ON A SUBCLASS OF HARMONIC MAPPINGS

Emel Yavuz Duman, Yasemin Kahramaner and Yaşar Polatoğlu
Dedicated to the retirement of Professor Shigeyoshi Owa

Abstract. In the present paper we extent the fundamental property that if $h(z)$ and $g(z)$ are regular functions in the open unit disc \mathbb{D} with the properties $h(0)=g(0)=0, h(z)$ maps \mathbb{D} onto λ-spiral region and $\operatorname{Re}\left\{e^{i \lambda \frac{g^{\prime}(z)}{h^{\prime}(z)}}\right\}>0$, then $\operatorname{Re}\left\{e^{i \lambda \frac{g(z)}{h(z)}}\right\}>0$, and then give some applications of this to the harmonic functions.

2000 Mathematics Subject Classification: Primary 30C45, Secondary 30C55.

1. Introduction

A planar harmonic mapping in the unit disc $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ is a complexvalued harmonic function f which maps \mathbb{D} onto some planar domain $f(\mathbb{D})$. Since \mathbb{D} is simply connected, the mapping f has a canonical decomposition $f=h+\bar{g}$, where h and g are analytic in \mathbb{D}, as usual, we call h the analytic part of f and g the co-analytic part of f. An elegant and complete account of the theory of planar harmonic mapping is given in Duren's monograph [2].

Lewy [4] proved in 1936 that the harmonic function f is locally univalent in a simply connected domain \mathcal{D}_{1} if and only if its Jacobien

$$
J_{f}(z)=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}>0
$$

is different from zero in \mathcal{D}_{1}. In view of this result, locally univalent harmonic mappings in the unit disc are either sense-reversing if

$$
\left|g^{\prime}(z)\right|>\left|h^{\prime}(z)\right|
$$

in \mathcal{D}_{1} or sense-preserving if

$$
\left|g^{\prime}(z)\right|<\left|h^{\prime}(z)\right|
$$

in \mathcal{D}_{1}. Throughout this paper we will restrict ourselves to the study of sensepreserving harmonic mappings. However, since f is sense-preserving if and only if \bar{f}
is sense-reserving, all the results obtained in this article regarding sense-preserving harmonic mappings can be adapted to sense-reversing ones. Note that $f=h+\bar{g}$ is sense-preserving in \mathbb{D} if and only if $h^{\prime}(z)$ does not vanish in the unit disc and the second-complex dilatation $w(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}$ has the property $|w(z)|<1$ in \mathbb{D}. Therefore we can take $h(z)=z+a_{2} z^{2}+\cdots, g(z)=b_{1} z+b_{2} z^{2}+\cdots$. Thus the class of all harmonic mappings being sense-preserving in the unit disc can be defined by

$$
\begin{aligned}
\mathcal{S}_{\mathcal{H}}=\{f=h(z)+\overline{g(z)} \mid h(z) & =z+a_{2} z^{2}+\cdots, \\
g(z) & \left.=b_{1} z+b_{2} z^{2}+\cdots, f \text { sense-preserving }\right\}
\end{aligned}
$$

Thus $\mathcal{S}_{\mathcal{H}}$ contains the standard class \mathcal{S} of analytic univalent functions.
Let Ω be the family of functions $\phi(z)$ which are regular in \mathbb{D} and satisfying the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$. Denote by \mathcal{P}, the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ which are regular in \mathbb{D} such that

$$
p(z)=\frac{1+\phi(z)}{1-\phi(z)}
$$

for some function $\phi(z) \in \Omega$ for all $z \in \mathbb{D}$.
Next, let $\mathcal{S}^{*}(\lambda)$ denote the family of functions $s(z)=z+c_{2} z^{2}+c_{3} z^{3}+\cdots$ which are regular in \mathbb{D} such that

$$
e^{i \lambda} z \frac{s^{\prime}(z)}{s(z)}=(\cos \lambda) p(z)+i \sin \lambda \quad\left(|\lambda|<\frac{\pi}{2}\right)
$$

