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NEW TYPE OF CHEBYCHEV-GRSS INEQUALITIES FOR
CONVEX FUNCTIONS
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Abstract. In this paper we will show some new inequalities for convex func-
tions, and we will also make a connection between it and Grüss inequality, which
implies the existence of new class of functions satisfied Grüss inequality.
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Introduction and Main Results

In 1935, G. Grüss (see [2]) proved the following integral inequality which gives an
approximation of the integral of the product in terms of the product of the integrals
as follows

∣∣∣∣∣∣ 1

b− a

b∫
a

f (x) g (x) dx− 1

(b− a)2

 b∫
a

f (x) dx

 b∫
a

g (x) dx

∣∣∣∣∣∣
6

1

4
(Γ− γ) (Ψ− φ) (1.1)

where f, g : [a, b]→ R are integrable on [a, b] and satisfy the condition

γ 6 f (x) 6 Γ, φ 6 g (x) 6 Ψ

for each x ∈ [a, b] , where γ, φ,Γ,Ψ are given real constants. Moreover, the constant 1
4

is sharp in the sense that it cannot be replaced by a smaller one. For a simple proof of
(1.1) as well as for some other integral inequalities of Grüss type, see [5, Chapter X]
and the papers [2, 6] .
The inequality (1.1) has evoked the interest of many researchers and numerous
generalizations, variants and extensions have appeared in the literature, to mention
a few, see [1, 3, 7, 8] and the references cited therein.
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In [4] the second author and B. Beläıdi proved new type of Chebychev’s inequality
for convex functions and they obtained the following results:

Theorem A Let f, g : [a, b] −→ R be convex (or concave) functions and p : [a, b]→
R+ be integrable symmetric function about x = a+b

2 (i. e. p (a+ b− x) = p (x) ,
for all x ∈ [a, b]), then

b∫
a

p (x) f (x) g (x) dx+

b∫
a

p (x) f (x) g (a+ b− x) dx

>
2

b∫
a
p (x) dx

b∫
a

p (x) f (x) dx

b∫
a

p (x) g (x) dx. (1.2)

If f is convex (or concave) and g is concave (or convex ) functions, then the inequal-
ity (1.2) is reversed, equality in (1.2) holds if and only if either g or f is constant
almost everywhere.

Theorem B Let f, g : [a, b] −→ R be convex (or concave) functions. If g is
symmetric function about x = a+b

2 , then

b∫
a

f (x) g (x) dx >
1

b− a

b∫
a

f (x) dx

b∫
a

g (x) dx. (1.3)

If f is convex (or concave) and g is concave (or convex ) functions, then the inequal-
ity (1.3) is reversed, equality in (1.3) holds if and only if either g or f is constant
almost everywhere.

Theorem C Let f, g : [a, b] −→ R where f is convex function and g decreasing in[
a, a+b

2

]
and increasing in

[
a+b
2 , b

]
, then the inequality (1.3) holds.

The aim of this paper is to proved a new version of Grüss inequality for convex
functions and find a new class of functions satisfies Grüss inequality, before we stat
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our results we denote by

T (f, g) =
1

b− a

b∫
a

f (x) g (x) dx+
1

b− a

b∫
a

f (x) g (a+ b− x) dx

− 2

(b− a)2

b∫
a

f (x) dx

b∫
a

g (x) dx, (1.4)

and

ρf =
f (a) + f (b)

2
− f

(
a+ b

2

)
and we obtain the following results:

Theorem 1.1 Let f, g : [a, b] −→ R be convex (or concave) functions, then

0 6 T (f, g) 6
1

2
ρfρg, (1.5)

where the constant 1
2 is sharp in the sense that it cannot be replaced by a smaller

one. If f is convex (or concave) and g is concave (or convex ) functions, then the
inequality (1.5) is reversed.

