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Introduction, Definitions and Notations.

We denote by C the set of all finite complex numbers. Let f be a meromorphic
function defined on C. We use the standard notations and definitions in the theory
of entire and meromorphic functions which are available in [5] and [15]. In the

sequel we use the following notation : log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, ....

and log[0] x = x.
Let f be a non-constant meromorphic function defined in the open complex

plane C. Also let n0j,n1j,...nkj(k ≥ 1) be non-negative integers such that for each j,
k∑
i=0
nij ≥ 1. We call Mj [f ] = Aj (f)n0j

(
f (1)

)n1j
...
(
f (k)

)nkj where T (r,Aj) = S (r, f)

to be a differential monomial generated by f. The numbers γMj =
k∑
i=0
nij and ΓMj =

k∑
i=0

(i + 1)nij are called respectively the degree and weight of Mj [f ] {[4],[10]} . The

expression P [f ] =
s∑
j=1

Mj [f ] is called a differential polynomial generated by f . The
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numbers γP = max
1≤ j≤ s

γMj and ΓP = max
1≤ j≤ s

ΓMj are called respectively the degree

and weight of P [f ] {[4],[10]} . Also we call the numbers γP
−

= min
1≤ j≤ s

γMj and k

(the order of the highest derivative of f ) the lower degree and the order of P [f ]
respectively. If γp

−
= γP , P [f ] is called a homogeneous differential polynomial.

Throughout the paper we consider only the non-constant differential polynomials
and we denote by P0 [f ] a differential polynomial not containing f i.e., for which
n0j = 0 for j = 1, 2, ...s. We consider only those P [f ] , P0 [f ] singularities of whose
individual terms do not cancel each other. We also denote by M [f ] a differential
monomial generated by a transcendental meromorphic function f.

In the sequel the following definitions are well known :

Definition 1. Let ‘ a ’ be a complex number, finite or infinite. The Nevanlinna’s
deficiency and the Valiron deficiency of ‘ a ’ with respect to a meromorphic function
f are defined as

δ(a; f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
= lim inf

r→∞

m(r, a; f)

T (r, f)

and

∆(a; f) = 1− lim inf
r→∞

N(r, a; f)

T (r, f)
= lim sup

r→∞

m(r, a; f)

T (r, f)
.

Definition 2. The quantity Θ(a; f) of a meromorphic function f is defined as
follows

Θ(a; f) = 1− lim sup
r→∞

−
N(r, a; f)

T (r, f)
.

Definition 3. [14] For a ∈ C∪{∞}, we denote by n(r, a; f |= 1), the number of
simple zeros of f − a in |z| ≤ r. N(r, a; f |= 1) is defined in terms of n(r, a; f |= 1)
in the usual way. We put

δ1(a; f) = 1− lim sup
r→∞

N(r, a; f |= 1)

T (r, f)
,

the deficiency of ‘a’ corresponding to the simple a-points of f i.e., simple zeros of
f − a.

Yang [13]proved that there exists at most a denumerable number of complex
numbers a ∈ C ∪ {∞} for which δ1(a; f) > 0 and a∈C∪{∞}δ1(a; f) ≤ 4.
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Definition 4. [8] For a ε C ∪ {∞} , let np(r, a; f) denotes the number of zeros
of f − a in |z| ≤ r, where a zero of multiplicity < p is counted according to its
multiplicity and a zero of multiplicity ≥ p is counted exactly p times and Np(r, a; f)
is defined in terms of np(r, a; f) in the usual way. We define

δp(a; f) = 1− lim sup
r→∞

Np(r, a; f)

T (r, f)
.

Definition 5. [3] P [f ] is said to be admissible if
(i) P [f ] is homogeneous, or
(ii) P [f ] is non homogeneous and m(r, f) = S(r, f).

Now let L ≡ L (r) be a positive continuous function increasing slowly i.e.,
L (ar) ∼ L (r) as r →∞ for every positive constant a. Singh and Barker [11] defined
it in the following way :

Definition 6.[11]A positive continuous function L (r) is called a slowly changing
function if for ε (> 0) ,

1

kε
≤ L (kr)

L (r)
≤ kε for r ≥ r (ε) and

uniformly for k (≥ 1) .
If further, L (r) is differentiable, the above condition is equivalent to

lim
r→∞

rL′ (r)

L (r)
= 0 .