for some $p(z) \in \mathcal{P}$ for all $z \in \mathbb{D}$.
Let $s_{1}(z)=z+\alpha_{2} z^{2}+\alpha_{3} z_{3}+\cdots$ and $s_{2}(z)=z+\beta_{2} z^{2}+\beta_{3} z^{3}+\cdots$ be analytic functions in \mathbb{D}. If there exists $\phi(z) \in \Omega$ such that $s_{1}(z)=s_{2}(\phi(z))$ for all $z \in \mathbb{D}$. Then we say that $s_{1}(z)$ is subordinate to $s_{2}(z)$ and we write $s_{1}(z) \prec s_{2}(z)$, then $s_{1}(\mathbb{D}) \subset s_{2}(\mathbb{D})$.

Now, we consider the following class of harmonic mappings in the plane:

$$
\begin{aligned}
& \mathcal{S}_{\mathcal{H S}}^{*}(\lambda)=\left\{f=h(z)+\overline{g(z)} \mid h(z) \in \mathcal{S}^{*}(\lambda),\right. \\
&\left.\operatorname{Re}\left(e^{i \lambda} w(z)\right)=\operatorname{Re}\left(e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)}\right)>0\right\} .
\end{aligned}
$$

In the present paper we investigate the class $\mathcal{S}_{\mathcal{H} \mathcal{S}}^{*}(\lambda)$.

2. Main Results

Lemma 1. Let $h(z)$ be an element of $\mathcal{S}^{*}(\lambda)$, then

$$
\begin{equation*}
r \mathfrak{A}(\lambda,-r) \leq|h(z)| \leq r \mathfrak{A}(\lambda, r), \quad|z|=r<1,|\lambda|<\pi / 2 \tag{1}
\end{equation*}
$$

where

$$
\mathfrak{A}(\lambda, r)=\frac{(1+r)^{\cos \lambda(1-\cos \lambda)}}{(1-r)^{\cos \lambda(1+\cos \lambda)}}
$$

This inequality is sharp because the extremal function is

$$
\begin{equation*}
h_{*}(z)=\frac{z}{(1-z)^{2(\cos \lambda) e^{-i \lambda}}} \tag{2}
\end{equation*}
$$

Proof. Since $h(z) \in \mathcal{S}^{*}(\lambda)$, then

$$
e^{i \lambda} z \frac{h^{\prime}(z)}{h(z)}=(\cos \lambda) p(z)+i \sin \lambda \quad\left(|\lambda|<\frac{\pi}{2}, z \in \mathbb{D}\right)
$$

Thus, we have

$$
e^{i \lambda} z \frac{h^{\prime}(z)}{h(z)}=(\cos \lambda) \frac{1+\phi(z)}{1-\phi(z)}+i \sin \lambda
$$

or

$$
\begin{equation*}
z \frac{h^{\prime}(z)}{h(z)} \prec \frac{1+e^{-2 i \lambda} z}{1-z} . \tag{3}
\end{equation*}
$$

Geometrically, the meaning of the relation (3) is that the image of \mathbb{D} lies inside the open disc with the center $C(r)=\left(\frac{1+(\cos 2 \lambda) r^{2}}{1-r^{2}},-\frac{\sin 2 \lambda}{1-r^{2}}\right)$ and the radius $\rho(r)=$ $\frac{2(\cos \lambda) r}{1-r^{2}}$. Therefore we have

$$
\left|z \frac{h^{\prime}(z)}{h(z)}-\frac{1+e^{-2 i \lambda} r^{2}}{1-r^{2}}\right| \leq \frac{2(\cos \lambda) r}{1-r^{2}}
$$

which gives

$$
\begin{equation*}
\frac{1-2(\cos \lambda) r+(\cos 2 \lambda) r^{2}}{r\left(1-r^{2}\right)} \leq \frac{\partial}{\partial r} \log |h(z)| \leq \frac{1+2(\cos \lambda) r+(\cos 2 \lambda) r^{2}}{r\left(1-r^{2}\right)} \tag{4}
\end{equation*}
$$

integrating the last inequality (4) from 0 to r we obtain (1).