Corollary 1.1 Let f, g : [a, b] −→ R be convex (or concave) functions such that

γ 6 f (x) 6 Γ, φ 6 g (x) 6 Ψ

for each x ∈ [a, b] , where γ, φ,Γ,Ψ are given real constants. Then

T (f, g) 6
1

2
ρfρg

6
1

2
(Γ− γ) (Ψ− φ) . (1.6)

where the constant 1
2 is sharp in the sense that it cannot be replaced by a smaller

one.

Corollary 1.2 Let f, g : [a, b] −→ R be convex (or concave) functions. If either f
or g is symmetric function about x = a+b

2 , then
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1

b− a

b∫
a

f (x) g (x) dx− 1

(b− a)2

 b∫
a

f (x) dx

 b∫
a

g (x) dx


6

1

4
ρfρg. (1.7)

Furthermore, if
γ 6 f (x) 6 Γ, φ 6 g (x) 6 Ψ (1.8)

for each x ∈ [a, b] , where γ, φ,Γ,Ψ are given real constants, then

1

b− a

b∫
a

f (x) g (x) dx− 1

(b− a)2

 b∫
a

f (x) dx

 b∫
a

g (x) dx


6

1

4
ρfρg

6
1

4
(Γ− γ) (Ψ− φ) . (1.9)

where the constant 1
4 is sharp in the sense that it cannot be replaced by a smaller

one.

Corollary 1.3 Let f : [a, b] −→ R be convex (or concave) function and symmetric
about x = a+b

2 , then

1

b− a

b∫
a

f2 (x) dx−

 1

b− a

b∫
a

f (x) dx

2

6
1

4
ρ2f . (1.10)

Theorem 1.2 Let f, g : [a, b] −→ R where f is convex function and g decreasing on[
a, a+b

2

]
and increasing on

[
a+b
2 , b

]
, then the inequality (1.5) holds. If f is convex

function and g increasing on
[
a, a+b

2

]
and decreasing on

[
a+b
2 , b

]
, then the inequality

(1.5) reversed.

Corollary 1.4 Let f, g : [a, b] −→ R where f is convex function and g decreasing
on
[
a, a+b

2

]
and symmetric about x = a+b

2 , then the inequality (1.7) holds. If f is

convex function and g increasing in
[
a, a+b

2

]
and symmetric about x = a+b

2 , then the
inequality (1.7) reversed.
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2. Lemmas

Lemma 2.1 Let f : [a, b] −→ R be convex (or concave) function, then

F (x) =
1

2
(f (x) + f (a+ b− x)) (2.1)

satisfy the following:
(1) F is convex (or concave) function.
(2) For all x ∈ [a, b] : F

(
a+b
2

)
6
≥
F (x) 6

≥
F (a) = F (b) .

Proof : (1) Let f be a convex function. For all x, y ∈ [a, b] and λ ∈ [0, 1] we have

F (λx+ (1− λ) y) =
1

2
(f (λx+ (1− λ) y) + f (λ (a+ b− x) + (1− λ) (a+ b− y)))

6
1

2
(λf (x) + (1− λ) f (y) + λf (a+ b− x) + (1− λ) f (a+ b− y))

= λ

(
1

2
(f (x) + f (a+ b− x))

)
+ (1− λ)

(
1

2
(f (y) + f (a+ b− y))

)
= λF (x) + (1− λ)F (y) .

Hence F is convex function.

(2) Let f be a convex function, we have

F

(
a+ b

2

)
= F

(
a+ b− x+ x

2

)
6

1

2
F (x) +

1

2
F (a+ b− x) = F (x) (2.2)

and

F (x) = F

(
x− a
b− a

b+
b− x
b− a

a

)
6
x− a
b− a

F (b) +
b− x
b− a

F (a) = F (a) . (2.3)

Lemma 2.2 [4] Let f : [a, b] −→ R be convex (or concave) function, then

F (x) =
1

2
(f (x) + f (a+ b− x))

is decreasing (increasing) on
[
a, a+b

2

]
and increasing (decreasing) on

[
a+b
2 , b

]
.
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Proof: Suppose that f is convex function and using the same proof for concave
functions. Let x, y ∈