Somasundaram and Thamizharasi [12] introduced the notions of L-order
and L-order for entire functions. The more generalised concept for L-order and
L-type for entire and meromorphic functions are L∗-order and L∗-type respectively.
Their definitions are as follows :

Definition 7. [12] The L∗-order ρL
∗

f and the L∗-lower order λL
∗

f of an entire
function f are defined as

ρL
∗

f = lim sup
r→∞

log[2]M (r, f)

log
[
reL(r)

] and λL
∗

f = lim inf
r→∞

log[2]M (r, f)

log
[
reL(r)

] .

When f is meromorphic, one can easily verify that

ρL
∗

f = lim sup
r→∞

log T (r, f)

log
[
reL(r)

] and λL
∗

f = lim inf
r→∞

log T (r, f)

log
[
reL(r)

] .
295



S. Kr. Datta, T. Biswas and G. Kr. Mondal - Estimation of Growth Rates ...

Definition 8. [12] The L∗-type σL
∗

f of an entire function f is defined as follows:

σL
∗

f = lim sup
r→∞

logM (r, f)[
reL(r)

]ρL∗f , 0 < ρL
∗

f <∞ .

For meromorphic f ,

σL
∗

f = lim sup
r→∞

T (r, f)[
reL(r)

]ρL∗f , 0 < ρL
∗

f <∞ .

Lakshminarasimhan [6] introduced the idea of the functions of L-bounded
index. Later Lahiri and Bhattacharjee [7] worked on the entire functions of L-
bounded index and of non uniform L-bounded index. In the paper we investigate the
comparative growth of composite entire and meromorphic functions and differential
monomials, differential polynomials generated by their factors using L∗-order and
L∗-type. It is needless to mention that the admissibility and homogenity of P0 [f ]
will be required as per the requirements of the lemmas and theorems in the paper.

2.Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [1] If f be meromorphic and g be entire then for all sufficiently large
values of r,

T (r, f ◦ g) ≤ {1 + o (1)} T (r, g)

logM (r, g)
T (M (r, g) , f) .

Lemma 2. [2] Let f be meromorphic and g be entire and suppose that 0 < µ <
ρg ≤ ∞. Then for a sequence of values of r tending to infinity,

T (r, f ◦ g) ≥ T (exp (r)µ , f) .

Lemma 3. [3] Let P0 [f ] be admissible. If f is of finite order or of non zero
lower order and

∑
a6=∞

Θ (a; f) = 2, then

lim
r→∞

T (r, P0 [f ])

T (r, f)
= ΓP0 .
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Lemma 4. [3] Let f be either of finite order or of non-zero lower order such that
Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1. Then for homogeneous

P0 [f ] ,

lim
r→∞

T (r, P0 [f ])

T (r, f)
= γP0 .

Lemma 5. Let f be a meromorphic function of finite order or of non zero lower
order. If

∑
a6=∞

Θ (a; f) = 2, then the L∗-order ( L∗-lower order) of admissible P0 [f ]

is same as that of f .

Proof. By Lemma 3, lim
r→∞

log T (r,P0[f ])
log T (r,f) exists and is equal to 1.

ρL
∗

P0[f ]
= lim sup

r→∞

log T (r, P0 [f ])

log
[
reL(r)

]
= lim sup

r→∞

log T (r, f)

log
[
reL(r)

] . lim
r→∞

log T (r, P0 [f ])

log T (r, f)

= ρL
∗

f .1

= ρL
∗

f .

In a similar manner, λL
∗

P0[f ]
= λL

∗
f .

This proves the lemma.

Lemma 6. Let f be a meromorphic function of finite order or of non zero lower
order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1. Then

the L∗-order ( L∗-lower order) of homogeneous P0 [f ] and f are same.
We omit the proof of the lemma because it can be carried out in the line of

Lemma 5 and with the help of Lemma 4.

Lemma 7. [9] Let f be a transcendental meromorphic function of finite order
or of non-zero lower order and a∈C∪{∞}δ1(a; f) = 4. Then

lim
r→∞

T (r,M [f ])

T (r, f)
= ΓM − (ΓM − γM )Θ(∞; f) ,

where

Θ(∞; f) = 1− lim sup
r→∞

−
N(r, f)

T (r, f)
.
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Lemma 8. If f be a transcendental meromorphic function of finite order or of
non-zero lower order and a∈C∪{∞}δ1(a; f) = 4, then the L∗-order ( L∗-lower order)
of M [f ] are same as those of f .

We omit the proof of the lemma because it can be carried out in the line of
Lemma 5 and with the help of Lemma 7.

3.Theorems

In this section we present the main results of the paper.

It is needless to mention that in the paper, the admissibility and homogenity
of P0 [f ] will be needed as per the requirements of the theorems.

