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1 Introduction, Definitions and Notations

Let f(z) and g(z) be two transcendental entire functions defined in the open complex

plane C, it is well known [1] that limr→∞
log T (r,fog)

T (r,f) = ∞ and limr→∞
log T (r,fog)

T (r,g) =

0. Later on Singh [11] investigated some comparative growth of logT (r, fog) and
T (r, f). Further in [11] he raised the problem of investing the comparative growth
of logT (r, fog) and T (r, g). However some results on the comparative growth of
logT (r, fog) and T (r, g) are proved in [6]. Also in [7] Lahiri and Datta made close
investigation on comparative growth properties of logT (r, fog) and T (r, g) together
with that of log log T (r, fog) and T (r, f (k)).

Recently Banerjee and Dutta [2] made close investigation on comparative growth
properties of iterated entire functions. In this paper, we study growth of iterated
entire functions to generalist some results of Banerjee and Dutta [2] in terms of p-th
order and lower p-th order.

The following definitions are well known.

Definition 1.1 The order ρf and the lower order λf of a meromorphic function is
defined as

ρf = lim sup
r→∞

log T (r, f)

log r
and λf = lim inf

r→∞

log T (r, f)

log r
.

If f is entire then

ρf = lim sup
r→∞

log logM(r, f)

log r
and λf = lim inf

r→∞

log logM(r, f)

log r
.
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Definition 1.2 The hyper order ρf and the hyper lower order λf of a meromorphic
function is defined as

ρf = lim sup
r→∞

log log T (r, f)

log r

and

λf = lim inf
r→∞

log log T (r, f)

log r
.

If f is entire then

ρf = lim sup
r→∞

log[3]M(r, f)

log r

and

λf = lim inf
r→∞

log[3]M(r, f)

log r
.

Notation 1.3 [10] log[0]x = x, exp[0]x = x and for positive integer m, log[m]x =
log(log[m−1]x), exp[m]x = exp(exp[m−1]x).

Definition 1.4 The p-th order ρpf and the lower p-th order λpf of a meromorphic
function f is defined as

ρpf = lim sup
r→∞

log[p] T (r, f)

log r

and

λpf = lim inf
r→∞

log[p] T (r, f)

log r
.

If f is an entire function then

ρpf = lim sup
r→∞

log[p+1]M(r, f)

log r

and

λpf = lim inf
r→∞

log[p+1]M(r, f)

log r
.

Clearly ρpf ≤ ρp−1f and λpf ≤ λp−1f for all p and when p = 1 then p-th order and
lower p-th order coincides with classical order and lower order respectively.

Definition 1.5 The hyper p-th order ρpf and the hyper lower p-th order λpf of a
meromorphic function f is defined as

ρpf = lim sup
r→∞

log[p+1] T (r, f)

log r
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and

λpf = lim inf
r→∞

log[p+1] T (r, f)

log r
.

If f is an entire function then

ρpf = lim sup
r→∞

log[p+2]M(r, f)

log r

and

λpf = lim inf
r→∞

log[p+2]M(r, f)

log r
.

Clearly ρpf ≤ ρp−1f and λpf ≤ λp−1f for all p and when p = 1 then hyper p-th
order and hyper lower p-th order coincides with hyper order and hyper lower order
respectively.

Definition 1.6 A function λf (r) is called a lower proximate order of a meromorphic
function f if

(i) λf (r) is nonnegative and continuous for r ≥ r0, say;
(ii) λf (r) is differentiable for r ≥ r0 except possibly at isolated points at which

λ
′
f (r − 0) and λ

′
f (r + 0) exist;

(iii) limr→∞ λf (r) = λf <∞;
(iv) limr→∞ rλ

′
f (r) log r = 0; and

(v) lim infr→∞
T (r,f)

r
λf (r)

= 1.

According to Lahiri and Banerjee [4], f(z) and g(z) be two entire functions then
the iteration of f with respect to g is defined as follows:

f1(z) = f(z)

f2(z) = f(g(z)) = f(g1(z))

f3(z) = f(g(f(z))) = f(g2(z)) = f(g(f1(z)))

.... .... ....

