DECOMPOSITIONS OF CONTINUITY VIA ζ -OPEN SETS

TALAL AL-HAWARY

ABSTRACT. Al-Hawary [1] introduced and explored the class of ζ -open sets which is strictly weaker than open and proved that the collection of all ζ -open subsets of a space forms a topology that is finer than the original one. In this paper, we introduce what we call ζ -continuity and ζ_X -continuity and we give several characterizations and two decompositions of ζ -continuity. Finally, new decompositions of continuity are provided.

2000 Mathematics Subject Classification: 54C08, 54C05, 54C10.

INTRODUCTION

Let (X, \mathfrak{T}) be a topological space (or simply, a space). If $A \subseteq X$, then the closure of A and the interior of A will be denoted by $Cl_{\mathfrak{T}}A$) and $Int_{\mathfrak{T}}(A)$; respectively. If no ambiguity appears, we use \overline{A} and A^o instead. By X, Y and Z we mean topological spaces with no separation axioms assumed. $\mathfrak{T}_{s \tan dard}$, $\mathfrak{T}_{indiscrete}$, $\mathfrak{T}_{leftray}$ and $\mathfrak{T}_{cocountable}$ stand for the standard, indiscrete, left ray and the cocountable topologies, respectively. A space (X, \mathfrak{T}) is anti locally countable if all non-empty open subsets are uncountable.

In [1], the relatively new notion of ζ -open subset which is strictly weaker than open was introduced. It was proved that the collection of all ζ -open subsets of a space forms a topology that is finer than the original one. Several characterizations and properties of this class were also given as well as connections to other well-known "generalized open" subsets. Analogous to [3, 6, 7], in Section 2 we introduce the relatively new notion of ζ --continuity, which is closely related to continuity. Moreover, we show that a space (X, \mathfrak{T}) is Lindelof if and only if $(X, \mathfrak{T}_{\zeta})$ is Lindelof, where \mathfrak{T}_{ζ} is the collection of all ζ -open subsets of X. Sections 3 is devoted for studying three weaker notions of ζ -continuity by which we provide two decompositions of ζ continuity. Finally, in Section 4 we give several decompositions of continuity which seem to be new.

Next, we recall several necessary definitions and results from [1].

Definition 1 A subset A of a space (X, \mathfrak{T}) is called ζ -open if for every $x \in A$, there exists an open subset $U \subseteq X$ containing x and such that $U \setminus sInt(A)$ is countable. The complement of an ζ -open subset is called ζ -closed.

Clearly every open set is ζ -open, but the converse needs not be true.

Example 1 Consider the real line \mathbb{R} with the topology $\mathfrak{T} = \{U \subseteq \mathbb{R} : \mathbb{R} \setminus U \text{ is finite or } 0 \in \mathbb{R} \setminus U\}$ and set $A = \mathbb{R} \setminus U \cup \{0\}$. Then A is not open while it is ζ -open.

Theorem 1 If (X, \mathfrak{T}) is a space, then $(X, \mathfrak{T}_{\zeta})$ is a space such that $\mathfrak{T} \subseteq \mathfrak{T}_{\zeta}$.

Corollary 1 If (X, \mathfrak{T}) is a p-space, then $\mathfrak{T} = \mathfrak{T}_{\zeta}$.

Next we show that ζ -open notion is independent of both PO and SO notions.

Example 2 Consider \mathbb{R} with the standard topology. Then \mathbb{Q} is *PO* but not ζ -open. Also [0,1] is *SO* but not ζ -open.

Example 3 Let $X = \{a, b\}$ and $\mathfrak{T} = \{\emptyset, X, \{a\}\}$ Then $\{b\}$ is ζ -open but neither PO nor open.

Next we characterize \mathfrak{T}_{ζ} when X is a countable space.

Corollary 2 If (X, \mathfrak{T}) is a countable space, then \mathfrak{T}_{ζ} is the discrete topology.

The following result, in which a new characterization of ζ -open subsets is given, will be a basic tool throughout the rest of the paper.

Lemma 1 A subset A of a space X is ζ -open if and only if for every $x \in A$, there exists an open subset U containing x and a countable subset C such that $U - C \subseteq sInt(A)$.

Lemma 2 A subset A of a space X is ζ -closed if and only if $Cl_{\zeta}(A) = A$.

Theorem 2 If A is ζ -open subset of X, then $\mathfrak{T}_{\zeta|A} \subseteq (\mathfrak{T}_A)_{\zeta}$. If A is open subset of X, then $\mathfrak{T}_{\zeta|A} \subseteq (\mathfrak{T}_A)_{\zeta}$.

