GAPS OF A CLASS OF PSEUDO SYMMETRIC NUMERICAL SEMIGROUPS

Sedat Ilhan and Meral Süer

Abstract. In this study, we give some results about the gaps, fundamental and special gaps of a pseudo symmetric numerical semigroup in the form of $S=<$ $3,3+s, 3+2 s>$ for $s \in \mathbb{Z}^{+}$and $3 \nmid s$.

2000 Mathematics Subject Classification: 20 M 14

1. Introduction

Let \mathbb{Z} and \mathbb{N} denote the set of integers and nonnegative integers. respectively. A numerical semigroup is a subset S of \mathbb{N} that is closed under addition where $0 \in S$ and $\mathbb{N} \backslash S$ is finite. It is well known that every numerical semigroup is finitely generated [1], that is to say, there exist $s_{1}, s_{2}, \ldots, s_{p} \in \mathbb{N}$ such that $s_{1}<s_{2}<\ldots<s_{p}$ and

$$
S=<s_{1}, s_{2}, \ldots, s_{p}>=\left\{s_{1} k_{1}+s_{2} k_{2}+\ldots+s_{p} k_{p}: k_{i} \in \mathbb{N}, 1 \leq i \leq p\right\}
$$

Moreover, every numerical semigroup has a unique minimal system of generators.
Following the notation used in $[2,3]$, if S is a numerical semigroup then the greatest integer in $\mathbb{Z} \backslash S$ is the Frobenius number of S, denoted by $g(S)$. The elements of $\mathbb{N} \backslash S$, denoted by $H(S)$ are called gaps of S. If $x \in H(S)$ and $\{2 x, 3 x\} \subset S$ then x is called the fundamental gap. We denote by $F H(S)$ the set of fundamental gaps of S.
S is symmetric if for every $x \in \mathbb{Z} \backslash S$, the integer $g(S)-x \in S$. Similarly, S is pseudo symmetric if $g(S)$ is even and there exists an integer $x \in \mathbb{Z} \backslash S$ such that $x=$ $\frac{g(S)}{2}$ and $g(S)-x \notin S$. For more background on symmetric and pseudo symmetric numerical semigroups, the reader is encouraged to see $[2,3,4,7,9]$.

Let S be a numerical semigroup and $m \in S \backslash\{0\}$. The Apery set of S with respect to m is defined by $A p(S, m)=\{s \in S: s-m \notin S\}$. Hence, $A p(S, m)=$ $\{w(0)=0, w(1), w(2), \ldots, w(m-1)\}$ and $g(S)=\max (A p(S, m))-m$, where $w(i)$ is the least element in S that is congruent with i modulo m. For instance see [6] and [10].

The following can be found in [7]: Let S be a numerical semigroup. We say that $x \in \mathbb{Z} \backslash S$ is a pseudo Frobenius number of S if $x+s \in S$ for all $s \in S \backslash\{0\}$. We denote by $\operatorname{Pg}(S)$ the set of pseudo Frobenius numbers of S. The cardinal of $P g(S)$ is called the type of S and denoted by type (S). Notice that $g(S)$ is always an element of $\operatorname{Pg}(S)$. In [11], it is proved that a numerical semigroup is symmetric if and only if $P g(S)=\{g(S)\}$ i.e. type $(S)=1$. Furthermore, we define in S the following partial order:

$$
a \leq_{S} b \text { if } b-a \in S
$$

For $m \in S \backslash\{0\}$, it is proved that $P g(S)=\left\{w(i)-m: w(i)\right.$ maximals $\left.\leq_{S} A p(S, m)\right\}$ in [7].

An element $x \in \operatorname{Pg}(S)$ is a special gap of S if $2 x \in S$. We denote by $S H(S)$ the set of special gaps of S. That is, $S H(S)=\{x \in P g(S): 2 x \in S\}$. The following proposition is proved in [8]:

$$
x \in P g(S) \text { if and only if } S \cup\{x\} \text { is a numerical semigroup. }
$$

The main goal of this paper is to prove Theorem 2 and Theorem 3 which gives the sets $H(S)$ and $F H(S)$ with respect to s. We also find the cardinality $\sharp(F H(S))$ and give the relations between $\sharp(H(S))$ and $\sharp(F H(S))$ in Corollary 4 and Corollary 5.

In this paper, S is defined as $S=<3,3+s, 3+2 s>$ for $s \in \mathbb{Z}^{+}$and $3 \nmid s$.

