stable for B > 2A.

Similarly, one can prove (ii) and (iii).

4. Periodicity

In this section we discuss the periodic nature of the solutions of the equation (1).

Theorem 2 Let k is even, then the equation (1) has no prime period two solutions.

Proof. Assume that k is even and

· · · , p, q, p, q, · · · (p 6= q)

be distinctive prime period-two solutions of the equation (1). Then, from (1) we
have

p =
A+ (B + C)q

1 + 2q
, q =

A+ (B + C)p

1 + 2p
. (8)

From (8), we obtain

p(1 + 2q) = A+ (B + C)q, q(1 + 2p) = A+ (B + C)p. (9)

On subtraction (9) implies that

(p− q)(1 +B + C) = 0.

Since 1 +B + C 6= 0, it follows that p = q, which is a contradiction.

Theorem 3 Let k is odd, then the equation (1) has no prime period two solutions.

Proof. Assume that k is odd and

· · · , p, q, p, q, · · · (p 6= q)

be distinctive prime period-two solutions of the equation (1). Then, from (1) we
have

p =
A+Bq + Cp

1 + p+ q
, q =

A+Bp+ Cq

1 + p+ q
. (10)
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From (10), we obtain

p(1 + p+ q) = A+Bq + Cp, q(1 + p+ q) = A+Bp+ Cq. (11)

Assume that p and q are two positive distinct real roots of the quadratic equation

t2 − (p+ q) + pq = 0. (12)

From the equation (11), we obtain

p+ q =
1

2

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
,

and

pq =
1

16

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
.

Then, (p + q)2 − 4pq = 0 and it follows that the equation (12) has equal real roots
p = q, which is a contradiction.

5. Boundedness

In this section we prove that every solution of the equation (1) is bounded and
persists.

Theorem 4 Every solution of the equation (1) is bounded and persists.

Proof. Let {xn}∞n=−k be an arbitrary solution of the equation (1). Then, it follows
from the equation (1) that

xn+1 =
A+Bxn + Cxn−k

1 + xn + xn−k

=
A

1 + xn + xn−k
+

Bxn
1 + xn + xn−k

+
Cxn−k

1 + xn + xn−k
≤ A+B + C = M.

Hence,
xn ≤M for all n ≥ 1.

Now we wish to show that there exists m > 0 such that

xn ≥ m for all n ≥ 1.
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Due to transformation xn = 1
yn

equation (1) becomes

yn+1 =
1 + yn + yn−k

A+Byn + Cyn−k

=
1

A+Byn + Cyn−k
+

yn
A+Byn + Cyn−k

+
yn−k

A+Byn + Cyn−k

≤ 1

A
+

1

B
+

1

C

=
AB +BC + CA

ABC
.

Thus

xn ≥
ABC

AB +BC + CA
= m for all n ≥ 1.

Hence,
0 < m ≤ xn ≤M for all n ≥ 1.

6. Semi-cycle analysis

In this section, we study the analysis of semi-cycles of solutions of the equation (1)
relative to the unique positive equilibrium point

x̄ =
1

4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
.

Definition 5 A positive semi-cycle of the solution {xn}∞n=−k of the equation (1)
consists of a ” string” of terms {xs, xs+1, · · · , xt} all greater than or equal to x̄,
with s ≥ −k and t ≤ ∞ such that

either s = −k or s > −k and xs−1 < x̄,

and
either t =∞ or t <∞ and xt−1 < x̄.

A negative semi-cycle of the solution {xn}∞n=−k of the equation (1) consists of a ”
string” of terms {xs, xs+1, · · · , xt} all less than x̄, with s ≥ −k and t ≤ ∞ such
that

either s = −k or s > −k and xs−1 ≥ x̄,

and
either t =∞ or t <∞ and xt−1 ≥ x̄.
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Lemma 3 [5] Consider the following difference equation

xn+1 = f(xn, xn−k), n = 0, 1, 2, · · · , (13)

where k is some positive integer and f : (0,∞)2 → (0,∞) is a continuous function
such that f(x, y) is increasing in x for each y, and f(x, y) is decreasing in y for each
fixed x. Let x̄ be a positive equilibrium of the equation (13). Then, except possibly
for the first semi-cycle, every oscillatory solution of the equation (13) has semi-cycle
of length at least k + 1, or of length of most k − 1.

Theorem 5 Let C < A < B, then the function f : (0,∞)2 → (0,∞) be a continu-
ously differentiable function defined by

f(x, y) =
A+Bx+ Cy

1 + x+ y

is increasing in x for each y ∈ (0,∞), and f(x, y) is decreasing in y for every
x ∈ (0,∞).

Proof. Let C < A < B, then it follows that

∂f

∂x
(x, y) =

B −A+ (B − C)y

(1 + x+ y)2
> 0,

for each y ∈ (0,∞), and

∂f

∂y
(x, y) =

C −A+ (C −B)x

(1 + x+ y)2
< 0,

for each x ∈ (0,∞).

Theorem 6 Let C < A < B, then for k ≥ 2 every oscillatory solution of the
equation (1) has semi-cycle of length at least k + 1, or of length of most k − 1.

Proof. Let C < A < B, then from theorem 5 the function f(x, y) = A+Bx+Cy
1+x+y

is increasing in x for each y ∈ (0,∞), and f(x, y) is decreasing in y for every
x ∈ (0,∞). Let {xn}∞n=−k be an oscillatory solution of the equation (1). Then, for

the unique positive equilibrium point x̄ = 1
4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
of the equation (1) such that

xm−1 < x̄ ≤ xm.
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Assume that
xm+1, · · · , xm+k−1 ≥ x̄.

