A NOTE ON THE STABILITY OF AN EQUATION

Watcharapon Pimsert, Vichian Laohakosol and Charinthip Hengkrawit

Abstract. If T is a map from a complete metric space to itself which satisfies a Lipschitz like condition, then it is shown that an equation of the form

$$
(T-A I)(x)=0,
$$

for suitable real number A and I being the identity map, has the Hyers-Ulam stability.

2000 Mathematics Subject Classification: 39B82, 26A16.

1. Introduction

In 2009, Li and Hua, [2], introduced the following notion of Hyers-Ulam stability for a polynomial equation. Let (X, d) be a complete metric space and $f: X \rightarrow X$. We say that the equation $f(x)=0$ has the Hyers-Ulam stability if there exists a constant $K>0$ such that for all $\varepsilon>0$, if there is $y \in X$ with the property $d(f(y), 0)<\varepsilon$, then there exists $z \in X$ satisfying $f(z)=0$ and $d(y, z)<K \varepsilon$.

The result of Li-Hua states that: If T is a contraction mapping from X to X, then the equation $(T-I) x=0$ has the Hyers-Ulam stability, which is equivalent to saying that for every $\varepsilon>0$, if

$$
d(T x-x, 0) \leq \varepsilon
$$

then there exists $z \in X$ satisfying $T z-z=0$ with $d(x, z) \leq K \varepsilon$ for some $K>0$.
The main tool in Li-Hua's proof is the Banach contraction mapping theorem. Our objective here is to improve upon Li-Hua's result by using the notion of δ Lipschitz condition (to be defined below) to induce a contraction mapping.
W.Pimsert, V.Laohakosol and Ch.Hengkrawit - A note on the stability of an...

2. The results

Our main result reads:
Theorem 1. Let (X, d) be a complete metric linear space and δ be a positive real number. If $T: X \rightarrow X$ satisfies the following δ-Lipschitz condition

$$
d(T(x), T(y))=d(T(x-y), 0) \leq \delta d(x, y) \quad(x, y \in X)
$$

then for all $A>\delta$, the equation

$$
F_{A}(x):=(T-A I) x=0
$$

has the Hyers-Ulam stability, or equivalently, for $\varepsilon>0$, if $d\left(F_{A}(y), 0\right) \leq \varepsilon(y \in X)$, then there exists a (unique) $z \in X$ such that $F_{A}(z)=0$ with $d(y, z) \leq K \varepsilon$ for some $K>0$.

Proof. Defining $G(x)=\frac{1}{A} T(x)$, we see that for all $x, y \in X$,
$d(G(x), G(y))=d\left(\frac{1}{A} T(x), \frac{1}{A} T(y)\right)=\frac{1}{A} d(T(x), T(y))=\frac{1}{A} d(T(x-y), 0) \leq \frac{\delta}{A} d(x, y)$,
showing that $G(x)$ is a contraction mapping. By the Banach contraction mapping theorem, [1, Section $5.1-2], G$ has precisely one fixed point, in other words, there exists a (unique) $z \in X$ such that $G(z)=z$, i.e., $T(z)-A z=0$. Thus, the equation $F_{A}(x)=0$ has a solution $z \in X$.

Next, let $\varepsilon>0$ and assume that there is $y \in X$ such that $d\left(F_{A}(y), 0\right) \leq \varepsilon$. Then

$$
\begin{aligned}
d(y, z) & =d(y-G(y)+G(y), z)=d(y-G(y), G(y)-G(z)) \\
& \leq d(y-G(y), 0)+d(G(y)-G(z), 0)=\frac{1}{A} d\left(F_{A}(y), 0\right)+d(G(y), G(z)) \\
& \leq \frac{1}{A} \varepsilon+\frac{\delta}{A} d(y, z)
\end{aligned}
$$

and so

$$
d(y, z) \leq \frac{\varepsilon}{A-\delta}
$$

with $A-\delta>0$.
Specializing the metric space X to be a subset of \mathbb{R}, we obtain:
Corollary 2. Let $\delta>0, A>\delta$ and S be a complete subspace of \mathbb{R}. If $g: S \rightarrow S$ satisfies the δ-Lipschitz condition

$$
|g(x)-g(y)| \leq \delta|x-y| \quad(x, y \in S)
$$

then the equation

$$
F_{A}(x):=g(x)-A x=0
$$

has the Hyers-Ulam stability, or equivalently, for $\varepsilon>0$, if $\left|F_{A}(y)\right| \leq \varepsilon \quad(y \in S)$, then there exists a (unique) $z \in S$ such that $F_{A}(z)=0$ with $|y-z| \leq K \varepsilon$ for some $K>0$.