.... .... ....

fn(z) = f(g(f........(f(z) or g(z))........)),

according as n is odd or even,

= f(gn−1(z)) = f(g(fn−2(z))),
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and so are

g1(z) = g(z)

g2(z) = g(f(z)) = g(f1(z))

.... ....

.... ....

gn(z) = g(fn−1(z)) = g(f(gn−2(z))).

Clearly all fn(z) and gn(z) are entire functions.
Throughout the paper we assume f, g etc. are non constant entire functions

having respective p-th orders ρpf , ρ
p
g and respective lower p-th orders λpf , λ

p
g. Also we

do not explain the standard notations and definitions of the theory of entire and
meromorphic functions because those are available in [3], [12] and [13].

2 Lemmas

The following lemmas will be needed in the sequel.

Lemma 2.1 [3] Let f(z) be an entire function. For 0 ≤ r < R <∞, we have

T (r, f) ≤ log+M(r, f) ≤ R+ r

R− r
T (R, f).

Lemma 2.2 [1] If f and g are any two entire functions, for all sufficiently large
values of r,

M

(
1

8
M
(r

2
, g
)
− |g(0)|, f

)
≤M(r, fog) ≤M(M(r, g), f)

Lemma 2.3 [9] Let f(z) and g(z) be two entire functions. Then we have

T (r, f(g)) ≥ 1

3
logM

(
1

8
M
(r

4
, g
)

+O(1), f

)
.

Lemma 2.4 [5] Let f be an entire function. Then for k > 2,

lim inf
r→∞

log[k−1]M(r, f)

log[k−2] T (r, f)
= 1.

Lemma 2.5 [7] Let f be a meromorphic function. Then for δ(> 0) the function
rλf +δ−λf (r) is an increasing function of r.
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Lemma 2.6 [8] Let f be an entire function of finite lower order. If there exist
entire functions ai (i = 1, 2, 3...........n; n ≤ ∞) satisfying T (r, ai) = o{T (r, f)} and

n∑
i=1

δ(ai, f) = 1 then lim
r→∞

T (r, f)

logM(r, f)
=

1

π
.

Lemma 2.7 Let f(z) and g(z) be two non constant entire functions such that 0 <
ρpf <∞ and 0 < ρpg <∞. Then for all sufficiently large r and ε > 0,

log[(n−1)p] T (r, fn) ≤
{

(ρpf + ε) logM(r, g) +O(1) when n is even

(ρpg + ε) logM(r, f) +O(1) when n is odd

where p ≥ 1.

Proof. First suppose that n is even. Then from Lemma 2.1 and second part of
Lemma 2.2 also from definition of p-th order, it follows that for all sufficiently large
values of r,

T (r, fn) ≤ logM(r, fn)

≤ logM(M(r, gn−1), f)

i.e., log[p] T (r, fn) ≤ log[p+1]M(M(r, gn−1), f)

≤ log[M(r, gn−1)]
ρpf+ε.

So, log[p+1] T (r, fn) ≤ log[2]M(r, g(fn−2)) +O(1).

Taking repeated logarithms (p-1) times, we get

log[2p] T (r, fn) ≤ log[p+1]M(M(r, fn−2), g) +O(1)

≤ log[M(r, fn−2)]
ρpg+ε +O(1)

i.e., log[2p+1] T (r, fn) ≤ log[2]M(r, fn−2) +O(1).

Again taking repeated logarithms (p-1) times, we get

log[3p] T (r, fn) ≤ log[M(r, gn−3)]
ρpf+ε +O(1).

Finally, after taking repeated logarithms (n-4)p times more, we have for all suffi-
ciently large values of r,

log[(n−1)p] T (r, fn) ≤ log[M(r, g)]ρ
p
f+ε +O(1)

i.e., log[(n−1)p] T (r, fn) ≤ (ρpf + ε) logM(r, g) +O(1).

Similarly if n is odd then for all sufficiently large values of r

log[(n−1)p] T (r, fn) ≤ (ρpg + ε) logM(r, f) +O(1).