[
a, a+b

2

]
such that x 6 y, then there exists λ ∈ [0, 1] such that

y = λx+ (1− λ) a+b
2 . Since F is convex function then we have

F (y) = F

(
λx+ (1− λ)

a+ b

2

)
6 λF (x) + (1− λ)F

(
a+ b

2

)
= F (x) + (1− λ)

(
F

(
a+ b

2

)
− F (x)

)
,

by Lemma 2.1 we get F (y) 6 F (x) then F is decreasing in
[
a, a+b

2

]
. Now, let x, y ∈[

a+b
2 , b

]
such that x 6 y, then there exist λ ∈ [0, 1] such that x = λy + (1− λ) a+b

2 .
Since F is convex function we have

F (x) = F

(
λy + (1− λ)

a+ b

2

)
6 λF (y) + (1− λ)F

(
a+ b

2

)
= F (y) + (1− λ)

(
F

(
a+ b

2

)
− F (y)

)
,

by Lemma 2.1 we get F (x) 6 F (y) then F is increasing in
[
a+b
2 , b

]
3. Proof of Theorems

Proof of Theorem 1.1: First, without loss of generality we suppose that f and g
are convex functions and we denote by F and G the following functions

F (x) =
1

2
(f (x) + f (a+ b− x)) ,

G (x) =
1

2
(g (x) + g (a+ b− x)) .

Since f and g are convex functions, and by using Lemma 2.2 and Lemma 2.1 we
deduce that F and G having the same variation and

F

(
a+ b

2

)
6 F (x) 6 F (a) = F (b) ,

G

(
a+ b

2

)
6 G (x) 6 G (a) = G (b) ,
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for each x ∈ [a, b] . Then by applying Grüss inequality for F and G and by using
Chebychev’s inequality, we obtain∣∣∣∣∣∣ 1

b− a

b∫
a

F (x)G (x) dx− 1

(b− a)2

b∫
a

F (x) dx

b∫
a

G (x) dx

∣∣∣∣∣∣
=

1

b− a

b∫
a

F (x)G (x) dx− 1

(b− a)2

b∫
a

F (x) dx

b∫
a

G (x) dx

6
1

4

(
F (a)− F

(
a+ b

2

))(
G (a)−G

(
a+ b

2

))
(3.1)

which we can write as

1

b− a

b∫
a

[f (x) g (x) dx+ f (a+ b− x) g (a+ b− x)] dx

+
1

b− a

b∫
a

[f (x) g (a+ b− x) dx+ f (a+ b− x) g (x)] dx

− 1

(b− a)2

 b∫
a

[f (x) + f (a+ b− x)] dx


 b∫

a

[g (x) + g (a+ b− x)] dx


6

1

4

(
F (a)− F

(
a+ b

2

))(
G (a)−G

(
a+ b

2

))
(3.2)

Using the identity
b∫
a

f (x) dx =

b∫
a

f (a+ b− x) dx, (3.3)

and
b∫
a

f (x) g (a+ b− x) dx =

b∫
a

f (a+ b− x) g (x) dx. (3.4)
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We obtain

2

b− a

b∫
a

f (x) g (x) dx+
2

b− a

b∫
a

f (x) g (a+ b− x) dx

− 4

(b− a)2

 b∫
a

f (x) dx

 b∫
a

g (x) dx


6

1

4

(
f (a) + f (b)− 2f

(
a+ b

2

))(
g (a) + g (b)− 2g

(
a+ b

2

))
TCItag(3.5)

which is equivalent to

T (f, g) 6
1

2
ρfρg. (3.6)

Now, suppose that f is convex function and g is concave function, we deduce that
F and G are oppositely ordered and by using Lemma 2.1, we have

