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THE HADAMARD PRODUCT IN GENERALIZED
UN (P,Q)-MATRICES
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Abstract. In this paper we studied the generalized Fibonacci and Lucas matrix
Un(p, q), and we defined Un(p, q) ◦U−n(p, q), Hadamard product of Un(p, q) matrix
and U−n(p, q) matrix. We investigated some properties of Hadamard product of
generalized Fibonacci and Lucas matrices.
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1. Introduction

In Horadam notation [3], we consider a sequence {Wn(a, b, p, q)}, or briefly {Wn},
defined by the recurrence relation

Wn = pWn−1 − qWn−2, n ≥ 2, (1)

with W0 = a, W1 = b, where a, b, p and q are integers with p > 0, q 6= 0, and
∆ = p2 − 4q > 0. We are interested in the following two special cases of {Wn}:
{Un} is defined by U0 = 0, U1 = 1, and {Vn} is defined by V0 = 2, V1 = p. It is well
known that {Un} and {Vn} can be expressed in the form

Un =
αn − βn

α− β
, Vn = αn + βn, (2)

where α = p+
√

∆
2 and β = p−

√
∆

2 .
Especially, if p = −q = 1 and 2p = −q = 2, {Un} is the usual Fibonacci and

Jacobsthal sequence, respectively.

We define U(p, q) be the 2× 2 matrix

U(p, q) =

[
p −q
1 0

]
, (3)
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then for an integer n with n ≥ 1, Un(p, q) has the form

Un(p, q) =

[
Un+1 −qUn
Un −qUn−1

]
. (4)

This property provides an alternate proof of Cassini Fibonacci formula:

Un+1Un−1 − U2
n = −qn−1.

Also, let n and m be two integers such that m,n ≥ 1. The following results are
obtained from the identity Un+m(p, q) = Un(p, q)Um(p, q) for the matrix (4):

Un+m+1 = Un+1Um+1 − qUnUm, (5)

Un+m = UnUm+1 − qUn−1Um. (6)

In [1], the author define the Lucas V (p, q)-matrix by

V (p, q) =

[
p2 − 2q −pq
p −2q

]
. (7)

It is easy to see that[
Vn+1

Vn

]
= V (p, q)

[
Un
Un−1

]
and ∆

[
Un+1

Un

]
= V (p, q)

[
Vn
Vn−1

]
where Un and Vn are as above. Our aim, is not to compute powers of matrices. Our
aim is to find different relations between matrices containing generalized Fibonacci
and Lucas numbers.

That is, we obtain relations between the generalized Fibonacci U(p, q)-matrix
and the Lucas V (p, q). In particular,

Theorem 1.1. Let V (p, q) be a matrix as in (7). Then, for all integers n ≥ 1,
the following matrix power is held below

V n(p, q) =


∆

n
2

[
Un+1 −qUn
Un −qUn−1

]
if n even

∆
n−1
2

[
Vn+1 −qVn
Vn −qVn−1

]
if n odd,

(8)

with ∆ = p2−4q and where Un and Vn are the n-th generalized Fibonacci and Lucas
numbers, respectively.

Proof. We use mathematical induction on n. First, we consider odd n. For
n = 1,

V 1(p, q) =

[
V2 −qV1

V1 −qV0

]
,
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since V2 = p2 − 2q, V1 = p and V0 = 2. So, (8) is indeed true for n = 1. Now we
suppose it is true for n = k, that is

V k(p, q) = ∆
k−1
2

[
Vk+1 −qVk
Vk −qVk−1

]
.

Using properties of the generalized Lucas numbers and the induction hypothesis, we
can write

V k+2(p, q) = V k(p, q)V 2(p, q) = ∆
k+1
2

[
Vk+3 −qVk+2

Vk+2 −qVk+1

]
,

as desired. Secondly, let us consider even n. For n = 2 we can write

V 2(p, q) = ∆

[
U3 −qU2

U2 −qU1

]
.

So, (8) is true for n = 2. Now, we suppose it is true for n = k, using properties of
the generalized Fibonacci numbers and the induction hypothesis, we can write

V k+2(p, q) = V k(p, q)V 2(p, q) = ∆
k+2
2

[
Uk+3 −qUk+2

Uk+2 −qUk+1

]
,

as desired. Hence, (8) holds for all n.
In this paper we studied the generalized Fibonacci and Lucas matrix Un(p, q),

and we defined Un(p, q) ◦ U−n(p, q), Hadamard product of Un(p, q) matrix and
U−n(p, q) matrix. We investigated some properties of Hadamard product of gen-
eralized Fibonacci and Lucas matrices.