2. Results

In this section, we will give some results related to the gaps, fundamental and special gaps of a pseudo symmetric numerical semigroup in the form $S=<3,3+$ $s, 3+2 s>$ for $s \in \mathbb{Z}^{+}$and $3 \nmid s$.

Firstly we give following theorem:

Theorem 1. $S=<3,3+s, 3+2 s>$ is a pseudo symmetric numerical semigroup, for $s \in \mathbb{Z}^{+}$and $3 \nmid s$. [see 5,9].

Notation: We can write the following cases for S :
(i) If $s=6 k+1$ or $s=6 k+4$ then

$$
S=<3,3+s, 3+2 s>=\{0,3, \ldots, s-1, s+2, s+3, s+5, \ldots, 2 s+1, \rightarrow \ldots\}
$$

(ii) If $s=6 k+2$ or $s=6 k+5$ then

$$
S=<3,3+s, 3+2 s>=\{0,3, \ldots, s-2, s+1, s+3, s+4, \ldots, 2 s+1, \rightarrow \ldots\}
$$

where $k \in \mathbb{N}$.
Teorem 2. The set of gaps of S is as follows:
(i) if $s=6 k+1$ or $s=6 k+4$, then

$$
H(S)=\{1,2,4,5, \ldots, s, s+1, s+4, \ldots, 2 s\}
$$

(ii) if $s=6 k+2$ or $s=6 k+5$, then

$$
H(S)=\{1,2,4,5, \ldots, s, s+2, s+5, s+8, \ldots, 2 s\}
$$

where $k \in \mathbb{N}$.
Proof. By definition, every non-positive integer k with $k \leq s, 3 \nmid k$ is in $H(S)$. That is, $\{1,2,4,5, \ldots, s\} \subseteq H(S)$. In addition, for the different states of s :
(i) If $s=6 k+1(k \in \mathbb{N})$ then $3 \nmid(s+1)$, so $s+1 \in H(S)$. However, $s+2, s+3 \in S$. In this case, $s+1+3 t \leq 2 s(t \in \mathbb{N})$. Otherwise, let $s+1+3 t \notin H(S)$ for $s+1+3 t \leq 2 s$, then $s+1+3 t \in S$. Thus, $3 \mid(s+1)$ since $3 \mid(s+1+3 t)$ that is $3 \mid(6 k+2)$. This is a contradiction. Therefore, $H(S)=\{1,2,4,5, \ldots, s, s+1, s+4, \ldots, 2 s\}$.

If $s=6 k+4$, then $3 \nmid s$, but $s+2, s+3 \in S$. That is $s+1 \in H(S)$. On the contrary, let $s+1 \notin H(S)$. Then $3 \mid s+1$ and $3 \mid 6 k+5$ which is a contradiction. Thus, $s+1+3 t \in H(S)$ is obtained for $s+1+3 t \leq 2 s$. Consequently, $H(S)=$ $\{1,2,4,5, \ldots, s, s+1, s+4, \ldots, 2 s\}$.
(ii) If $s=6 k+2$, then $3 \mid s+1$ and $s+1, s+3, s+4 \in S$; but $s+2 \notin S$. In order words, $s+2 \in H(S)$. We assume that $s+2 \notin H(S)$. Then, $3 \mid s+2$, that is $3 \mid 6 k+4$. Hence, $3 \mid 4$ which gives a contradiction. Thus, we have that $H(S)=\{1,2,4,5, \ldots, s, s+2, s+5, s+8, \ldots, 2 s\}$.

If $s=6 k+5$ then $s+1, s+3 \in S$. But $s+2 \notin S$, i.e. $s+2 \in H(S)$. Conversely, $s+2 \notin H(S)$. Then $3 \mid s+2$ and $3 \mid 6 k+7$ which is a contradiction. Hence, $s+2+3 t \in$ $H(S)$ for $s+1+3 t \leq 2 s$. Thus, $H(S)=\{1,2,4,5, \ldots, s, s+2, s+5, s+8, \ldots, 2 s\}$ is obtained.

Theorem 3. The set of fundamental gaps of S is given as follows:
(a) if $s=6 k+1$ or $s=6 k+5$, then $F H(S)=\left\{\frac{3+s}{2}, \frac{3+s}{2}+3, \ldots, 2 s\right\}$
(b) if $s=6 k+2$ or $s=6 k+4$, then $F H(S)=\left\{\frac{6+s}{2}, \frac{6+s}{2}+3, \ldots, 2 s\right\}$
where $k \in \mathbb{N}$.