This proves the lemma.
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Lemma 2.8 Let f(z) and g(z) be two non constant entire functions such that 0 <
λpf <∞ and 0 < λpg <∞. Then for any ε (0 < ε <min{λpf , λ

p
g}) and p ≥ 1,

log[(n−1)p] T (r, fn) ≥
{

(λpf − ε) logM
(

r
4n−1 , g

)
+O(1) when n is even

(λpg − ε) logM
(

r
4n−1 , f

)
+O(1) when n is odd

for all sufficiently large values of r.

Proof. To prove this lemma we first consider n is even. Then from Lemma 2.1 and
Lemma 2.3 we get for ε (0 < ε <min{λpf , λ

p
g}) and for all large values of r

T (r, fn) = T (r, f(gn−1))

≥ 1

3
logM

(
1

8
M
(r

4
, gn−1

)
+O(1), f

)
.

∴ log[p] T (r, fn) ≥ log[p+1]M

(
1

8
M
(r

4
, gn−1

)
+O(1), f

)
+O(1)

≥ log

[
1

8
M
(r

4
, gn−1

)
+O(1)

]λpf−ε
+O(1)

≥ log

[
1

9
M
(r

4
, gn−1

)]λpf−ε
+O(1)

≥ (λpf − ε) logM
(r

4
, gn−1

)
+O(1)

≥ (λpf − ε)T
(r

4
, gn−1

)
+O(1)

≥ (λpf − ε)
1

3
logM

(
1

8
M
( r

42
, fn−2

)
+O(1), g

)
+O(1),

that is, log[2p] T (r, fn) ≥ log[p+1]M

(
1

8
M
( r

42
, fn−2

)
+O(1), g

)
+O(1)

≥ log

[
1

8
M
( r

42
, fn−2

)
+O(1)

]λpg−ε
+O(1)

≥ log

[
1

9
M
( r

42
, fn−2

)]λpg−ε
+O(1).

i.e., log[2p] T (r, fn) ≥ (λpg − ε) logM
( r

42
, fn−2

)
+O(1)

.... .... .... ....

.... .... .... ....

Therefore, log[(n−2)p] T (r, fn) ≥ (λpg − ε) logM
( r

4n−2
, f(g)

)
+O(1).

So, log[(n−1)p] T (r, fn) ≥ (λpf − ε) logM
( r

4n−1
, g
)

+O(1) when n is even.
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Similarly

log[(n−1)p] T (r, fn) ≥ (λpg − ε) logM
( r

4n−1
, f
)

+O(1) when n is odd.

This proves the lemma.

3 Theorems

Theorem 3.1 Let f and g be two non-constant entire functions having finite lower
orders. Then

(i) lim inf
r→∞

log[(n−1)p] T (r, fn)

T (r, g)
≤ 3ρpf2λg ,

(ii) lim sup
r→∞

log[(n−1)p] T (r, fn)

T (r, g)
≥

λpf

(4n−1)λg

when n is even and

(iii) lim inf
r→∞

log[(n−1)p] T (r, fn)

T (r, f)
≤ 3ρpg2

λf ,

(iv) lim sup
r→∞

log[(n−1)p] T (r, fn)

T (r, f)
≥ λpg

(4n−1)λf

when n is odd.

Proof. We may clearly assume 0 < λpf ≤ ρ
p
f <∞ and 0 < λpg ≤ ρpg <∞. Now from

Lemma 2.7 for arbitrary ε > 0

log[(n−1)p] T (r, fn) ≤ (ρpf + ε) logM(r, g) +O(1) (3.1)

when n is even.
Let 0 < ε <min{1, λpf , λ

p
g}. Since

lim inf
r→∞

T (r, g)

rλg(r)
= 1,

there is a sequence of values of r tending to infinity for which

T (r, g) < (1 + ε)rλg(r) (3.2)

and for all large values of r

T (r, g) > (1− ε)rλg(r). (3.3)
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Thus for a sequence of values of r tending to infinity we get for any δ(> 0)

logM(r, g)

T (r, g)
≤ 3T (2r, g)

T (r, g)
≤ 3(1 + ε)

1− ε
(2r)λg+δ

(2r)λg+δ−λg(2r)
1

rλg(r)

≤ 3(1 + ε)

1− ε
2λg+δ

because rλg+δ−λg(r) is an increasing function of r.
Since ε, δ > 0 be arbitrary, we have

lim inf
r→∞

logM(r, g)