Lemma 3 If X is a Lindelof space, then A - sInt(A) is countable for every closed subset $A \in \mathfrak{T}_{\zeta}$:

Corollary 3 If X is a second countable space, then A - sInt(A) is countable for every closed subset $A \in \mathfrak{T}_{\zeta}$.

Theorem 3 Let (X, \mathfrak{T}) be a space and $C \subseteq X$ is ζ -closed. Then $Cl_{\mathfrak{T}}(C) \subseteq K \cup B$ for some closed subset K and a countable subset B.

$2.\zeta$ -CONTINUOUS MAPPINGS

We begin this section by introducing the notion of ζ -continuous mappings. Several characterizations of this class of mappings are also provided.

Definition 2 A map $f : X \to Y$ is ζ -continuous at $x \in X$ if for every open subset V in Y containing f(x), there exists an ζ -open subset U in X containing x such that $f(U) \subseteq V$. f is ζ -continuous if it is ζ -continuous at every $x \in X$.

As every open set is ζ -open , every continuous map is ζ -continuous. The converse needs not be true.

Example 4 Let $X = \{a, b\}, \mathfrak{T}_1 = \{\emptyset, X, \{a\}\}$ and $\mathfrak{T}_2 = \{\emptyset, X, \{b\}\}$. Then the identity map $id : (X, \mathfrak{T}_1) \to (X, \mathfrak{T}_2)$ is ζ -continuous but not continuous.

The proofs of the following three results are easy ones and thus omitted.

Lemma 4 Let X, Y and Z be spaces. Then

(1) If $f : X \to Y$ is ζ -continuous surjection and $g : Y \to Z$ is continuous surjection, then $g \circ f$ is ζ -continuous.

(2) If $f: X \to Y$ is ζ -continuous surjection and $A \subseteq X$, then $f|_A$ is ζ -continuous. (3) If $f: X \to Y$ is a map such that $X = X_1 \cup X_2$ where X_1 and X_2 are closed and both $f|_{X_1}$ and $f|_{X_2}$ are ζ -continuous, then f is ζ -continuous.

(4) If $f_1: X \to X_1$ and $f_2: X \to X_2$ are maps and $g: X \to X_1 \times X_2$ is the map defined by $g(x) = (f_1(x), f_2(x))$ for all $x \in X$, then g is ζ -continuous if and only if f_1 and f_2 are ζ -continuous.

Lemma 5 For a map $f: X \to Y$, the following are equivalent:

(1) f is ζ -continuous.

(2) The inverse image of every open subset of Y is ζ -open in X.

(3) The inverse image of every closed subset of Y is ζ -closed in X.

(4) The inverse image of every basic open subset of Y is ζ -open in X.

(5) The inverse image of every subbasic open subset of Y is ζ -open in X.

Lemma 6 A space (X, \mathfrak{T}_X) is Lindelof if and only if $(X, \mathfrak{T}_{\zeta})$ is Lindelof.

Next we show that being Lindelof is preserved under ζ -continuity.

Theorem 4 If $f : (X, \mathfrak{T}_X) \to (Y, \mathfrak{T}_Y)$ is ζ -continuous and X is Lindelof, then Y is Lindelof.

Proof. Let $\mathfrak{B} = \{V_{\alpha} : \alpha \in \nabla\}$ be an open cover of Y. Since f is ζ -continuous, $\mathfrak{A} = \{f^{-1}(V_{\alpha}) : \alpha \in \nabla\}$ is a cover of X by ζ -open subsets and as X is Lindelof, by Lemma , \mathfrak{A} has a countable subcover $\{f^{-1}(V_{\alpha_n}) : n \in \mathbb{N}\}$. Now $Y = f(X) = f(\bigcup\{f^{-1}(V_{\alpha_n}) : n \in \mathbb{N}\}) \subseteq \bigcup\{V_{\alpha_n} : n \in \mathbb{N}\}$. Therefore Y is Lindelof. \Box

If X is a countable space, then every subset of X is ζ -open and hence every map $f: X \to Y$ is ζ -continuous. Next, we show that if X is uncountable such that every ζ -continuous map $f: X \to Y$ is a constant map, then X has to be connected.

Theorem 5 If X is uncountable space such that every ζ -continuous map $f : X \to Y$ is a constant map, then X is connected.

Proof. If X is disconnected, then there exists a non-empty proper subset A of X which is both open and closed. Let $Y = \{a, b\}$ and $\mathfrak{T}_Y = \{\emptyset, Y, \{b\}\}$ and $f: X \to Y$ defined by $f(A) = \{a\}$ and $f(X \setminus A) = \{b\}$. Then f is a non-constant ζ -continuous map.

The converse of the preceding result need not be true even when X is uncountable.