F

(
a+ b

2

)
6 F (x) 6 F (a) = F (b) ,

G (a) = G (b) 6 G (x) 6 G

(
a+ b

2

)
,

for each x ∈ [a, b] . Then by applying Grüss inequality for F and G and by using
Chebychev’s inequality, we obtain∣∣∣∣∣∣ 1

b− a

b∫
a

F (x)G (x) dx− 1

(b− a)2

b∫
a

F (x) dx

b∫
a

G (x) dx

∣∣∣∣∣∣
= −

 1

b− a

b∫
a

F (x)G (x) dx− 1

(b− a)2

b∫
a

F (x) dx

b∫
a

G (x) dx


6 −1

4

(
F (a)− F

(
a+ b

2

))(
G (a)−G

(
a+ b

2

))
. (3.7)

By same reasoning as above

T (f, g) >
1

2
ρfρg (3.8)

and the proof of Theorem 1.1 is complete.
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Proof of Corollary 1.1: First, without loss of generality we suppose that f and
g are convex functions. By Theorem 1.1 we have

T (f, g) ≤ 1

2

(
f (a) + f (b)

2
− f

(
a+ b

2

))(
g (a) + g (b)

2
− g

(
a+ b

2

))
. (3.9)

Since
γ 6 f (x) 6 Γ, φ 6 g (x) 6 Ψ,

for each x ∈ [a, b] , where γ, φ,Γ,Ψ are given real constants, then we have

0 ≤ f (a) + f (b)

2
− f

(
a+ b

2

)
≤ Γ− γ, (3.10)

and

0 ≤ g (a) + g (b)

2
− g

(
a+ b

2

)
≤ Ψ− φ, (3.11)

which implies that

1

2

(
f (a) + f (b)

2
− f

(
a+ b

2

))(
g (a) + g (b)

2
− g

(
a+ b

2

))
≤ 1

2
(Γ− γ) (Ψ− φ) ,

and the proof of Corollary 1.1 is complete.

Proof of Corollary 1.2: First, without loss of generality we suppose that f and
g are convex functions and f is symmetric about x = a+b

2 . Then

f (x) = f (a+ b− x) , (3.12)

for all x ∈ [a, b] . Applying Theorem 1.1 and Corollary 1.1 we obtain (1.7) and (1.9) .

Proof of Corollary 1.3: By setting f (x) = g (x) in Theorem 1.1, we obtain (1.10) .

Proof of Theorem 1.2: We denote by F and G the following functions

F (x) = f (x) + f (a+ b− x) ,

G (x) = g (x) + g (a+ b− x) .

Since f is convex functions, then by Lemma 2.1, F is decreasing on
[
a, a+b

2

]
and

increasing on
[
a+b
2 , b

]
. In order to prove (1.4) we need to prove that G is decreasing

on
[
a, a+b

2

]
and increasing on

[
a+b
2 , b

]
.

Let x, y ∈
[
a, a+b

2

]
, suppose that x∗ = a+ b− x and y∗ = a+ b− y where x∗, y∗ ∈[

a+b
2 , b

]
.
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It’s clear that if x 6 y, then x∗ > y∗. Since g is decreasing in
[
a, a+b

2

]
and increasing

in
[
a+b
2 , b

]
, then we have

g (x) > g (y) , (3.13)

and
g (x∗) > g (y∗) . (3.14)

Then
G (x) = g (x) + g (x∗) > g (y) + g (y∗) = G (y) , (3.15)

which implies that G is decreasing on
[
a, a+b

2

]
, by the same method we can prove

easily that G is increasing on
[
a+b
2 , b

]
.

Then we have F and G having the same variation and

F

(
a+ b

2

)
6 F (x) 6 F (a) = F (b) , (3.16)

G

(
a+ b

2

)
6 G (x) 6 G (a) = G (b) , (3.17)

and by applying Theorem 1.1, we obtain inequality (1.4) .
For the case when f is convex function and g is increasing in

[
a, a+b

2

]
and decreasing

in
[
a+b
2 , b

]
, we use the same reasoning as above.
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