T (r, g)
≤ 3.2λg . (3.4)

Therefore from (3.1) and (3.4) we get

lim inf
r→∞

log[(n−1)p] T (r, fn)

T (r, g)
≤ 3ρpf2λg .

when n is even.
Again for even n we have from Lemma 2.8

log[(n−1)p] T (r, fn) ≥ (λpf − ε) logM
( r

4n−1
, g
)

+O(1)

≥ (λpf − ε)T
( r

4n−1
, g
)

+O(1)

≥ (λpf − ε)(1− ε)(1 +O(1))

(
r

4n−1

)λg+δ(
r

4n−1

)λg+δ−λg( r
4n−1

) , by (3.3).

Since rλg+δ−λg(r) is an increasing function of r, we have

log[(n−1)p] T (r, fn) ≥ (λpf − ε)(1− ε)(1 +O(1))
rλg(r)

(4n−1)λg+δ

for all large values of r.
So by (3.2) for a sequence of values of r tending to infinity

log[(n−1)p] T (r, fn) ≥ (λpf − ε)
1− ε
1 + ε

(1 +O(1))
T (r, g)

(4n−1)λg+δ
.

Since ε and δ are arbitrary, it follows from the above that

lim sup
r→∞

log[(n−1)p] T (r, fn)

T (r, g)
≥

λpf

(4n−1)λg
.

Similarly for odd n we get the second part of the theorem.
This proves the theorem.
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Theorem 3.2 Let f and g be two non-constant entire functions such that λpf and

λpg(> 0) are finite. Also there exist entire functions ai (i = 1, 2, 3...........n; n ≤ ∞)
satisfying T (r, ai) = o{T (r, g)} as r →∞ and

n∑
i=1

δ(ai, g) = 1.

Then
πλpf

(4n−1)λg
≤ lim sup

r→∞

log[(n−1)p] T (r, fn)

T (r, g)
≤ πρpf

when n is even.

Proof. If λpf = 0 then the first inequality is obvious. Now we suppose that λpf > 0.

For 0 < ε <min{1, λpf , λ
p
g} we have from Lemma 2.8 for all large values of r

log[(n−1)p] T (r, fn)

T (r, g)
≥ (λpf − ε)

logM
(

r
4n−1 , g

)
T (r, g)

+O(1) when n is even

≥ (λpf − ε)
logM

(
r

4n−1 , g
)

T
(

r
4n−1 , g

) T
(

r
4n−1 , g

)
T (r, g)

+O(1). (3.5)

Also from (3.2) and (3.3) we get for a sequence of values of r →∞ and for δ > 0

T
(

r
4n−1 , g

)
T (r, g)

>
1− ε
1 + ε

(
r

4n−1

)λg+δ(
r

4n−1

)λg+δ−λg( r
4n−1

) 1

rλg(r)

≥ 1− ε
1 + ε

1

(4n−1)λg+δ

because rλg+δ−λg(r) is an increasing function of r.
Since ε, δ > 0 be arbitrary, so using Lemma 2.6, we have from (3.5)

lim sup
r→∞

log[(n−1)p] T (r, fn)

T (r, g)
≥

πλpf
(4n−1)λg

.

If ρpf =∞, the second inequality is obvious. So we may assume ρpf <∞. Then the
second inequality follows from Lemma 2.6 and Lemma 2.7.
This proves the theorem.

Theorem 3.3 Let f and g be two non-constant entire functions such that λpf (> 0)

and λpg are finite. Also there exist entire functions ai (i = 1, 2, 3...........n; n ≤ ∞)
satisfying T (r, ai) = o{T (r, f)} as r →∞ and

n∑
i=1

δ(ai, f) = 1.

89



R. K. Dutta - The growth estimate of iterated entire functions

Then
πλpg

(4n−1)λf
≤ lim sup

r→∞

log[(n−1)p] T (r, fn)

T (r, f)
≤ πρpg

when n is odd.

Theorem 3.4 Let f and g be two non-constant entire functions such that 0 < λpf ≤
ρpf <∞ and 0 < λpg ≤ ρpg <∞. Then for k = 0, 1, 2, 3, .......