Example 5 The identity map $id : (\mathbb{R}, \mathfrak{T}_{leftray}) \to (\mathbb{R}, \mathfrak{T}_{indiscrete})$ is a nonconstant ζ -continuous.

3. DECOMPOSITION OF ζ -CONTINUITY

We begin by recalling the following well-known two definitions.

Definition 3 A map $f: X \to Y$ is *weakly continuous at* $x \in X$ if for every open subset V in Y containing f(x), there exists an open subset U in X containing x such that $f(U) \subseteq \overline{V}$. f is *weakly continuous* if it is weakly continuous at every $x \in X$.

Definition 4 A map $f: X \to Y$ is W^* -continuous if for every open subset V in $Y, f^{-1}(Fr(V))$ is closed in X, where $Fr(V) = \overline{V} \setminus \overset{o}{V}$.

Weakly continuity and W*-continuity are independent notions that are weaker than continuity and the two together characterize continuity (see for example [5]). Next we give two relatively new such definitions.

Definition 5 A map $f: X \to Y$ is weakly ζ -continuous at $x \in X$ if for every open subset V in Y containing f(x), there exists an ζ -open subset U in X containing x such that $f(U) \subseteq \overline{V}$. f is weakly ζ -continuous if it is weakly ζ -continuous at every $x \in X$.

Clearly, every ζ -continuous and every weakly continuous map is weakly ζ -continuous. Non of the converses need be true as shown next.

Example 6 Let $Y = \{a, b, c\}$ and $\mathfrak{T} = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}$. Then the map $f : (\mathbb{R}, \mathfrak{T}_{cocountable}) \to (Y, \mathfrak{T})$ defined by f(x) = a for all $x \in \mathbb{R}$. Then f is weakly ζ -continuous but not ζ -continuous.

Example 7 Let $Y = \{a, b, c\}$ and $\mathfrak{T} = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}$. Then the map $f : (\mathbb{R}, \mathfrak{T}_{cocountable}) \to (Y, \mathfrak{T})$ defined by $f(x) = \begin{cases} a & x \in \mathbb{Q} \\ b & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ for all $x \in \mathbb{R}$. Then f is weakly continuous and hence weakly ζ -continuous but not ζ -continuous.

Definition 6 A map $f : X \to Y$ is *coweakly* ζ -*continuous* if for every open subset V in Y, $f^{-1}(Fr(V))$ is ζ -closed in X, where $Fr(V) = \overline{V} \setminus V$.

Clearly, every $\zeta\text{-continuous}$ is coweakly $\zeta\text{-continuous}.$ The converse need not be true.

Example 8 Let $X = Y = \{a, b\}$, $\mathfrak{T}_X = \{\emptyset, X\}$ and $\mathfrak{T}_Y = \{\emptyset, Y, \{a\}, \{b\}\}$ Then the identity map $id : X \to Y$ is coweakly ζ -continuous but not ζ -continuous.

Our first characterization of ζ -continuity in terms of the preceding two notions of continuity is given next.

Theorem 6 The following are equivalent for a map $f : (X, \mathfrak{T}_X) \to (Y, \mathfrak{T}_Y) :$

(1) f is ζ -continuous.

(2) $f: (X, \mathfrak{T}_{\zeta}) \to (Y, \mathfrak{T}_Y)$ is continuous.

(3) $f: (X, \mathfrak{T}_{\zeta}) \to (Y, \mathfrak{T}_Y)$ is weakly continuous and W*-continuous.

Proof. $(1) \Rightarrow (2)$: Obvious.

 $(2) \Rightarrow (3)$: See for example [5].

 $(3) \Rightarrow (1)$: Since $f : (X, \mathfrak{T}_{\zeta}) \to (Y, \mathfrak{T}_{Y})$ is W*-continuous, it is coweakly ζ continuous and as it is weakly-continuous, it is weakly ζ -continuous. Thus $f : (X, \mathfrak{T}_{X}) \to (Y, \mathfrak{T}_{Y})$ is ζ -continuous.

We show that weakly ζ -continuity and coweakly ζ -continuity are independent notions, but together they characterize ζ -continuity. This will be our first decomposition of ζ -continuity.

Example 9 The map id in Example is coweakly ζ -continuous but not weakly ζ -continuous.

Example 10 Let $Y = \{a, b\}$ and $\mathfrak{T} = \{\emptyset, Y, \{a\}\}$. Then the map $f : (\mathbb{R}, \mathfrak{T}_{cocountable}) \to (Y, \mathfrak{T})$ defined by $f(x) = \begin{cases} a & x \in \mathbb{Q} \\ b & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ for all $x \in \mathbb{R}$. Then f is weakly ζ -continuous but not coweakly ζ -continuous.