Corollary 2. If $h(z) \in \mathcal{S}^{*}(\lambda)$, then

$$
\begin{equation*}
\frac{1}{\mathfrak{B}(\lambda, r)} \leq\left|z \frac{h^{\prime}(z)}{h(z)}\right| \leq \mathfrak{B}(\lambda, r), \quad|\lambda|<\pi / 2, \quad|z|=r<1 \tag{5}
\end{equation*}
$$

where

$$
\mathfrak{B}(\lambda, r)=\frac{\sqrt{\left(1-r^{2}\right)^{2}+4\left(\cos ^{2} \lambda\right) r^{2}}+2(\cos \lambda) r}{1-r^{2}}
$$

This inequality sharp because the extremal function is given by (2).
Corollary 3. If $h(z) \in \mathcal{S}^{*}(\lambda)$, then

$$
\begin{equation*}
\frac{\mathfrak{A}(\lambda,-r)}{\mathfrak{B}(\lambda, r)} \leq\left|h^{\prime}(z)\right| \leq \mathfrak{A}(\lambda, r) \mathfrak{B}(\lambda, r), \quad|\lambda|<\pi / 2, \quad|z|=r<1 \tag{6}
\end{equation*}
$$

where

$$
\mathfrak{A}(\lambda, r)=\frac{(1+r)^{\cos \lambda(1-\cos \lambda)}}{(1-r)^{\cos \lambda(1+\cos \lambda)}}
$$

and

$$
\mathfrak{B}(\lambda, r)=\frac{\sqrt{\left(1-r^{2}\right)^{2}+4\left(\cos ^{2} \lambda\right) r^{2}}+2(\cos \lambda) r}{1-r^{2}}
$$

This inequality sharp because the extremal function is given by (2).
Corollary 2 and Corollary 3 are simple consequences of Lemma 1.
Theorem 4. Let $f=h(z)+\overline{g(z)}$ be an element of $\mathcal{S}_{\mathcal{H} \mathcal{S}}^{*}(\lambda)$, then $\frac{g(z)}{h(z)} \in \mathcal{P}$ for all $z \in \mathbb{D}$.

Proof. Since $f=h(z)+\overline{g(z)} \in \mathcal{S}_{\mathcal{H} \mathcal{S}}^{*}(\lambda)$ satisfies the condition

$$
\operatorname{Re}\left(e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)}\right)>0
$$

we have

$$
\frac{\frac{1}{b_{1}} g^{\prime}(z)}{h^{\prime}(z)}=\frac{1+e^{-2 i \lambda} \phi(z)}{1-\phi(z)}, \phi \in \Omega
$$

or

$$
\begin{equation*}
\frac{\frac{1}{b_{1}} g^{\prime}(z)}{h^{\prime}(z)} \prec \frac{1+e^{-2 i \lambda} z}{1-z} \tag{7}
\end{equation*}
$$

for all $z \in \mathbb{D}$. Now, we define the function

$$
\begin{equation*}
\frac{G(z)}{h(z)}=\frac{\frac{1}{b_{1}} g(z)}{h(z)}=\frac{1+e^{-2 i \lambda} \phi(z)}{1-\phi(z)} \Leftrightarrow \frac{G(z)}{h(z)} \prec \frac{1+e^{-2 i \lambda} z}{1-z} \tag{8}
\end{equation*}
$$

for all $z \in \mathbb{D}$. Then $\phi(z)$ is analytic in \mathbb{D} and $\phi(0)=0$. Taking the logarithmic differentiation in both sides of (8), we have that

$$
\begin{equation*}
\frac{G(z)}{h(z)}=\frac{G^{\prime}(z)}{h^{\prime}(z)}-\frac{c e^{i \lambda} z \phi^{\prime}(z)}{(1-\phi(z))^{2}} \frac{h(z)}{e^{i \lambda} z h^{\prime}(z)}, \tag{9}
\end{equation*}
$$

where $c=1+e^{-2 i \lambda}$. On the other hand, since $h(z)$ is λ-spirallike, then we have

$$
\begin{equation*}
\frac{h(z)}{e^{i \lambda} z h^{\prime}(z)}=\frac{1-\phi(z)}{e^{i \lambda}+e^{-i \lambda} \phi(z)} . \tag{10}
\end{equation*}
$$