2. Some properties of the Un(p, q) ◦ U−n(p, q) matrix

Let Un(p, q) be generalized Fibonacci matrix (4), and U−n(p, q) the inverse of
Un(p, q). Then, the Hadamard product of Un(p, q) and U−n(p, q), denoted Un(p, q)◦
U−n(p, q), is defined by

Un(p, q) ◦ U−n(p, q) = q−nUn(p, q) ◦Adj(Un(p, q)) (9)

where Adj(Un(p, q)) is the adjugate of the Un(p, q) matrix, and ◦ is the Hadamard
product.

Definition 2.1. [5] Let A = (aij) be n× n matrix over any commutative ring.
The permanent of A, denoted by per(A), is defined by

per(A) =
∑

σ a1σ1a2σ2 · · · anσn,
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where the summation extends over all one-to one functions from {1, 2, .., n} to itself.

Theorem 2.2. det [Un(p, q) ◦ U−n(p, q)] = 1− 2q−n+1U2
n.

Proof. For all integer n, Un(p, q) ◦ U−n(p, q) is defined by

Un(p, q) ◦ U−n(p, q) = q−n
[
Un+1 −qUn
Un −qUn−1

] [
−qUn−1 qUn
−Un Un+1

]
= −q−n

[
qUn+1Un−1 q2U2

n

U2
n qUn+1Un−1

]
,

where Un is the nth generalized Fibonacci numbers. Then,

det[Un(p, q) ◦ U−n(p, q)] = q−2nq2(Un+1Un−1 − U2
n)(Un+1Un−1 + U2

n)

= −q−2n+1(Un+1Un−1 − U2
n)(−q(Un+1Un−1 + U2

n))

= −q−2n+1(Un+1Un−1 − U2
n)per(Un(p, q))

= q−nper(Un(p, q)),

with per(Un(p, q)) = −q(Un+1Un−1 + U2
n) = qn − 2qU2

n. This completes the proof.

Corollary 2.3. tr[Un(p, q) ◦ U−n(p, q)] = 2(1− q−n+1U2
n).

Proof. By considering the previous proof,

Un(p, q) ◦ U−n(p, q) = −q−n
[
qUn+1Un−1 q2U2

n

U2
n qUn+1Un−1

]
. (10)

Then, tr[Un(p, q) ◦ U−n(p, q)] = −2q−n+1Un+1Un−1. Furthermore, by Cassini for-
mula Un+1Un−1 = −qn−1 + U2

n, and we write

tr[Un(p, q) ◦ U−n(p, q)] = 2(1− q−n+1U2
n).

Theorem 2.4. The eigenvalues of the matrix Un(p, q) ◦ U−n(p, q) are

λ1 = 1, λ2 = q−nper(Un(p, q)). (11)

Proof. The characteristic polynomial of the matrix Un(p, q) ◦ U−n(p, q) is

ΛUn(p,q)◦U−n(p,q)(λ) = det
(
λI − (Un(p, q) ◦ U−n(p, q))

)
= det

[
λ+ q−n+1Un+1Un−1 q−n+2U2

n

q−nU2
n λ+ q−n+1Un+1Un−1

]
= (λ+ q−n+1Un+1Un−1)2 − q−2n+2U4

n,
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where Un is the nth generalized Fibonacci numbers. Hence,

ΛUn(p,q)◦U−n(p,q)(λ) = 0⇔ (λ+ q−n+1Un+1Un−1)2 − q−2n+2U4
n = 0

⇔ (λ− q−nper(Un(p, q)))(λ− 1) = 0

and the eigenvalues of Un(p, q) ◦ U−n(p, q) are λ1 = 1, λ2 = q−nper(Un(p, q)).

3. Eigenvalues of the matrix Un(p, q) ◦ U−n(p, q)

If λi, i = 1, 2, an eigenvalue of the matrix Un(p, q)◦U−n(p, q), the corresponding
eigenvectors vi are the solutions of(

λiI − (Un(p, q) ◦ U−n(p, q))
)
vi = 0. (12)

We first calculate the eigenvector corresponding to λ1 = 1. Then,

I − (Un(p, q) ◦ U−n(p, q)) =

[
1 + q−n+1Un+1Un−1 q−n+2U2

n

q−nU2
n 1 + q−n+1Un+1Un−1

]
=

[
q−n+1U2

n q−n+2U2
n

q−nU2
n q−n+1U2

n

]
.

From (12), [
q−n+1U2

n q−n+2U2
n

q−nU2
n q−n+1U2

n

] [
x
y

]
=

[
0
0

]
.