Proof. (a) We must firstly show that $T=\left\{\frac{3+s}{2}, \frac{3+s}{2}+3, \ldots, 2 s\right\} \neq \varnothing$ and $T \subseteq$ $H(S)$: Thus it suffices to prove $\frac{3+s}{2} \notin S$ (since $n=\frac{3+s}{2} \in H(S)$ for $\frac{3+s}{2} \notin S$ and $n+3 t \leq 2 s(t \in \mathbb{N}), n+3 t \in H(S))$. Conversely, assume that $\frac{3+s}{2} \in S$. In this case, $\frac{3+s}{2}=3 n_{1}+(3+s) n_{2}+(3+2 s) n_{3}\left(n_{1}, n_{2}, n_{3} \in \mathbb{N}\right)$. Thus, we write $s=$ $3\left(2 n_{1}-1\right)+(3+s) 2 n_{2}+(3+2 s) 2 n_{3} \in S$. But this yields $s \in S$ which contradicts with the definition of S. Now let us show that $T=F H(S)$:

$$
\begin{aligned}
x & \in T \Longrightarrow x=\frac{3+s}{2}+3 t,(t \in \mathbb{N}) \\
& \Longrightarrow 2 x=2\left(\frac{3+s}{2}+3 t\right) \text { and } 3 x=3\left(\frac{3+s}{2}+3 t\right) \\
& \Longrightarrow 2 x=3+s+6 t \text { and }\left[3 x=3\left(\frac{3+6 k+1}{2}+3 t\right) \text { or } 3 x=3\left(\frac{3+6 k+5}{2}+3 t\right)\right] \\
& \Longrightarrow 2 x \in S \text { and }[3 x=6+9 k+9 t \text { or } 3 x=12+9 k+9 t] \\
& \Longrightarrow x \in S \text { and } 3 x \in S \\
& x \in F H(S) .
\end{aligned}
$$

For the other implication, let us show that $F H(S) \subseteq T$. Conversely, assume that $F H(S) \nsubseteq T$. Then, $\exists y \in F H(S) \ni y \notin T$, i.e., $y \notin H(S)$, which gives $y \in S$. This is a contradiction. As a result $F H(S)=T$.
(b) $A=\left\{\frac{6+s}{2}, \frac{6+s}{2}+3, \ldots, 2 s\right\}$ is a subset of $H(S)$: For this, it suffices to prove $\frac{6+s}{2} \notin S$ (since $v=\frac{6+s}{2} \in H(S)$ for $\frac{6+s}{2} \notin S$, and $v+3 t \leq 2 s(t \in \mathbb{N}), v+3 t \in$ $H(S))$. Conversely, assume that $\frac{6+s}{2} \in S$. In this case, $\frac{6+s}{2}=3 u_{1}+(3+s) u_{2}+(3+$ $2 s) u_{3}\left(u_{1}, u_{2}, u_{3} \in \mathbb{N}\right)$. Thus, we write $s=3\left(2 u_{1}-2\right)+(3+s) 2 u_{2}+(3+2 s) 2 u_{3} \in S$. This contradicts with the definition of S. Furthermore, $T=F H(S)$:

$$
\begin{aligned}
x & \in T \Longrightarrow x=\frac{6+s}{2}+3 t,(t \in \mathbb{N}) \\
& \Longrightarrow 2 x=2\left(\frac{6+s}{2}+3 t\right) \text { and } 3 x=3\left(\frac{6+s}{2}+3 t\right) \\
& \Longrightarrow 2 x=6+s+6 t \text { and }\left[3 x=3\left(\frac{6+6 k+2}{2}+3 t\right) \text { or } 3 x=3\left(\frac{6+6 k+4}{2}+3 t\right)\right] \\
& \Longrightarrow 2 x \in S \text { and }[3 x=12+9 k+9 t) \text { or } 3 x=15+9 k+9 t)] \\
& \Longrightarrow 2 x \in S \text { and } 3 x \in S \\
& x \in F H(S) .
\end{aligned}
$$

On the other hand, $F H(S) \subseteq T$ can be shown as in (a).

Corollary 4.

(i)If s is odd, then $\sharp(F H(S))=\frac{s+1}{2}$.
(ii)If s is even, then $\sharp(F H(S))=\frac{s}{2}$.