Considering (7), (8), (9) and (10) together we obtain

$$
\begin{equation*}
F(z)=\frac{G(z)}{h(z)}=\frac{1+e^{-2 i \lambda} \phi(z)}{1-\phi(z)}-\frac{c z \phi^{\prime}(z)}{(1-\phi(z))\left(1+e^{-2 i \lambda} \phi(z)\right)} . \tag{11}
\end{equation*}
$$

Now, it is easy to realize that the subordination (8) is equivalent to $|\phi(z)|<1$ for all $z \in \mathbb{D}$. Indeed, assume the contrary: there exists a $z_{1} \in \mathbb{D}$ such that $\left|\phi\left(z_{1}\right)\right|=1$. Then by Jack's Lemma [3], $z_{1} \phi^{\prime}\left(z_{1}\right)=k \phi\left(z_{1}\right)$ for some real $k \geq 1$. For such z_{1}, we have

$$
\begin{aligned}
F\left(z_{1}\right) & =\frac{G\left(z_{1}\right)}{h\left(z_{1}\right)}=\frac{1+e^{-2 i \lambda} \phi\left(z_{1}\right)}{1-\phi\left(z_{1}\right)}-\frac{c k \phi\left(z_{1}\right)}{\left(1-\phi\left(z_{1}\right)\right)\left(1+e^{-2 i \lambda} \phi\left(z_{1}\right)\right)} \\
& =F\left(\phi\left(z_{1}\right)\right) \notin F(\mathbb{D}),
\end{aligned}
$$

because $\left|\phi\left(z_{1}\right)\right|=1$ and $k \geq 1$. But this contradicts $F(z)=\frac{G(z)}{h(z)} \prec \frac{1+e^{-2 i \lambda} z}{1-z}$, so the assumption is wrong, i.e, $|\phi(z)|<1$ for every $z \in \mathbb{D}$.

Theorem 5. Let $f=h(z)+\overline{g(z)}$ be an element of $\mathcal{S}_{\mathcal{H} \mathcal{S}}^{*}(\lambda)$, then

$$
\begin{equation*}
\frac{\left|b_{1}\right| \mathfrak{A}(\lambda,-r)}{\mathfrak{B}^{2}(\lambda, r)} \leq\left|g^{\prime}(z)\right| \leq\left|b_{1}\right| \mathfrak{A}(\lambda, r) \mathfrak{B}^{2}(\lambda, r), \tag{12}
\end{equation*}
$$

where

$$
\mathfrak{A}(\lambda, r)=\frac{(1+r)^{\cos \lambda(1-\cos \lambda)}}{(1-r)^{\cos \lambda(1+\cos \lambda)}},
$$

and

$$
\mathfrak{B}(\lambda, r)=\frac{\sqrt{\left(1-r^{2}\right)^{2}+4\left(\cos ^{2} \lambda\right) r^{2}}+2(\cos \lambda) r}{1-r^{2}}
$$

for all $|z|=r<1$.

Proof. Since

$$
e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)}=(\cos \lambda) p(z)+i \sin \lambda
$$

then we have

$$
e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)}=(\cos \lambda) \frac{1+\phi(z)}{1-\phi(z)}+i \sin \lambda \quad(\phi \in \Omega)
$$

Thus

$$
\frac{1}{b_{1}} \frac{g^{\prime}(z)}{h^{\prime}(z)}=\frac{1+e^{-2 i \lambda} \phi(z)}{1-\phi(z)}
$$

or

$$
\begin{equation*}
\frac{1}{b_{1} \cos \lambda}\left(e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)}-i b_{1} \sin \lambda\right)=p(z) \tag{13}
\end{equation*}
$$

for all $z \in \mathbb{D}$. On the other hand, since $p(z) \in \mathcal{P}$, we know that

$$
\left|p(z)-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 r}{1-r^{2}} \quad(|z|=r<1)
$$