By using elementary row operations, the coefficients matrix of this homogeneous
system becomes [

1 q
0 0

] [
x
y

]
=

[
0
0

]
.

Since the rank of the coefficients matrix of this homogeneous system is equal to
1, there exist infinitely many solutions dependent on one parameter. The solution
to this set of equations is x = −qy = −qt, where t is arbitrary. In this case, linearly
independent eigenvector corresponding to λ1 = 1 is equal to v1 = (−q, 1)t.

Now calculate the eigenvector to λ2 = q−nper(Un(p, q)). Then,[
−q−n+1U2

n q−n+2U2
n

q−nU2
n −q−n+1U2

n

] [
x
y

]
=

[
0
0

]
.

By using elementary row operations, the coefficients matrix of this homogeneous
system becomes [

1 −q
0 0

] [
x
y

]
=

[
0
0

]
.
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The solution to this set of equations is x = qy = qt, where t is arbitrary. In
this case, linearly independent eigenvector corresponding to λ2 = q−nper(Un(p, q))
is equal to v2 = (q, 1)t.

Observation 3.1. The matrix Un(p, q) ◦U−n(p, q) is diagonalizable. In view of
the above, we can write

P =

[
−q q
1 1

]
,

to obtain

P−1(Un(p, q) ◦ U−n(p, q))P =

[
1 0
0 q−nper(Un(p, q))

]
. (13)

Let Mn denote the class of complex n× n matrices.
Definition 3.2. [4]The l1 norm on Mn is defined by

||A||1 =
n∑

i,j=1

|aij |,

and the Euclidean norm or l2 norm is

||A||2 =

 n∑
i,j=1

|aij |2
 1

2

.

Example 3.3. For each integer n, the Fibonacci matrix Un(1,−1) satisfies

1. ||Un(1,−1) ◦ U−n(1,−1)||1 = 2((−1)n + 2F 2
n)

2. ||Un(1,−1) ◦ U−n(1,−1)||2 = (4F 4
n + (−1)n4F 2

n + 2)
1
2

where Fn is the nth Fibonacci numbers.

Theorem 3.4. The matrix Un(p, q) ◦ U−n(p, q) is invertible and

[
Un(p, q) ◦ U−n(p, q)

]−1
=

[
1−q−n+1U2

n
1−2q−n+1U2

n

q−n+2U2
n

1−2q−n+1U2
n

q−nU2
n

1−2q−n+1U2
n

1−q−n+1U2
n

1−2q−n+1U2
n

]
. (14)

Proof. For each integer n, the adjugate of Un(p, q) ◦ U−n(p, q) is

Adj(Un(p, q) ◦ U−n(p, q)) = −q−n
[
qUn+1Un−1 −q2U2

n

−U2
n qUn+1Un−1

]
.
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By using Cassini formula, we obtain Un+1Un−1 = −qn−1 + U2
n. For[

1− q−n+1U2
n q−n+2U2

n

q−nU2
n 1− q−n+1U2

n

]
(15)

and from Theorem (2.2),

det(Un(p, q) ◦ U−n(p, q)) = q−nper(Un(p, q)) = 1− 2q−n+1U2
n.

Then,[
Un(p, q) ◦ U−n(p, q)

]−1
=

1

1− 2q−n+1U2
n

[
1− q−n+1U2

n q−n+2U2
n

q−nU2
n 1− q−n+1U2

n

]
.

4. Special case of the R(p, q) matrix

In general, by induction there is a way to build arrays of type Un(p, q).

Theorem 4.1. If A is a square matrix with A2 = pA− qI and I matrix identity
of order 2. Then, An = UnA− qUn−1I, for all n ∈ Z.

Proof. If n = 0, then the proof is obvious. It can be shown by induction that
An = UnA − qUn−1I, for every n. We now show that A−n = U−nA − qU−n−1I for
every n ∈ N. Let B = pI −A = qA−1, then

B2 = (pI −A)2 = p2I − 2pA+A2 = p(pI −A)− qI = pB − qI,

this shows that Bn = UnB − qUn−1I. That is, (qA−1)n = Un(pI − A) − qUn−1I.
Therefore qnA−n = −UnA+ (pUn − qUn−1)I = −UnA+ Un+1I. Thus,

A−n = −q−nUnA+ q−nUn+1I = U−nA− qU−n−1I.

Thus, the proof is completed.