Theorem 1. Let f be meromorphic with finite order or non zero lower order
and g be entire satisfying the following conditions:
(i) 0 < λL

∗
f ≤ ρL

∗
f <∞ and (ii)

∑
a6=∞

Θ (a; f) = 2. Then for any A > 0

lim sup
r→∞

log[2] T
(
exp

(
rA
)
, f ◦ g

)
log T (exp (rµ) , P0 [f ]) +K (r, g;L)

=∞ ,

where 0 < µ < ρg and K (r, g;L) =


0 if rµ = o

{
L
(
exp

(
exp

(
µrA

)))}
as r →∞

L
(
exp

(
exp

(
µrA

)))
otherwise .

Proof. Let 0 < µ < µ′ < ρg. Using the definition of L∗-lower order we obtain in
view of Lemma 2 for a sequence of values of r tending to infinity that

log T
(
exp

(
rA
)
, f ◦ g

)
≥ log T

(
exp

(
exp

(
rA
))µ′

, f
)

i.e., log T
(
exp

(
rA
)
, f ◦ g

)
≥

(
λL
∗

f − ε
)
. log

{
exp

(
exp

(
rA
))µ′

. expL
(

exp
(
exp

(
rA
))µ′)}

i.e., log T
(
exp

(
rA
)
, f ◦ g

)
≥

(
λL
∗

f − ε
)
.
{(

exp
(
rA
))µ′

+ L
(

exp
(
exp

(
rA
))µ′)}

i.e., log T
(
exp

(
rA
)
, f ◦ g

)
≥

(
λL
∗

f − ε
)
.

(exp
(
rA
))µ′1 +

L
(

exp
(
exp

(
rA
))µ′)

(exp (rA))µ
′
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i.e., log[2] T
(
exp

(
rA
)
, f ◦ g

)
≥ O (1) + µ′ log exp

(
rA
)

+ log

1 +
L
(

exp
(
exp

(
rA
))µ′)

(exp (rA))µ
′


i.e., log[2] T

(
exp

(
rA
)
, f ◦ g

)
≥ O (1) + µ′rA

+ log

1 +
L
(

exp
(
exp

(
rA
))µ′)

(exp (rA))µ
′


i.e., log[2] T

(
exp

(
rA
)
, f ◦ g

)
≥ O (1) + µ′rA

+ log

[
1 +

L
(
exp

(
exp

(
µ′rA

)))
exp (µ′rA)

]

i.e., log[2] T
(
exp

(
rA
)
, f ◦ g

)
≥ O (1) + µrA + L

(
exp

(
exp

(
µrA

)))
− log

[
exp

{
L
(
exp

(
exp

(
µrA

)))}]
+ log

[
1 +

L
(
exp

(
exp

(
µ′rA

)))
exp (µrA)

]

i.e., log[2] T
(
exp

(
rA
)
, f ◦ g

)
≥ O (1) + µrA + L

(
exp

(
exp

(
µrA

)))
+ log

[
exp

(
µrA

)
+ L

(
exp

(
exp

(
µ′rA

)))
exp (µrA) exp {L (exp (exp (µrA)))}

]

i.e., log[2] T
(
exp

(
rA
)
, f ◦ g

)
≥ O (1) + µ′r(A−µ).rµ

+ L
(
exp

(
exp

(
µrA

)))
. (1)

Also in view of Lemma 5 we have for all sufficiently large values of r that

log T (exp (rµ) , P0 [f ]) ≤
(
ρL
∗

P0[f ]
+ ε
)

log
{

exp (rµ) eL(exp(r
µ))
}

i.e., log T (exp (rµ) , P0 [f ]) ≤
(
ρL
∗

f + ε
)
{log exp (rµ) + L (exp (rµ))}

i.e., log T (exp (rµ) , P0 [f ]) ≤
(
ρL
∗

f + ε
)
{rµ + L (exp (rµ))}
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i.e.,
log T (exp (rµ) , P0 [f ])−

(
ρL
∗

f + ε
)
L (exp (rµ))(

ρL
∗

f + ε
) ≤ rµ . (2)

Now from (1) and (2) it follows for a sequence of values of r tending to infinity that

log[2] T
(
exp

(
rA
)
, f ◦ g

)
≥ O (1) +

(
µ′r(A−µ)

ρL
∗

f + ε

)[
log T (exp (rµ) , P0 [f ])−

(
ρL
∗

f + ε
)
L (exp (rµ))

]
+ L

(
exp

(
exp

(
µrA

)))
(3)

i.e.,
log[2] T

(
exp

(
rA
)
, f ◦ g

)
log T (exp (rµ) , P0 [f ])