λpg
ρpg
≤ lim inf

r→∞

log[np+1] T (r, fn)

log[p] T (r, g(k))
≤ lim sup

r→∞

log[np+1] T (r, fn)

log[p] T (r, g(k))
≤ ρpg
λpg

when n is even and

λpf
ρpf
≤ lim inf

r→∞

log[np+1] T (r, fn)

log[p] T (r, f (k))
≤ lim sup

r→∞

log[np+1] T (r, fn)

log[p] T (r, f (k))
≤
ρpf
λpf

when n is odd, where f (k) denote the k-th derivative of f .

Proof. First suppose that n is even. Then for given ε(0 < ε < min{λpf , λ
p
g}) we get

from Lemma 2.8 for all large values of r

log[(n−1)p] T (r, fn) ≥ (λpf − ε) logM
( r

4n−1
, g
)

+O(1)

≥ (λpf − ε)T
( r

4n−1
, g
)

+O(1)

i.e., log[np] T (r, fn) ≥ log[p] T
( r

4n−1
, g
)

+O(1).

So, log[np+1] T (r, fn) ≥ log[p+1] T
( r

4n−1
, g
)

+O(1).

So for all large values of r

log[np+1] T (r, fn)

log[p] T (r, g(k))
≥

log[p+1] T
(

r
4n−1 , g

)
log r

4n−1

.
log r

4n−1

log[p] T (r, g(k))
+ o(1). (3.6)

Since

lim sup
r→∞

log[p] T (r, g(k))

log r
= ρpg,

so for all large values of r and arbitrary ε > 0 we have

log[p] T (r, g(k)) < (ρpg + ε) log r. (3.7)
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Since ε > 0 is arbitrary, so from (3.6) and (3.7) we have

lim inf
r→∞

log[np+1] T (r, fn)

log[p] T (r, g(k))
≥ lim inf

r→∞

log[p+1] T
(

r
4n−1 , g

)
log r

4n−1

.

(
log r − log 4n−1

ρpg log r

)
≥ λpg

ρpg
. (3.8)

Again from Lemma 2.7 we get for all large values of r

log[(n−1)p] T (r, fn) ≤ (ρpf + ε) logM(r, g) +O(1)

i.e.
log[np+1] T (r, fn)

log[p] T (r, g(k))
≤ log[p+2]M(r, g)

log[p] T (r, g(k))
+ o(1). (3.9)

Since

lim inf
r→∞

log[p] T (r, g(k))

log r
= λpg,

so for all large values of r and arbitrary ε(0 < ε < λpg) we have

log[p] T (r, g(k)) > (λpg − ε) log r. (3.10)

Since ε > 0 is arbitrary, so from (3.9) and (3.10) we have

lim sup
r→∞

log[np+1] T (r, fn)

log[p] T (r, f (k))
≤ ρpg
λpg
. (3.11)

Combining (3.8) and (3.11) we obtain the first part of the theorem.
Similarly when n is odd then we have the second part of the theorem.

This proves the theorem.

Theorem 3.5 Let f and g be two non-constant entire functions such that 0 < λpf ≤
ρpf <∞ and 0 < λpg ≤ ρpg <∞. Then

(i)
λpg
ρpg
≤ lim inf

r→∞

log[np] T (r, fn)

log[p] T (r, g)
≤ 1 ≤ lim sup

r→∞

log[np] T (r, fn)

log[p] T (r, g)
≤ ρpg
λpg

when n is even and

(ii)
λpf
ρpf
≤ lim inf

r→∞

log[np] T (r, fn)

log[p] T (r, f)
≤ 1 ≤ lim sup

r→∞

log[np] T (r, fn)

log[p] T (r, f)
≤
ρpf
λpf

when n is odd.
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Proof. First suppose that n is even. Then for given ε(0 < ε < min{λpf , λ
p
g}) we get

from Lemma 2.7 and Lemma 2.8 for all large values of r

log[(n−1)p] T (r, fn) ≤ (ρpf + ε) logM(r, g) +O(1)

i.e. log[np] T (r, fn) ≤ log[p+1]M(r, g) +O(1)

i.e.
log[np] T (r, fn)

log[p] T (r, g)
≤ log[p+1]M(r, g)

log[p] T (r, g)
+ o(1) (3.12)

i.e. lim inf
r→∞

log[np] T (r, fn)

log[p] T (r, g)
≤ 1 [by Lemma 2.4]. (3.13)

Also,

log[(n−1)p] T (r, fn) ≥ (λpf − ε) logM
( r

4n−1
, g
)

+O(1)

i.e. log[np] T (r, fn) ≥ log[p+1]M
( r

4n−1
, g
)

+O(1).