Proof. By Theorem 3, we have that $F H(S)=\left\{\frac{3+s}{2}, \frac{3+s}{2}+3, \ldots, 2 s\right\}$ and $F H(S)=$ $\left\{\frac{6+s}{2}, \frac{6+s}{2}+3, \ldots, 2 s\right\}$ are obtained where s is odd and even, respectively. Thus, if s is odd, then $\sharp(F H(S))=\frac{2 s-\frac{3+s}{2}}{3}+1=\frac{3 s-3}{6}+1=\frac{s+1}{2}$. If s is even, then $\sharp(F H(S))=\frac{2 s-\frac{6+s}{2}}{3}+1=\frac{3 s-6}{6}+1=\frac{s}{2}$.

Corollary 5. The following corollary a result of Corollary 4
(i) If s is odd, then $\sharp(H(S))=2 \sharp(F H(S))$.
(ii) If s is even, then $\sharp(H(S))=2 \sharp(F H(S))+1$.

Proposition 6. The set of special gaps of S is $\{2 s\}$, that is, $S H(S)=\{2 s\}$.
Proof. We can write that $A p(S, 3)=\{0,3+s, 2 s+3\}$ and

$$
\text { Maximals } \leq_{S}(A p(S, 3))=\left\{\frac{2 s}{2}+3,2 s+3\right\}
$$

from [5] and [9], respectively. Thus, we write that

$$
S H(S)=\{x \in P g(S): 2 x \in S\}
$$

since $P g(S)=\{s, 2 s\}$.
Corollary 7. $S H(S) \subset F H(S) \subset H(S)$.
Example 8. Let $S=<3,7,11>=\{0,3,6,7,9,10,11, \rightarrow \ldots\}$ be a pseudo symmetric numerical semigroup for $s=4$. Since $s=4=6.0+4 ; g(S)=8, A p(S, 3)=$ $\{0,3+4,2.4+3\}=\{0,7,11\}$, and $H(S)=\{1,2,4,5,8\}, F H(S)=\left\{\frac{6+4}{2}, \frac{6+4}{2}+3\right\}=$ $\{5,8\}, S H(S)=\{8\}$.

Thus, $\sharp(H(S))=4+1=5=2 \sharp(F H(S))+1$ and $\{8\} \subset\{5,8\} \subset\{1,2,4,5,8\}$.

References

[1] V.Barucci, D.E. Dobbs and M. Fontana,Maximality Properties in Numerical Semigroups and Applications To One-Dimensional Analyticalle Irreducible Local Domains, Memoirs of The Amer. Math. Soc.,598, 13-25, 1997.
[2] J.C. Rosales, P.A. Garcia-Sanchez., J.I.Garcia-Garcia and J.A.Jimenez Madrid, Fundamental gaps in numerical semigroups, Journal of Pure and Applied Algebra, 189, 301-313, 2004.
[3] J.C. Rosales and P.A. Garcia-Sanchez, Pseudo-Symmetric Numerical Semigroups with Three Generators, Journal of Algebra, 291, 46-54, 2005.
[4] J.C. Rosales, One half of a pseudo symmetric numerical semigroup, London Mathematical Society, 40(2), 347-352, 2008.
[5] S. ilhan and M. Süer, On a class of pseudo symmetric numerical semigroup, JP Journal of Algebra, Number Theory and Applications, 20(2), 225-230, 2011.
[6] J.C. Rosales, Numerical semigroups with Apery set of unique expression, Journal of Algebra, 226, 479-487, 2000.
[7] J.C. Rosales and M.B. Branco, Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups, J.Pure and App. Algebra, 171, nos. 2-3, 303-314, 2002.
[8] J.C. Rosales, P.A. Garcia-Sanchez., J.I.Garcia-Garcia. and J.A.Jimenez Madrid, The oversemigroups of a numerical semigroup, Semigroup Forum 67, 145-158, 2003.
[9] J.C. Rosales and P.A. Garcia-Sanchez , Numerical Semigroups, Springer science+Business Media, LLC 2009.
[10] Monica Madero-Craven and Kurt Herzinger, Apery sets of numerical semigroups, Communications in Algebra, 33, 3831-3838, 2005.
[11] R. Fröberg, G. Gottlieb and R. Haggkvist, On numerical semigroups, Semigroup Forum 35, 63-83, 1987.

Sedat İlhan
Department of Mathematics
University of Dicle
Faculty of Science 21280, Diyarbakır, Turkey
email: sedati@dicle.edu.tr

Meral Süer
Department of Mathematics
University of Batman
Faculty of Science and Literature,
Batman, Turkey
email: meral.suer@batman.edu.tr