Theorem 7 A map $f : X \to Y$ is ζ -continuous if and only if f is both weakly and coweakly ζ -continuous.

Proof. ζ -continuity implies weakly and coweakly ζ -continuity is obvious. Conversely, suppose $f : X \to Y$ is both weakly and coweakly ζ -continuous and let $x \in X$ and V be an open subset of Y such that $f(x) \in V$. Then as f is weakly ζ -continuous, there exists an ζ -open subset U of X containing x such that $f(U) \subseteq \overline{V}$. Now $Fr(V) = \overline{V} \setminus V$ and hence $f(x) \notin Fr(V)$. So $x \in U \setminus f^{-1}(Fr(V))$ which is ζ -open in X since f is coweakly ζ -continuous. For every $y \in f(U \setminus f^{-1}(Fr(V))), y = f(a)$ for some $a \in U \setminus f^{-1}(Fr(V))$ and hence $f(a) = y \in f(U) \subseteq \overline{V}$ and $y \notin Fr(V)$. Thus $f(a) = y \notin Fr(V)$ and thus $f(a) \in V$. Therefore, $f(U \setminus f^{-1}(Fr(V))) \subseteq V$ and hence f is ζ -continuous.

4. DECOMPOSITION OF CONTINUITY

We begin this section by introducing the notion of an ω_X^o -set. We then introduce the notion of ω_X^o -continuity which gives an immediate decomposition of continuity.

Definition 7 For a space (X, \mathfrak{T}) , let $\zeta_X =: \{A \subseteq X : Int_{\mathfrak{T}_{\zeta}}(A) = Int_{\mathfrak{T}}(A)\}$. A is an ζ_X -set if $A \in \zeta_X$.

The proof of the following result is trivial.

Corollary 4 If (X, \mathfrak{T}) is anti locally countable, then ζ_X contains all ζ -closed subsets of X.

We remark that, in general, an ζ -closed set need not be an ζ_X -set as shown in the next example.

Example 11 Let $X = \{a, b\}$ and $\mathfrak{T} = \{\emptyset, X, \{a\}\}$. Set $A = \{b\}$. Then A is ζ -closed but not an ζ_X -set.

As every open set is ζ -open, every open set is an ζ_X -set but the converse need not be true.

Example 12 Consider \mathbb{R} with the standard topology $\mathfrak{T}_{standard}$. Then \mathbb{Q} is an ζ_X -set which is not open.

Next, we show that the notions of ζ_X -set and ζ -open are independent, but together they characterize open sets.

Example 13 In Example, A is ζ -open but not an ζ_X -set.

Example 14 In Example, \mathbb{Q} is an ζ_X -set which is not ζ -open.

Theorem 8 A subset A of a space X is open if and only if A is ζ -open and an ζ_X -set.

Proof. Trivially every open set is ζ -open and an ζ_X -set. Conversely, let A be an ζ -open set that is ζ_X -set. Then $A = Int_{\mathfrak{T}_{\zeta}}(A) = Int_{\mathfrak{T}}(A)$ and therefore A is open.

Definition 8 A map $f: X \to Y$ is ζ_X -continuous if the inverse image of every open subset of Y is an ζ_X -set.

Clearly every continuous map is ζ_X -continuous, but the converse need not be true as not every ζ_X -set is open. An immediate consequence of Theorems and are the following decompositions of continuity, which seem to be new.

Theorem 9 For a map $f: X \to Y$, the following are equivalent:

(1) f is continuous.

(2) f is ζ -continuous and ζ_X -continuous.

(3) f is both weakly ζ -continuous, coweakly ζ -continuous and ζ_X -continuous.

References

[1] Al-Hawary, T.A., ζ-Open Sets, Acta Sci. Tech. **35(1)**, (2013), 111-115.

[2] Al-Sa'ad, W., Study of Some Weak Forms of Continuous Functions, Master's Thesis, Jordan University, 1993.

[3] Ganster, M. and Reilly, I., A Decomposition of Continuity, Acta Math. Hung. **56(3-4)**, (1990), 299-301.

[4] Munkres, J., Topology a First Course, Prentice_Hall inc., New Jersey, 1975.

[5] Noiri, T., On Weakly Continuous Mappings, Proc. Amer. Math. Soc., 46, (1974), 120-124.

[6] Tong, J., A Decomposition of Continuity, Acta Math. Hung. **48(1-2)**, (1986), 11-15.

[7] Tong, J., On Decompositions of Continuity in Topological Spaces, Acta Math. Hung. **54(1-2)**, (1989), 51-55.

Talal Al-Hawary Department of Mathematics. Yarmouk University Irbid-Jordan email:talalhawary@yahoo.com