The well-known identity

U2
n+1 − qU2

n = U2n+1 (16)

has as its Lucas counterpart

V 2
n+1 − qV 2

n = ∆U2n+1. (17)

Indeed, since Vn+1 = Un+2 − qUn = pUn+1 − 2qUn and Vn = 2Un+1 − pUn, the
equation (17) follows from (16). We define R(p, q) be the 2× 2 matrix

R(p, q) =
1

2

[
p ∆
1 p

]
, (18)
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then for an integer n, Rn(p, q) has the form

Rn(p, q) =
1

2

[
Vn ∆Un
Un Vn

]
. (19)

Theorem 4.2. V 2
n −∆U2

n = 4qn, for all n ∈ Z.
Proof. Since det(R(p, q)) = q, det(Rn(p, q)) = (det(R(p, q)))n = qn. Moreover,

since (19), we get det(Rn(p, q)) = 1
4(V 2

n −∆U2
n). The proof is completed.

Let us give a different proof of one of the fundamental identities of Generalized
Fibonacci and Lucas numbers, by using the matrix Rn(p, q) and R−n(p, q). Then,
the Hadamard product Rn(p, q) ◦R−n(p, q), satisfies

Theorem 4.3. det [Rn(p, q) ◦R−n(p, q)] = 1 + ∆U2
n

2qn .

Proof. For all integer n, Rn(p, q) ◦R−n(p, q) is defined by

Rn(p, q) ◦R−n(p, q) =
1

4qn

[
Vn ∆Un
Un Vn

] [
Vn −∆Un
−Un Vn

]
=

1

4qn

[
V 2
n −(∆Un)2

−U2
n V 2

n

]
,

where ∆ = p2−4q, and Un, Vn are the nth generalized Fibonacci and Lucas numbers,
respectively. Then,

det[Rn(p, q) ◦R−n(p, q)] =
1

(4qn)2
(V 2
n −∆U2

n)(V 2
n + ∆U2

n)

=
1

8q2n
(V 2
n −∆U2

n)
(V 2
n + ∆U2

n)

2

=
1

8q2n
(V 2
n −∆U2

n)per(Rn(p, q))

=
1

2qn
per(Rn(p, q)),

with per(Rn(p, q)) = V 2
n +∆U2

n
2 = 2qn + ∆U2

n. This completes the proof.

Corollary 4.4. tr[Rn(p, q) ◦R−n(p, q)] = 2 + ∆U2
n

2qn .

Proof. It is easy to see that tr[Rn(p, q) ◦ R−n(p, q)] = 1
2qnV

2
n . Furthermore, by

theorem (4.2), V 2
n = 4qn + ∆U2

n, and we write

tr[Rn(p, q) ◦R−n(p, q)] = 2 +
∆U2

n

2qn
.
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Theorem 4.5. The eigenvalues of the matrix Rn(p, q) ◦R−n(p, q) are

λ1 = 1, λ2 =
per(Rn(p, q))

2qn
. (20)

Proof. The characteristic polynomial of the matrix Rn(p, q) ◦R−n(p, q) is

ΛRn(p,q)◦R−n(p,q)(λ) = det
(
λI − (Rn(p, q) ◦R−n(p, q))

)
= det

[
λ− V 2

n
4qn

(∆Un)2

4qn

U2
n

4qn λ− V 2
n

4qn

]

=

(
λ− V 2

n

4qn

)2

− ∆2U4
n

(4qn)2
,

where Vn is the nth generalized Lucas numbers. Hence,

ΛUn(p,q)◦U−n(p,q)(λ) = 0⇔ λ2 − V 2
n

2qn
λ+

per(Rn(p, q))

2qn
= 0

⇔
(
λ− per(Rn(p, q))

2qn

)
(λ− 1) = 0

and the eigenvalues of Rn(p, q) ◦R−n(p, q) are λ1 = 1, λ2 = per(Rn(p,q))
2qn .

Theorem 4.6. The matrix Rn(p, q) ◦R−n(p, q) is invertible and

[
Rn(p, q) ◦R−n(p, q)

]−1
=

[
V 2
n

4qn+2∆U2
n

(∆Un)2

4qn+2∆U2
n

U2
n

4qn+2∆U2
n

V 2
n

4qn+2∆U2
n

]
. (21)

Proof. For each integer n, the adjugate of Rn(p, q) ◦R−n(p, q) is

Adj(Rn(p, q) ◦R−n(p, q)) =
1

4qn

[
V 2
n (∆Un)2

U2
n V 2

n

]
,

and from Theorem (4.3), det(Rn(p, q) ◦R−n(p, q)) = 1 + ∆U2
n

2qn . Then,

[
Rn(p, q) ◦R−n(p, q)

]−1
=

1

4qn + 2∆U2
n

[
V 2
n (∆Un)2

U2
n V 2

n

]
.
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