≥
L
(
exp

(
exp

(
µrA

)))
+O (1)

log T (exp (rµ) , P0 [f ])

+
µ′r(A−µ)

ρL
∗

f + ε

1−

(
ρL
∗

f + ε
)
L (exp (rµ))

log T (exp (rµ) , P0 [f ])

 . (4)

Again from (3) we get for a sequence of values of r tending to infinity that

log[2] T
(
exp

(
rA
)
, f ◦ g

)
log T (exp (rµ) , P0 [f ]) + L (exp (exp (µrA)))

≥ O (1)− µ′r(A−µ)L (exp (rµ))

log T (exp (rµ) , P0 [f ]) + L (exp (exp (µrA)))

+

(
µ′r(A−µ)

ρL
∗

f +ε

)
log T (exp (rµ) , P0 [f ])

log T (exp (rµ) , P0 [f ]) + L (exp (exp (µrA)))

+
L
(
exp

(
exp

(
µrA

)))
log T (exp (rµ) , P0 [f ]) + L (exp (exp (µrA)))

i.e.,
log[2] T

(
exp

(
rA
)
, f ◦ g

)
log T (exp (rµ) , P0 [f ]) + L (exp (exp (µrA)))

≥
O(1)−µ′r(A−µ)L(exp(rµ))

L(exp(exp(µrA)))

log T (exp(rµ),P0[f ])
L(exp(exp(µrA)))

+ 1

+

(
µ′r(A−µ)

ρL
∗

f
+ε

)
log T (exp(rµ),P0[f ])

log T (exp(rµ),P0[f ])

1 + L(exp(exp(µrA)))
log T (exp(rµ),P0[f ])

+
1

1 + log T (exp(rµ),P0[f ])
L(exp(exp(µrA)))

. (5)
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Case I. If rµ = o
{
L
(
exp

(
exp

(
µrA

)))}
then it follows from (4) that

lim sup
r→∞

log[2] T
(
exp

(
rA
)
, f ◦ g

)
log T (exp (rµ) , P0 [f ])

=∞ .

Case II. rµ 6= o
{
L
(
exp

(
exp

(
µrA

)))}
then two sub cases may arise.

Sub case (a). If L
(
exp

(
exp

(
µrA

)))
= o {log T (exp (rµ) , P0 [f ])}, then we get

from (5) that

lim sup
r→∞

log[2] T
(
exp

(
rA
)
, f ◦ g

)
log T (exp (rµ) , P0 [f ]) + L (exp (exp (µrA)))

=∞ .

Sub case (b). If L
(
exp

(
exp

(
µrA

)))
∼ log T (exp (rµ) , P0 [f ]) then

lim
r→∞

L
{

exp
(
exp

(
µrA

))}
log T (exp (rµ) , P0 [f ])

= 1

and we obtain from (5) that

lim sup
r→∞

log[2] T
(
exp

(
rA
)
, f ◦ g

)
log T (exp (rµ) , P0 [f ]) + L (exp (exp (µrA)))

=∞ .

Combining Case I and Case II we obtain that

lim sup
r→∞

log[2] T
(
exp

(
rA
)
, f ◦ g

)
log T (exp (rµ) , P0 [f ]) +K (r, g;L)

=∞ ,

where K (r, g;L) =


0 if rµ = o

{
L
(
exp

(
exp

(
µrA

)))}
as r →∞

L
(
exp

(
exp

(
µrA

)))
otherwise .

This proves the theorem.

Remark 1. With the help of Lemma 6, the conclusion of Theorem 1 can also be
drawn under the hypothesis Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a6=∞

δ (a; f) =

1 instead of
∑
a6=∞

Θ (a; f) = 2.

Remark 2. If we choose f to be meromorphic and g to be entire of finite order or
of non zero lower order satisfying 0 < λL

∗
g ≤ ρL

∗
g <∞, λL∗f > 0 and

∑
a6=∞

Θ (a; g) = 2,

then Theorem 1 remains true with P0 [f ] replaced by P0 [g] in the denominator.
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Remark 3. By Lemma 6 the conclusion of Remark 2 can also drawn under
the hypothesis Θ (∞; g) =

∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1 instead of∑
a6=∞

Θ (a; g) = 2.