Therefore, we have

$$
\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{b_{1}\left(1+e^{-2 i \lambda} r^{2}\right)}{1-r^{2}}\right| \leq \frac{\left|b_{1}\right| 2(\cos \lambda) r}{1-r^{2}}
$$

or

$$
\begin{align*}
\frac{\left|b_{1}\right|\left(\left|1+e^{-2 i \lambda} r^{2}\right|-2(\cos \lambda) r\right)}{1-r^{2}} & \leq\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \\
& \leq \frac{\left|b_{1}\right|\left(\left|1+e^{-2 i \lambda} r^{2}\right|+2(\cos \lambda) r\right)}{1-r^{2}} \tag{14}
\end{align*}
$$

We note that the inequality (14) can be written in the form

$$
\begin{equation*}
\left|b_{1}\right| \frac{\left|h^{\prime}(z)\right|}{\mathfrak{B}(\lambda, r)} \leq\left|g^{\prime}(z)\right| \leq\left|b_{1}\right| \mathfrak{B}(\lambda, r)\left|h^{\prime}(z)\right| \tag{15}
\end{equation*}
$$

Using Corollary 3 in the inequality (15) we get (12).
Theorem 6. If $f=h(z)+\overline{g(z)}$ be an element of $\mathcal{S}_{\mathcal{H} \mathcal{S}}^{*}(\lambda)$, then

$$
\begin{align*}
& \frac{\mathfrak{A}^{2}(\lambda,-r)}{\mathfrak{B}^{2}(\lambda, r)} \frac{\left(1+\left|b_{1}\right| r\right)^{2}-\left(\left|b_{1}\right|+r\right)^{2}}{\left(1+\left|b_{1}\right| r\right)^{2}} \leq\left|J_{f}\right| \\
& \leq(\mathfrak{A}(\lambda, r) \mathfrak{B}(\lambda, r))^{2} \frac{\left(1-\left|b_{1}\right| r\right)^{2}-\left(\left|b_{1}\right|-r\right)^{2}}{\left(1-\left|b_{1}\right| r\right)^{2}} \tag{16}
\end{align*}
$$

for all $|z|=r<1$, and functions \mathfrak{A} and \mathfrak{B} are defined in Corollary 3.

Proof. Since

$$
e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)}=e^{i \lambda} \frac{\left(b_{1} z+b_{2} z^{2}+\cdots\right)^{\prime}}{\left(z+a_{2} z^{2}+\cdots\right)^{\prime}}=e^{i \lambda} \frac{b_{1}+2 b_{2} z+\cdots}{1+2 a_{2} z+\cdots}=\omega(z)
$$

then $\omega(0)=e^{i \lambda} b_{1}=b$. Thus

$$
\left|e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)}\right|=|\omega(z)|<1
$$

then the function

$$
\varphi(z)=\frac{\omega(z)-\omega(0)}{1-\overline{\omega(0)} \omega(z)}
$$

satisfies the conditions of Schwarz lemma, thus we have

$$
\omega(z)=e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)}=\frac{b+\varphi(z)}{1+\bar{b} \varphi(z)} \Leftrightarrow e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)} \prec \frac{b+z}{1+\bar{b} z}
$$

for all $z \in \mathbb{D}$. On the other hand the transformation $W(z)=\frac{b+z}{1+\bar{b} z}$ maps $|z|=r$ onto the disc with the center

$$
C(r)=\left(\frac{\alpha_{1}\left(1-r^{2}\right)}{1-\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) r^{2}}, \frac{\alpha_{2}\left(1-r^{2}\right)}{1-\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) r^{2}}\right)
$$

and the radius

$$
\rho(r)=\frac{\left(1-\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)\right) r}{1-\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) r^{2}}
$$

where $\alpha_{1}=\operatorname{Re} b=\operatorname{Re}\left(e^{i \alpha} b_{1}\right), \alpha_{2}=\operatorname{Im} b=\operatorname{Im}\left(e^{i \alpha} b_{1}\right)$. Therefore, using the subordination principle, we can write

$$
\begin{equation*}
\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{b_{1}\left(1-r^{2}\right)}{1-\left|b_{1}\right|^{2} r^{2}}\right| \leq \frac{\left(1-\left|b_{1}\right|^{2}\right) r}{1-\left|b_{1}\right|^{2} r^{2}} \tag{17}
\end{equation*}
$$