Regarding Theorem 2.1 of [2], we have the following extension.
Corollary 3. Let $\ell \in \mathbb{N}$, let $n_{1}>n_{2}>\cdots>n_{\ell} \geq 2$ be a sequence of positive integers, and let

$$
f(x)=A_{1} x^{n_{1}}+A_{2} x^{n_{2}}+\cdots+A_{\ell} x^{n_{\ell}}+A x+b \in \mathbb{R}[x],
$$

with $A_{1}(\neq 0), A_{2}, \ldots, A_{\ell}, A(\neq 0), b \in \mathbb{R}$. If

$$
\begin{equation*}
|A| \geq \sum_{t=1}^{\ell}\left|A_{t}\right|+|b| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(0<) \quad \delta:=\frac{1}{|A|} \sum_{t=1}^{\ell} n_{t}\left|A_{t}\right|<1, \tag{2}
\end{equation*}
$$

then the equation $f(x)=0$ has the Hyers-Ulam stability over $[-1,1]$, or equivalently, for $\varepsilon>0$, if

$$
\left|A_{1} y^{n_{1}}+A_{2} y^{n_{2}}+\cdots+A_{\ell} y^{n_{\ell}}+A y+b\right| \leq \varepsilon \quad(y \in[-1,1])
$$

then there exists a (unique) $z \in[-1,1]$ such that

$$
A_{1} z^{n_{1}}+A_{2} z^{n_{2}}+\cdots+A_{\ell} z^{n_{\ell}}+A z+b=0
$$

with $|y-z| \leq K \varepsilon$ for some $K>0$.
Proof. Let

$$
g(x)=\frac{-1}{A}\left(A_{1} x^{n_{1}}+\cdots+A_{\ell} x^{n_{\ell}}+b\right) \quad(x \in[-1,1]) .
$$

By (1), we see that $g([-1,1]) \subseteq[-1,1]$. Next, observe that for $x, y \in[-1,1]$, we have

$$
|g(x)-g(y)|=\frac{1}{|A|}\left|A_{1}\left(x^{n_{1}}-y^{n_{1}}\right)+\cdots+A_{\ell}\left(x^{n_{\ell}}-y^{n_{\ell}}\right)\right| \leq \frac{|x-y|}{|A|} \sum_{t=1}^{\ell} n_{t}\left|A_{t}\right|
$$

W.Pimsert, V.Laohakosol and Ch.Hengkrawit - A note on the stability of an...
and so by $(2), g(x)$ is δ-Lipschitz over $[-1,1]$. By Corollary 2 , the function

$$
g(x)-x=\frac{-1}{A} f(x)
$$

and so also the function $f(x)$ has the Hyers-Ulam stability.
The case where $\delta<1$ and $A=1$ of Theorem 1 yields the following result which is Theorem 2.2 of [2].

Corollary 4.Let (X, d) be a complete metric linear space. If T is a contraction mapping from X to X, then $(T-I) x=0$ has the Hyers-Ulam stability. That is, for every $\varepsilon>0$, if

$$
d(T x-x, 0)<\varepsilon,
$$

then there exists a unique $z \in X$ satisfying

$$
T z-z=0
$$

with

$$
d(x, z)<K \varepsilon
$$

for some $K>0$.

References

[1] E. Kreyszig, Introductory Functional Analysis with Applications, Wiley, New York, 1978.
[2] Yongjin Li and Liubin Hua, Hyers-Ulam stability of a polynomial equation, Banach J. Math. Anal. 3(2009), 86-90.

Watcharapon Pimsert, Vichian Laohakosol
Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand email: fsciwcrp@ku.ac.th, fscivil@ku.ac.th

Charinthip Hengkrawit
Department of Mathematics and Statistics, Faculty of Science and Technology,
Thammasat University, Pathum Thani 12120, Thailand
email: charinthip@mathstat.sci.tu.ac.th

