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TURÁN TYPE INEQUALITIES FOR SOME (q, k)− SPECIAL
FUNCTIONS
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Abstract. The aim of this paper is to establish new Turán-type inequalities
involving the (q, k)−polygamma functions.As an application, when q → 1 and k → 1,
we obtain results from [12] and [13].
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1. Introduction

The inequalities of the type

fn(x)fn+2(x)− f2n+1(x) ≤ 0

have many applications in pure mathematics as in other branches of science. They
are named by Karlin and Szegő [4], Turán-type inequalities because the first of
these type of inequalities was introduced by Turán [15]. More precisely, he used
some results of Szegő [14] to prove the previous inequality for x ∈ (−1, 1), where fn
is the Legendre polynomial of degree n. This classical result has been extended in
many directions, as ultraspherical polynomials, Laguerre and Hermite polynomials,
or Bessel functions, and so forth. Many results of Turán-type have been established
on the zeros of special functions.
Recently, W. T. Sulaiman [13] proved some Turán-type inequalities for some q-
special functions as well as the polygamma functions, by using the following in-
equality:

Let a ∈ R+ ∪ {∞} and let f and g be two nonnegative functions. Then

( a∫
0

g(x)f
m+n

2 dqx
)2
≤
( a∫

0

g(x)fmdqx
)( a∫

0

g(x)fndqx
)

(1)
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Lets give some definitions for gamma and polygamma function.
The Euler gamma function Γ(x) is defined for x > 0 by

Γ(x) =

∫ ∞
0

tx−1e−tdt.

The digamma (or psi) function is defined for positive real numbers x as the logarith-

mic derivative of Euler’s gamma function, that is ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
. The

following integral and series representations are valid (see [2]):

ψ(x) = −γ +

∫ ∞
0

e−t − e−xt

1− e−t
dt = −γ − 1

x
+
∑
n≥1

x

n(n+ x)
, (2)

where γ = 0.57721 · · · denotes Euler’s constant.
Jackson defined the q-analogue of the gamma function as

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1, (3)

and

Γq(x) =
(q−1; q−1)∞
(q−x; q−1)∞

(q − 1)1−xq(
x
2), q > 1, (4)

where (a; q)∞ =
∏

j≥0(1− aqj).
The q-gamma function has the following integral representation

Γq(t) =

∫ ∞
0

xt−1E−qxq dqx,

where Ex
q =

∑∞
j=0 q

j(j−1)
2

xj

[j]! = (1+(1−q)x)∞q , which is the q-analogue of the classical
exponential function. The q-analogue of the psi function is defined for 0 < q < 1 as
the logarithmic derivative of the q-gamma function, that is, ψq(x) = d

dx log Γq(x).
It is well known that Γq(x) → Γ(x) and ψq(x) → ψ(x) as q → 1−. From (3), for
0 < q < 1 and x > 0 we get

ψq(x) = − log(1− q) + log q
∑
n≥0

qn+x

1− qn+x
= − log(1− q) + log q

∑
n≥1

qnx

1− qn

and from (4) for q > 1 and x > 0 we obtain

ψq(x) = − log(q − 1) + log q

(
x− 1

2 −
∑
n≥0

q−n−x

1−q−n−x

)

= − log(q − 1) + log q

(
x− 1

2 −
∑
n≥1

q−nx

1−q−n

)
.
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If q ∈ (0, 1), using the second representation of ψq(x) given in () can be shown
that

ψ(k)
q (x) = logk+1 q

∑
n≥1

nk · qnx

1− qn

and hence (−1)k−1ψ
(k)
q (x) > 0 with x > 1, for all k ≥ 1. If q > 1, from the second

representation of ψq(x) given in () we obtain

ψ′q(x) = log q
(

1 +
∑
n≥1

nq−nx

1− q−nx
)

and for k ≥ 2,

ψ(k)
q (x) = (−1)k−1 logk+1 q

∑
n≥1

nkq−nx

1− q−nx

and hence (−1)k−1ψ
(k)
q (x) > 0 with x > 0, for all q > 1.

Definition 1.1. Let x ∈ C, k ∈ R and n ∈ N+, the Pochhammer k−symbol is
given by

(x)n,k = x(x+ k)(x+ 2k) · · · (x+ (n− 1)k). (5)

Definition 1.1. For k > 0, the k−gamma function Γk is given by

Γk(x) = lim
n→∞

n!kn(nk)
x
k
−1

(x)n,k
, x ∈ C \ kZ− (6)

For x ∈ C, Re(x) > 0, the function Γk is given by the integral

Γk(x) =

∞∫
0

tx−1e−
tk

k dt. (7)

k-analogue of the psi function is defined as the logarithmic derivative of the Γk

function, that is

ψk(x) =
d

dx
ln Γk(x) =

Γ
′
k(x)

Γk(x)
, k > 0. (8)

The function ψk(x) defined by (8) has the following series representation

ψk(x) =
ln k − γ

k
− 1

x
+
∞∑
n=1

x

nk(x+ nk)
(9)

ψ
(n)
k (x) = (−1)n+1 · n!

∞∑
p=0

1

(x+ pk)n+1
(10)
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Rafael Díaz (see [3]) defined the (q, k)−analogue of the gamma function as

Γq,k =
(1− qk)∞q,k

(1− qk)∞q,k · (1− qk)
x
k
−1 (11)

where (x+ y)nq,k =
n−1∏
j=0

(x+ qjky).

We define the (q, k)− analogue of the psi function, for 0 < q < 1 and k > 0, as the
logarithmic derivative of the (q, k)− gamma function, that is, ψq,k(x) = d

dx ln Γq,k(x).