Then, from the equation (1), we obtain

xm+k =
A+Bxm+k−1 + Cxm−1

1 + xm+k−1 + xm−1
> f(x̄, x̄) = x̄,

which shows that xm+k also belongs to positive semi-cycle. The proof in the case
xm < x̄ ≤ xm−k, is similar and omitted.

7. Global stability

In this section we discuss the global stability of the unique positive equilibrium point

x̄ = 1
4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
of the equation (1).

Lemma 4 [11] Let f : [a, b] × [a, b] → [a, b] be a continuous function, where a and
b are real numbers with a < b, and consider the difference equation

xn+1 = f(xn, xn−k), n = 0, 1, 2, · · · . (14)

Suppose that f satisfies the following conditions

(i) f(x, y) is non-decreasing in x for each fixed y ∈ [a, b], and f(x, y) is non-
increasing in y for each fixed x ∈ [a, b].

(ii) If (m,M) is the solution of the system

m = f(m,M), M = f(M,m),

then m = M .

Then there exists exactly one equilibrium point x̄ of the equation (14), and every
solution of the equation (14) converges to x̄.

Theorem 7 Assume that C < A < B and B > 2A, then the unique positive

equilibrium point x̄ = 1
4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
of the equation (1)

is globally asymptotically stable.

Proof. Assume that B > 2A, then from (i) of theorem 1 the unique positive equi-

librium point x̄ = 1
4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
of the equation (1) is
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locally asymptotically stable. Moreover, assuming C < A < B, then from the
theorem 5 the function f(x, y) = A+Bx+Cy

1+x+y is non-decreasing in x for each fixed
y ∈ (0,∞), and f(x, y) is non-increasing in y for every fixed x ∈ (0,∞). If (m,M)
is the solution of the system

m = f(m,M), M = f(M,m),

then one has

M =
A+BM + Cm

1 +M +m
,

and

m =
A+Bm+ CM

1 +M +m
.

This implies that

Mm =
m(A+BM + Cm)

1 +M +m
, (15)

and

mM =
M(A+Bm+ CM)

1 +M +m
. (16)

Comparing (15) and (16), we obtain

m(A+BM + Cm)

1 +M +m
=
M(A+Bm+ CM)

1 +M +m
.

This implies that
(M −m) (A+ C(M +m)) = 0.

Since A+ C(M +m) 6= 0, it follows that M = m and the proof is completed.

8. Examples

In order to verify our theoretical results and to support our theoretical discussions,
we consider several interesting numerical examples in this section. These examples
represent qualitative behavior of solutions of the nonlinear difference equation (1).

Example 1 Let A = 5, B = 5000, C = 0.3, k = 5, then the equation (1) can be
written as

xn+1 =
5 + 5000xn + 0.3xn−5

1 + xn + xn−5
, (17)

with initial conditions x0 = 0.1, x−1 = 0.2, x−2 = 0.3, x−3 = 0.4, x−4 =
0.5, x−5 = 0.6. The unique positive equilibrium point of the equation (17) is given

by 1
4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
= 2499.65. Moreover, the plot of the

equation (17) is shown in Fig. 1.
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Figure 1: Plot of the equation (17)

Example 2 Let A = 2, B = 1500000, C = 700, k = 10, then the equation (1) can
be written as

xn+1 =
2 + 1500000xn + 700xn−10

1 + xn + xn−10
, (18)

with initial conditions x0 = 0.1, x−1 = 0.2, x−2 = 0.3, · · · , x−10 = 1.1. The unique
positive equilibrium point of the equation (18) is given by

1

4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
= 750350.

Moreover, the plot of the equation (18) is shown in Fig. 2.

Figure 2: Plot of the equation (18)

46



Q. Din - Global behavior of a rational difference equation

Example 3 Let A = 8, B = 60000, C = 17, k = 15, then the equation (1) can be
written as

xn+1 =
8 + 60000xn + 17xn−15

1 + xn + xn−15
, (19)

with initial conditions x0 = 0.1, x−1 = 0.2, x−2 = 0.3, · · · , x−15 = 1.6. The unique
positive equilibrium point of the equation (19) is given by

1

4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
= 30008.

Moreover, the plot of the equation (19) is shown in Fig. 3.

Figure 3: Plot of the equation (19)

Example 4 Let A = 11, B = 90, C = 800000, k = 30, then the equation (1) can
be written as

xn+1 =
11 + 90xn + 800000xn−30

1 + xn + xn−30
, (20)

with initial conditions x0 = 0.1, x−1 = 0.2, x−2, · · · , x−30 = 3.1. The unique
positive equilibrium point of the equation (20) is given by

1

4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
= 400045.

Moreover, the plot of the equation (20) is shown in Fig. 4.

Example 5 Let A = 55, B = 150, C = 80000, k = 35, then the equation (1) can
be written as

xn+1 =
55 + 150xn + 80000xn−35

1 + xn + xn−35
, (21)
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Figure 4: Plot of the equation (20)

with initial conditions x0 = 0.1, x−1 = 0.2, · · · , x−35 = 3.6. The unique positive
equilibrium point of the equation (21) is given by

1

4

(
−1 +B + C +

√
8A+ (−1 +B + C)2

)
= 40074.5

Moreover, the plot of the equation (21) is shown in Fig. 5.

Figure 5: Plot of the equation (21)
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