In the line of Theorem 1 and with the help of Lemma 8 we may state the
following theorem without proof :

Theorem 2. Let f be transcendental meromorphic with finite order or non zero
lower order and g be entire satisfying the following conditions:
(i) 0 < λL

∗
f ≤ ρL

∗
f <∞ and (ii) a∈C∪{∞}δ1(a; f) = 4. Then for any A > 0

lim sup
r→∞

log[2] T
(
exp

(
rA
)
, f ◦ g

)
log T (exp (rµ) ,M [f ]) +K (r, g;L)

=∞ ,

where 0 < µ < ρg and K (r, g;L) =


0 if rµ = o

{
L
(
exp

(
exp

(
µrA

)))}
as r →∞

L
(
exp

(
exp

(
µrA

)))
otherwise .

Remark 4. If we choose f to be meromorphic and g to be transcendental entire
of finite order or of non zero lower order satisfying 0 < λL

∗
g ≤ ρL

∗
g <∞, λL∗f > 0 and

a∈C∪{∞}δ1(a; g) = 4, then Theorem 2 remains true with M [f ] replaced by M [g] in
the denominator.

Theorem 3. Let f be a meromorphic function with finite order or non zero
lower order and g be an entire function such that 0 < ρL

∗
g < λL

∗
f ≤ ρL

∗
f < ∞ and

Θ (∞; f) =
∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1. Then

lim
r→∞

log {T (r, f ◦ g) logM (r, g)}
T (r, P0 [f ]) ·K (r, g;L)

= 0 ,

where K (r, g;L) =


1 if L (M (r, g)) = o

{
rαeαL(r)

}
as r →∞

and for some α < λL
∗

f

L (M (r, g)) otherwise.

Proof. In view of Lemma 1 we have for all sufficiently large values of r that

T (r, f ◦ g) logM (r, g) ≤ {1 + o (1)}T (r, g)T (M (r, g) , f)

i.e., log {T (r, f ◦ g) logM (r, g)} ≤ log {1 + o (1)}+ log T (r, g)

+ log T (M (r, g) , f)
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i.e., log {T (r, f ◦ g) logM (r, g)} ≤ o (1) +
(
ρL
∗

g + ε
)

log
[
reL(r)

]
+
(
ρL
∗

f + ε
) [

logM (r, g) eL(M(r,g))
]

i.e., log {T (r, f ◦ g) logM (r, g)} ≤ o (1) +
(
ρL
∗

g + ε
)

[log r + L (r)]

+
(
ρL
∗

f + ε
)

[logM (r, g) + L (M (r, g))]

i.e., log {T (r, f ◦ g) logM (r, g)} ≤ o (1) +
(
ρL
∗

g + ε
)

[log r + L (r)]

+
(
ρL
∗

f + ε
)[{

reL(r)
}(ρL∗g +ε

)
+ L (M (r, g))

]
. (6)

Also in view of Lemma 6 we obtain for all sufficiently large values of r that

log T (r, P0 [f ]) ≥
(
λL
∗

P0[f ]
− ε
)

log
[
reL(r)

]
i.e., log T (r, P0 [f ]) ≥

(
λL
∗

f − ε
)

log
[
reL(r)

]
i.e., T (r, P0 [f ]) ≥

[
reL(r)

](λL∗f −ε)
. (7)

Now from (6) and (7) we get for all sufficiently large values of r that

log {T (r, f ◦ g) logM (r, g)}
T (r, P0 [f ])

≤
o (1) +

(
ρL
∗

g + ε
)

[log r + L (r)]

T (r, P0 [f ])

+

(
ρL
∗

f + ε
)[{

reL(r)
}(ρL∗g +ε

)
+ L (M (r, g))

]
{
reL(r)

}(λL∗f −ε)
. (8)

Since ρL
∗

g < λL
∗

f , we can choose ε (> 0) in such a way that

ρL
∗

g + ε < λL
∗

f − ε . (9)

Case I. Let L (M (r, g)) = o
{
rαeαL(r)

}
as r →∞ and for some α < λL

∗
f .

As α < λL
∗

f we can choose ε (> 0) such that

α < λL
∗

f − ε . (10)
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Since L (M (r, g)) = o
{
rαeαL(r)

}
as r →∞ we obtain on using (10) that

L (M (r, g))

rαeαL(r)
→ 0 as r →∞

i.e.,
L (M (r, g))[
reL(r)

](λL∗f −ε) → 0 as r →∞ . (11)

Now in view of (8), (9) and (11) we get that

lim
r→∞

log {T (r, f ◦ g) logM (r, g)}
T (r, P0 [f ])

= 0 . (12)

Case II. If L (M (r, g)) 6= o
{
rαeαL(r)

}
as r → ∞ and for some α < λL

∗
f then we

get from (8) that for a sequence of values of r tending to infinity,

log {T (r, f ◦ g) logM (r, g)}
T (r, P0 [f ])L (M (r, g))