After the straightforward calculations form (17) we obtain the following inequality

$$
\begin{align*}
\frac{\left(1+\left|b_{1}\right| r\right)^{2}-\left(\left|b_{1}\right|+r\right)^{2}}{\left(1+\left|b_{1}\right| r\right)^{2}} & \leq\left(1-\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right|^{2}\right) \tag{18}\\
& \leq \frac{\left(1-\left|b_{1}\right| r\right)^{2}-\left(\left|b_{1}\right|-r\right)^{2}}{\left(1+\left|b_{1}\right| r\right)^{2}}
\end{align*}
$$

and than we have

$$
\begin{aligned}
& \left|h^{\prime}(z)\right| \frac{\left(1+\left|b_{1}\right| r\right)^{2}-\left(\left|b_{1}\right|+r\right)^{2}}{\left(1+\left|b_{1}\right| r\right)^{2}} \leq J_{f}=\left|h^{\prime}(z)\right|\left(1-\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right|^{2}\right) \\
& \quad \leq\left|h^{\prime}(z)\right| \frac{\left(1-\left|b_{1}\right| r\right)^{2}-\left(\left|b_{1}\right|-r\right)^{2}}{\left(1-\left|b_{1}\right| r\right)^{2}}
\end{aligned}
$$

for all $|z|=r<1$. Using the Corollary 3 in the inequality (19) we get (16).

Corollary 7. Let $f=h(z)+\overline{g(z)}$ be an element of $\mathcal{S}_{\mathcal{H S}}^{*}(\lambda)$, then

$$
\begin{align*}
& \int_{0}^{r} \frac{\mathfrak{A}(\lambda,-\rho)}{\mathfrak{B}(\lambda, \rho)} \frac{(1-\rho)\left(1-\left|b_{1}\right|\right)}{1+\left|b_{1}\right| \rho} d \rho \leq|f| \\
\leq & \int_{0}^{r} \mathfrak{A}(\lambda, \rho) \mathfrak{B}(\lambda, \rho) \frac{(1+\rho)\left(1+\left|b_{1}\right|\right)}{1+\left|b_{1}\right| \rho} d \rho \tag{20}
\end{align*}
$$

for $|z|=r<1$, where \mathfrak{A} and \mathfrak{B} are defined in Corollary 3.
Proof. Since

$$
\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{b_{1}\left(1-r^{2}\right)}{1-\left|b_{1}\right|^{2} r^{2}}\right| \leq \frac{\left(1-\left|b_{1}\right|^{2}\right) r}{1-\left|b_{1}\right|^{2} r^{2}}
$$

then we have

$$
\begin{equation*}
\frac{(1-r)\left(1+\left|b_{1}\right|\right)}{1-\left|b_{1}\right| r} \leq 1+\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \leq \frac{(1+r)\left(1+\left|b_{1}\right|\right)}{1+\left|b_{1}\right| r} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-r)\left(1-\left|b_{1}\right|\right)}{1+\left|b_{1}\right| r} \leq 1-\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \leq \frac{(1+r)\left(1-\left|b_{1}\right|\right)}{1-\left|b_{1}\right| r} \tag{22}
\end{equation*}
$$

On the other hand since $f=h(z)+\overline{g(z)}$ is a sense-preserving mapping, then

$$
\begin{equation*}
\left(\left|h^{\prime}(z)\right|-\left|g^{\prime}(z)\right|\right)|d z| \leq|d f| \leq\left(\left|h^{\prime}(z)\right|+\left|g^{\prime}(z)\right|\right)|d z| \tag{23}
\end{equation*}
$$