So

log[np] T (r, fn)

log[p] T (r, g)
≥

log[p] T
(

r
4n−1 , g

)
log r

4n−1

.

(
log r − log 4n−1

ρpg log r

)
+ o(1)

i.e. lim inf
r→∞

log[np] T (r, fn)

log[p] T (r, g)
≥ λpg

ρpg
. (3.14)

Also from (3.12), we get for all large values of r,

log[np] T (r, fn)

log[p] T (r, g)
≤ log[p+1]M(r, g)

log r

log r

log[p] T (r, g)
+ o(1)

∴ lim sup
r→∞

log[np] T (r, fn)

log[p] T (r, g)
≤ ρpg

λpg
. (3.15)

Again from Lemma 2.8,

log[(n−1)p] T (r, fn) ≥ (λpf − ε) logM
( r

4n−1
, g
)

+O(1)

i.e. log[np] T (r, fn) ≥ log[p+1]M
( r

4n−1
, g
)

+O(1). (3.16)

From (3.3) we obtain for all large values of r and for δ > 0 and ε(0 < ε < 1)

logM
( r

4n−1
, g
)

> (1− ε)
(

r
4n−1

)λg+δ(
r

4n−1

)λg+δ−λg( r
4n−1

)

≥ 1− ε
(4n−1)λg+δ

rλg(r)
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because rλg+δ−λg(r) is an increasing function of r.
So by (3.2) we get for a sequence of values of r tending to infinity

logM
( r

4n−1
, g
)
≥ 1− ε

1 + ε

1

(4n−1)λg+δ
T (r, g)

i.e. log[2]M
( r

4n−1
, g
)
≥ log T (r, g) +O(1).

Taking repeated logarithms (p-1) times, we get

log[p+1]M
( r

4n−1
, g
)
≥ log[p] T (r, g) +O(1). (3.17)

Now from (3.16) and (3.17)

lim sup
r→∞

log[np] T (r, fn)

log[p] T (r, f)
≥ 1. (3.18)

So the theorem follows from (3.13), (3.14), (3.15) and (3.18) when n is even.
Similarly when n is odd we get (ii).

Corollary 3.6 Using the hypothesis of Theorem 3.5 if f and g are of regular growth
then

lim
r→∞

log[np] T (r, fn)

log[p] T (r, g)
= lim

r→∞

log[np] T (r, fn)

log[p] T (r, f)
= 1.

Remark 3.7 The conditions λpf , λ
p
g > 0 and ρpf, ρ

p
g <∞ are necessary for Theorem

3.5 and Corollary 3.6, which are shown by the following examples.

Example 3.8 Let f = z, g = exp[p] z. Then λpf = ρpf = 0 and 0 < λpg = ρpg <∞.
Now when n is even then

fn = exp[np
2
] z.

Therefore,
T (r, fn) ≤ logM(r, fn) = exp[np

2
−1] r.

So,

log[np] T (r, fn) ≤ log[np](exp[np
2
−1] r)

= log[np−
np
2
+1] r

= log[
np
2
+1] r.

Also when n is odd
fn = exp[(n−1

2
)p] z.
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Therefore,

T (r, fn) ≤ logM(r, fn) = exp[(n−1
2

)p−1] r.

So,

log[np] T (r, fn) ≤ log[np](exp[(n−1
2

)p−1] r)

= log[np−(
n−1
2

)p+1] r

= log[(
n+1
2

)p+1] r

Now
log[p] T (r, f) = log[p+1] r

and

3T (2r, g) ≥ logM(r, g) = exp[p−1] r

i.e. log[p] T (r, g) ≥ log r +O(1).