≤
o (1) +

(
ρL
∗

g + ε
) [

log
{
reL(r)

}]
{
reL(r)

}(λL∗f −ε) L (M (r, g))

+

(
ρL
∗

f + ε
){

reL(r)
}(ρL∗g +ε

)
{
reL(r)

}(λL∗f −ε) L (M (r, g))

+
1{

reL(r)
}(λL∗f −ε) L (M (r, g))

. (13)

Now using (9) it follows from (13) that

lim
r→∞

log {T (r, f ◦ g) logM (r, g)}
T (r, P0 [f ])L (M (r, g))

= 0 . (14)

Combining (12) and (14) we obtain that

lim
r→∞

log {T (r, f ◦ g) logM (r, g)}
T (r, P0 [f ]) ·K (r, g;L)

= 0 ,

where K (r, g;L) =


1 if L (M (r, g)) = o

{
rαeαL(r)

}
as r →∞

and for some α < λL
∗

f

L (M (r, g)) otherwise.
Thus the theorem is established.

Remark 5. In view of Lemma 5 one can easily verify that the conclusion
of Theorem 3 can also be deduced if we replace “ Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1

or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 ” by
∑
a6=∞

Θ (a; f) = 2.
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Theorem 4. Let f be a transcendental meromorphic function with finite order
or non zero lower order and g be an entire function such that 0 < ρL

∗
g < λL

∗
f ≤

ρL
∗

f <∞ and a∈C∪{∞}δ1(a; f) = 4. Then

lim
r→∞

log {T (r, f ◦ g) logM (r, g)}
T (r,M [f ]) ·K (r, g;L)

= 0 ,

where K (r, g;L) =


1 if L (M (r, g)) = o

{
rαeαL(r)

}
as r →∞

and for some α < λL
∗

f

L (M (r, g)) otherwise.
The proof of the above theorem can be established in the line of Theorem

3 and with the help of Lemma 8 and therefore is omitted.

Theorem 5. Let f be meromorphic and g be entire with finite order or of non
zero lower order and

∑
a6=∞

Θ (a; g) = 2. Also Let 0 < ρL
∗

g < ρL
∗

f <∞. Then

lim inf
r→∞

log {T (r, f ◦ g) logM (r, g)}
T (r, P0 [g]) ·K (r, g;L)

= 0 ,

where K (r, g;L) =


1 if L (M (r, g)) = o

{
rαeαL(r)

}
as r →∞

and for some α < ρL
∗

f

L (M (r, g)) otherwise.
The proof is omitted because it can be carried out in the line of Theorem 3.

Remark 6. By Lemma 6 the conclusion of Theorem 5 can also be drawn under
the hypothesis Θ (∞; g) =

∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1 instead of∑
a6=∞

Θ (a; g) = 2.

In the line of Theorem 5 one may state the following theorem without proof
:

Theorem 6. Let f be a meromorphic function and g be a transcendental entire
function with finite order or of non zero lower order and a∈C∪{∞}δ1(a; g) = 4. Also

let 0 < ρL
∗

g < ρL
∗

f <∞. Then

lim inf
r→∞

log {T (r, f ◦ g) logM (r, g)}
T (r,M [g]) ·K (r, g;L)

= 0 ,

where K (r, g;L) =


1 if L (M (r, g)) = o

{
rαeαL(r)

}
as r →∞

and for some α < ρL
∗

f

L (M (r, g)) otherwise.
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Theorem 7. Let f be a meromorphic function with finite order or non zero
lower order and Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1. Also let

g be entire.If ρL
∗

f <∞ and λL
∗

f◦g =∞ then

lim
r→∞

log T (r, f ◦ g)

log T (r, P0 [f ])
=∞.

Proof. Let us suppose that the conclusion of the theorem does not hold.Then we
can find a constant β > 0 such that for a sequence of values of r tending to infinity

log T (r, f ◦ g) ≤ β log T (r, P0 [f ]). (15)

Again from the definition of ρL
∗

P0[f ]
it follows that for all sufficiently large values of r

and in view of Lemma 6

log T (r, P0 [f ]) ≤
(
ρL
∗

P0[f ]
+ ε
)

log
{
reL(r)

}
i.e., log T (r, P0 [f ]) ≤

(
ρL
∗

f + ε
)

log
{
reL(r).