Many properties of the (q, k)−gamma function were derived by Díaz [4]. It is well
known that Γq,k(x)→ Γq(x) as k → 1. From (11), for 0 < q < 1 and x > 0 we get

ψq,k(x) =
− log((1− q)

k
+ log q

∑
n≥1

qnkx

1− qnk
(12)

One can easily show that ψ(q,k)(x)→ ψq(x) as k → 1. If q ∈ (0, 1) then by using the
second representation of ψq,k(x) given in (12) can be shown that

ψ
(j)
(q,k)(x) = logj+1 q

∑
n≥1

njkj · qnkx

1− qnk
(13)

2. Main Results

Theorem 2.1. For n = 1, 2, 3, . . . , let ψ(q,k),n = ψ
(n)
(q,k) the n-th derivative of the

function ψ(q,k). Then

ψ(q,k),m
s
+n

l

(x
s

+
y

t

)
≤ ψ

1
s

(q,k),m(x)ψ
1
l

(q,k),n(y), (14)

where m+n
2 is an integer, s > 1, 1s + 1

l = 1.

Proof. Let m and n be two integers of the same parity. From (13), it follows
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that:

ψ(q,k),m
s
+n

l

(x
s

+
y

t

)
= log

m
s
+n

l
+1 q

∑
i≥1

i
m
s
+n

l k
m
s
+n

l · q
ik

(
x
s
+ y

t

)
1− qik

= log
m+1

s
+n+1

l q
∑
i≥1

i
m
s k

m
s · q

ikx
s i

n
l k

n
l · q

iky
l(

1− qik
) 1

s ·
(

1− qik
) 1

l

≤
(

logm+1 q
∑
i≥1

imkm · qikx

1− qik
) 1

s ·
(

logn+1 q
∑
i≥1

inkn · qiky

1− qik
) 1

l

= ψ
1
s

(q,k),m(x)ψ
1
l

(q,k),n(y)

Remark 2.2. Let k tend to 1 then we obtain Theorem 2.2 from [13]

ψq,m
s
+n

l

(x
s

+
y

t

)
≤ ψ

1
s
q,m(x)ψ

1
l
q,n(y), (15)

On putting y = x and for k, q tend to 1, then we obtain Theorem 2.1 from [12]

ψq,m
s
+n

l
(x) ≤ ψ

1
s
q,m(x)ψ

1
l
q,n(y), (16)

Another type via Minkowski’s inequality is the following. Theorem 2.3 For n =

1, 2, 3, . . . , let ψ(q,k),n = ψ
(n)
(q,k) the n-th derivative of the function ψ(q,k). Then

(
ψ(q,k),m(x) + ψ(q,k),n(y)

) 1
p ≤ ψ

1
p

(q,k),m(x) + ψ
1
p

(q,k),n(y), (17)

where m+n
2 is an integer, p ≥ 1. Proof. Since,

(a+ b)p ≥ ap + bp, a, b ≥ 0, p ≥ 1,
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(
ψ(q,k),m(x) + ψ(q,k),n(y)

) 1
p

=
[∑

i≥1

(
logm+1 q

imkm · qikx

1− qik
+ logn+1 q

inkn · qikx

1− qik
)] 1

p

=
[∑

i≥1

((
log

m+1
p q

i
m
p k

m
p · q

ikx
p

(1− qik)
1
p

)p
+
(

log
n+1
p q

i
n
p k

n
p · q

iky
p

(1− qik)
1
p

)p)] 1
p

≤
[∑

i≥1

((
log

m+1
p q

i
m
p k

m
p · q

ikx
p

(1− qik)
1
p

)p] 1
p

+
[∑

i≥1

(
log

n+1
p q

i
n
p k

n
p · q

iky
p

(1− qik)
1
p

)p)] 1
p

=
[

logm+1 q
∑
i≥1

imkm · qikx

1− qik
] 1

p
+
[

logn+1 q
∑
i≥1

inkn · qiky

1− qik
] 1

p

= ψ
1
p

(q,k),m(x) + ψ
1
p

(q,k),n(y)

Remark 2.3. Let k, q tend to 1then we have(
ψm(x) + ψn(y)

) 1
p ≤ ψ

1
p
m(x) + ψ

1
p
n (y), (18)

Theorem 2.4. For every x > 0 and integers n ≥ 1, we have:

1. If n is odd, then
(

expψ
(n)
(q,k)(x)

)2
≥ expψ

(n+1)
(q,k) (x) · expψ

(n−1)
(q,k) (x)

2. If n is even, then
(

expψ
(n)
(q,k)(x)

)2
≤ expψ

(n+1)
(q,k) (x) · expψ

(n−1)
(q,k) (x)

Proof. We use (13) to estimate the expression
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ψ
(n)
(q,k)(x)−

ψ
(n+1)
(q,k) (x) + ψ

(n−1)
(q,k) (x)

2
=

logn+1 q
∑
i≥1

inkn · qikx

1− qik

−
logn+2 q

∑
i≥1

in+1kn+1·qikx
1−qik + logn q

∑
i≥1

in−1kn−1·qikx
1−qik

2

= logn q
∑
i≥1

in−1kn−1 · qikx

1− qik
(
ik log q − i2k2 log2 q + 1

2

)
= − logn q

∑
i≥1

in−1kn−1 · qikx

1− qik
(ik log q − 1)2

2

Now, the conclusion follows by exponentiating the inequality

ψ
(n)
(q,k)(x) ≥ (≤)

ψ
(n+1)
(q,k) (x) + ψ

(n−1)
(q,k) (x)

2

as n is odd, respective even.

Remark 2.5.
Let q, k tend to 1 then we obtain generalization of Theorem 3.3 from [12]
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