Therefore when n is even

log[np] T (r, fn)

log[p] T (r, g)
≤ log[

np
2
+1] r

log r +O(1)
→ 0 as r →∞,

and when n is odd

log[np] T (r, fn)

log[p] T (r, f)
≤ log[(

n+1
2

)p+1] r

log[p+1] r
→ 0 as r →∞.

Example 3.9 Let f = exp[2p] z, g = exp[p] z. Then λpf = ρpf =∞, λpg = ρpg = 1.
Now when n is even

fn = exp[ 3np
2

] z.

Therefore

3T (2r, fn) ≥ logM(r, fn) = exp[ 3np
2
−1] r

i.e. T (r, fn) ≥ 1

3
exp[ 3np

2
−1] r

2

∴ log[np] T (r, fn) ≥ log[np](exp[ 3np
2
−1] r

2
) + o(1)

= exp[np
2
−1] r

2
+ o(1).

Also when n is odd
fn = exp[( 3n+1

2
)p] z.
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Therefore

3T (2r, fn) ≥ logM(r, fn) = exp[( 3n+1
2

)p−1] r

i.e. T (r, fn) ≥ 1

3
exp[( 3n+1

2
)p−1] r

2

∴ log[np] T (r, fn) ≥ log[np](exp[( 3n+1
2

)p−1] r

2
) + o(1)

= exp[(n+1
2

)p−1] r

2
+ o(1).

Also
log[p] T (r, f) ≤ exp[p−1] r and log[p] T (r, g) ≤ log r.

Therefore when n is even

log[np] T (r, fn)

log[p] T (r, g)
≥

exp[np
2
−1] r

2 + o(1)

log r
→∞ as r →∞,

and when n is odd

log[np] T (r, fn)

log[p] T (r, f)
≥

exp[(n+1
2

)p−1] r
2 + o(1)

exp[p−1] r
→∞ as r →∞.

Theorem 3.10 Let f and g be two entire functions such that 0 < λpf ≤ ρpf < ∞
and 0 < λpg ≤ ρpg <∞. Then for k = 0, 1, 2, 3, ......

(i)
λpg
ρpf
≤ lim inf

r→∞

log[np] T (r, fn)

log[p] T (r, f (k))
≤ lim sup

r→∞

log[np] T (r, fn)

log[p] T (r, f (k))
≤ ρpg
λpf

when n is even.

(ii)
λpf
ρpg
≤ lim inf

r→∞

log[np] T (r, fn)

log[p] T (r, g(k))
≤ lim sup

r→∞

log[np] T (r, fn)

log[p] T (r, g(k))
≤
ρpf
λpg

when n is odd.

Proof. First suppose that n is even. Then for given ε(0 < ε < min{λpf , λ
p
g}) we

have from Lemma 2.7 for all large values of r,

log[(n−1)p] T (r, fn) ≤ (ρpf + ε) logM(r, g) +O(1)

i.e. log[np] T (r, fn) ≤ log[p+1]M(r, g) +O(1).

Also we know that

lim inf
r→∞

log[p] T (r, g(k))

log r
= λpg.
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Now

lim sup
r→∞

log[np] T (r, fn)

log[p] T (r, f (k))
≤ lim sup

r→∞

log[p+1]M(r, g)

log[p] T (r, f (k))

≤ lim sup
r→∞

[
log[p+1]M(r, g)

log r
.

log r

log[p] T (r, f (k))

]

=
ρpg
λpf

(3.19)

Again from Lemma 2.8 we have for all large values of r,

log[(n−1)p] T (r, fn) ≥ (λpf − ε) logM
( r

4n−1
, g
)

+O(1)

i.e., log[np] T (r, fn) ≥ log[p+1]M
( r

4n−1
, g
)

+O(1)

≥ (λpg − ε) log r +O(1).

Also
log[p] T (r, f (k)) < (ρpf + ε) log r.

Therefore,
log[np] T (r, fn)

log[p] T (r, f (k))
≥ (λpg − ε) log r +O(1)

(ρpf + ε) log r
.

Since ε > 0 is arbitrary we get

lim inf
r→∞

log[np] T (r, fn)

log[p] T (r, f (k))
≥ λpg
ρpf
. (3.20)

Therefore from (3.19) and (3.20) we have the result for even n.
Similarly for odd n we have (ii).

This proves the theorem.
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