}
(16)

Thus from (15) and (16) we have for a sequence of values of r tending to infinity
that

log T (r, f ◦ g) ≤ β
(
ρL
∗

f + ε
)

log
{
reL(r)

}
i.e.,

log T (r, f ◦ g)

log
(
reL(r)

) ≤
β
(
ρL
∗

f + ε
)

log
{
reL(r)

}
log
{
reL(r)

}
i.e., lim inf

r→∞

log T (r, f ◦ g)

log
(
reL(r)

) = λL
∗

f◦g <∞.

This is a contradiction.
This proves the theorem.

Remark 7. Theorem 7 is also valid with “limit superior” instead of “limit” if
λL
∗

f◦g =∞ is replaced by ρL
∗

f◦g =∞ and the other conditions remaining the same.

Corollary 1. Under the assumptions of Theorem 7 or Remark 7,

lim sup
r→∞

T (r, f ◦ g)

T (r, P0 [f ])
=∞.
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Proof. By Theorem 7 or Remark 7 we obtain for all sufficiently large values of r
and for K > 1,

log T (r, f ◦ g) > K log T (r, P0 [f ])

i.e., T (r, f ◦ g) > log {T (r, P0 [f ])}K ,

from which the corollary follows.

Remark 8. The condition λL
∗

f◦g = ∞ is necessary in Theorem 7 and Corollary
1 which is evident from the following example :

Example 1. Let f = exp z, g = z and L (r) = 1
p exp

(
1
r

)
where p is any positive

real number.
Also let s = 1, A1 = 1 and

ni1 = 1 for i = 1

= 0 for i 6= 1.

Then
P0 [f ] = exp z.

Also
δ (∞; f) =

∑
a6=∞

δ (a; f) = 1, ρL
∗

f = 1 <∞ and λL
∗

f◦g = 1 <∞.

Now
T (r, f ◦ g) = T (r, exp z) =

r

π
and

T (r, P0 [f ]) = T (r, exp z) =
r

π
.

Therefore

lim
r→∞

log T (r, f ◦ g)

log T (r, P0 [f ])
= lim

r→∞

log r +O(1)

log r +O(1)
= 1 and

lim
r→∞

T (r, f ◦ g)

T (r, P0 [f ])
= lim

r→∞

( rπ )

( rπ )
= 1.

Remark 9. Considering

f = exp z, g = z, A = 1, L (r) =
1

p
exp

(
1

r

)
where p is any positive real number;

s = 1, A1 = 1 and

ni1 = 1 for i = 1

= 0 for i 6= 1.
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one can also verify that the condition ρL
∗

f◦g = ∞ in Remark 7 and Corollary 1 is
essential.

Remark 10. The conclusion of Theorem 7, Remark 7 and Corollary 1 can also
drawn under the hypothesis Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or
∑
a6=∞

Θ (a; f) = 2 instead

of δ (∞; f) =
∑
a6=∞

δ (a; f) = 1.

In the line of Theorem 17 the following theorem may be deduced:

Theorem 8. Let f be a transcendental meromorphic function with finite order
or non zero lower order and a∈C∪{∞}δ1(a; f) = 4. Also let g be entire.If ρL

∗
f < ∞

and λL
∗

f◦g =∞ then

lim
r→∞

log T (r, f ◦ g)

log T (r,M [f ])
=∞.

Remark 11. Theorem 8 is also valid with “limit superior” instead of “limit” if
λL
∗

f◦g =∞ is replaced by ρL
∗

f◦g =∞ and the other conditions remaining the same.

Corollary 2. Under the assumptions of Theorem 8 or Remark 11,

lim sup
r→∞

T (r, f ◦ g)

T (r,M [f ])
=∞.

The proof is omitted because it can be carried out in the line of Corollary
1.

Theorem 9. Let f be a meromorphic function with finite order or non zero
lower order and Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1.Also

let g be an entire function and 0 < λL
∗

f ≤ ρL
∗

f < ∞ and 0 < σL
∗

g < ∞. If

L (M (r, g)) = o
{
rαeαL(r)

}
as r →∞ and for some positive α < ρL

∗
g , then

lim sup
r→∞

log T (r, f ◦ g)

log T
(

exp
{
reL(r)

}ρL∗g , P0 [f ]
) ≤ ρL

∗
f · σL

∗
g

λL
∗

f

.