Using (21), (22), (23) and Corollary 3, we get the desired result.
Theorem 8. Let $f=h(z)+\overline{g(z)}$ be an element of $\mathcal{S}_{\mathcal{H} \mathcal{S}}^{*}(\lambda)$, then

$$
\begin{equation*}
\sum_{k=2}^{n} k^{2}\left|b_{k}-b_{1} a_{k}\right|^{2} \leq\left|1-b_{1}\right|^{2}+\sum_{k=2}^{n} k^{2}\left|a_{k}-b_{k} b_{1}\right|^{2} \tag{24}
\end{equation*}
$$

Proof. The proof of this theorem is based on the Clunie method [1]. Since

$$
e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)} \prec \frac{b+z}{1+\bar{b} z} \Leftrightarrow e^{i \lambda} \frac{g^{\prime}(z)}{h^{\prime}(z)}=\frac{b+\varphi(z)}{1+\bar{b} \varphi(z)}
$$

then we obtain

$$
\begin{equation*}
e^{i \lambda}\left(g^{\prime}(z)-h^{\prime}(z)\right)=\left(h^{\prime}(z)-b_{1} g^{\prime}(z)\right) \varphi(z) \tag{25}
\end{equation*}
$$

The equality (25) can be written in the form

$$
\begin{equation*}
\sum_{k=2}^{n} e^{i \lambda} k\left(b_{k}-a_{k} b_{1}\right) z^{k}+\sum_{k=n+1}^{\infty} d_{k} z^{k}=\left[1-b_{1}^{2}+\sum_{k=2}^{n} k\left(a_{k}-b_{k} b_{1}\right) z^{k}\right] \varphi(z) \tag{26}
\end{equation*}
$$

Since (26) has the form $K(z)=L(z) \varphi(z)$, where $|\varphi(z)|<1$, it follows that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|K\left(r e^{i \theta}\right)\right|^{2} d \theta \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|L\left(r e^{i \theta}\right)\right|^{2} d \theta \tag{27}
\end{equation*}
$$

for each $r(0<r<1)$. Expressing (27) in the terms of the coefficients in (26), we obtain the inequality

$$
\begin{equation*}
\sum_{k=2}^{n} k^{2}\left|b_{k}-a_{k} b_{1}\right|^{2} r^{2 n}+\sum_{k=n+1}^{\infty}\left|d_{k}\right|^{2} r^{2 n} \leq\left|1-b_{1}\right|^{2}+\sum_{k=2}^{n} k^{2}\left|a_{k}-b_{1} b_{k}\right|^{2} r^{2 n} \tag{28}
\end{equation*}
$$

In particular (28) implies

$$
\begin{equation*}
\sum_{k=2}^{n} k^{2}\left|b_{k}-a_{k} b_{1}\right|^{2} r^{2 n} \leq\left|1-b_{1}\right|^{2}+\sum_{k=2}^{n} k^{2}\left|a_{k}-b_{1} b_{k}\right|^{2} r^{2 n} \tag{29}
\end{equation*}
$$

By letting $r \rightarrow 1$ in (29), we conclude that

$$
\sum_{k=2}^{n} k^{2}\left|b_{k}-b_{1} a_{k}\right|^{2} \leq\left|1-b_{1}\right|^{2}+\sum_{k=2}^{n} k^{2}\left|a_{k}-b_{k} b_{1}\right|^{2}
$$

References

[1] J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215-216. MR0107009 (21 \#5737)
[2] P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, vol. 156, Cambridge University Press, Cambridge, 2004. MR2048384 (2005d:31001)
[3] I.S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971), 469-474. MR0281897 (43 \#7611)
[4] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.

Emel Yavuz Duman
Department of Mathematics and Computer Science
İstanbul Kültür University
Ataköy Campus, 34156 Bakırköy, İstanbul, Turkey
email:e.yavuz@iku.edu.tr

Yasemin Kahramaner
Department of Mathematics
İstanbul Commerce University
Üsküdar Campus, 34672 Üsküdar, İstanbul, Turkey email:ykahramaner@ticaret.edu.tr
Yaşar Polatoğlu
Department of Mathematics and Computer Science İstanbul Kültür University
Ataköy Campus, 34156 Bakırköy, İstanbul, Turkey
email:y.polatoglu@iku.edu.tr