Proof. Since T (r, g) ≤ log+M (r, g) and by Lemma 1 we get for all sufficiently
large values of r that

log T (r, f ◦ g) ≤ log {1 + o (1)}+ log T (M (r, g) , f)

i.e., log T (r, f ◦ g) ≤ o (1) + log T (M (r, g) , f)
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i.e.,
log T (r, f ◦ g)

log T
(

exp
{
reL(r)

}ρL∗g , P0 [f ]
)

≤ o (1) + log T (M (r, g) , f)

log T
(

exp
{
reL(r)

}ρL∗g , P0 [f ]
) =

o (1) + log T (M (r, g) , f)

log
{
M (r, g) eL(M(r,g))

} ·

logM (r, g) + L (M (r, g))[
reL(r)

]ρL∗g ·
log

{
exp

(
reL(r)

)ρL∗g }
log T

[
exp

{
reL(r)

}ρL∗g , P0 [f ]
] (17)

i.e., lim sup
r→∞

log T (r, f ◦ g)

log T
(

exp
{
reL(r)

}ρL∗g , P0 [f ]
)

≤ lim sup
r→∞

log T (M (r, g) , f)

log
{
M (r, g) eL(M(r,g))

} · lim sup
r→∞

logM (r, g) + L (M (r, g))[
reL(r)

]ρL∗g ·

lim sup
r→∞

log

{
exp

(
reL(r)

)ρL∗g }
log T

[
exp

{
reL(r)

}ρL∗g , P0 [f ]
] . (18)

As α < ρL
∗

g we can choose ε (> 0) in such a way that α < ρL
∗

g − ε and since

L (M (r, g)) = o
{
rαeαL(r)

}
as r →∞, we obtain that

lim
r→∞

L (M (r, g))[
reL(r)

]ρL∗g −ε = 0 . (19)

Now from (18) and (19) and in view of Lemma 6 it follows that

lim sup
r→∞

log T (r, f ◦ g)

log T
[
exp

{
reL(r)

}ρL∗g , P0 [f ]
] ≤ ρL

∗
f · σL

∗
g ·

1

λL
∗

P0[f ]

i.e., lim sup
r→∞

log T (r, f ◦ g)

log T
[
exp

{
reL(r)

}ρL∗g , P0 [f ]
] ≤ ρL

∗
f · σL

∗
g ·

1

λL
∗

f

.

Thus the theorem is established.

Remark 12. By Lemma 5 one can verify that the Theorem 9 is also valid if
we take

∑
a6=∞

Θ (a; f) = 2 instead of “ Θ (∞; f) =
∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =∑
a6=∞

δ (a; f) = 1 ” and the other conditions are remaining the same.
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In the line of Theorem 9 the following theorem can be proved :

Theorem 10. Let f be meromorphic and g be entire of finite order or of non zero
lower order such that λL

∗
g > 0, 0 < ρL

∗
f <∞ , 0 < σL

∗
g <∞ and

∑
a6=∞

Θ (a; g) = 2. If

L (M (r, g)) = o
{
rαeαL(r)

}
as r →∞ and for some positive α < ρL

∗
g , then

lim sup
r→∞

log T (r, f ◦ g)

log T
[
exp

{
reL(r)

}ρL∗g , P0 [g]
] ≤ ρL

∗
f · σL

∗
g

λL∗g
.

The proof is omitted.

Remark 11. The conclusion of Theorem 10 can also be drawn under the hy-
pothesis “ Θ (∞; g) =

∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1 ” instead of∑
a6=∞

Θ (a; g) = 2.

Theorem 11. Let f be a transcendental meromorphic function with finite order
or non zero lower order and a∈C∪{∞}δ1(a; f) = 4. Also let g be an entire function

and 0 < λL
∗

f ≤ ρL
∗

f <∞ and 0 < σL
∗

g <∞. If L (M (r, g)) = o
{
rαeαL(r)

}
as r →∞

and for some positive α < ρL
∗

g , then

lim sup
r→∞

log T (r, f ◦ g)

log T
[
exp

{
reL(r)

}ρL∗g ,M [f ]
] ≤ ρL

∗
f · σL

∗
g

λL
∗

f

.

Theorem 12. Let f be meromorphic and g be transcendental entire of finite
order or of non zero lower order such that λL

∗
g > 0, 0 < ρL

∗
f <∞ , 0 < σL

∗
g <∞ and

a∈C∪{∞}δ1(a; g) = 4. If L (M (r, g)) = o
{
rαeαL(r)

}
as r →∞ and for some positive

α < ρL
∗

g , then

lim sup
r→∞

log T (r, f ◦ g)

log T
[
exp

{
reL(r)

}ρL∗g ,M [g]
] ≤ ρL

∗
f · σL

∗
g

λL∗g
.

The proof of the above two theorems can be established in the line of The-
orem 9 and Theorem 10 respectively and with the help of Lemma 8 and therefore is
omitted.
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