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Abstract. There is a special class of probability distributions, namely the exponential family of 
probability distributions, for which complete sufficient statistics with fixed dimension always 
exist. This class includes some, but not all, of the commonly used distributions. The objective 
of this paper is to give some definitions and some properties for some probability distributions 
which belong to such class. Also, we shall investigate some measures of the information of the 
unknown parameters which appear in such exponential family. 
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1. Introduction 
 
The notion of information plays a central role both in the life of the person and 

of society, as well as in all kinds of scientific research. The notion of information is so 
universal, it penetrates our everyday life so much that from this point of view, it can 
be compared only with the notion of energy. The information theory is an important 
branch of probability theory and it has very much application in mathematical 
statistics. 

Let X be a random variable on the probability space (Ω,K,P). A statistical 
problem arises then when the distribution of X is not known and we want to draw 
some inference concerning the unknown distribution of X on the basis of a limited 
number of observations on X. A general situation may be described as follows: the 
functional form of the distribution function is known and merely the values of a finite 
number of parameters, involved in the distribution function, are unknown; i.e., the 
probability density function of the random variable X is known except for the value of 
a finite number of parameters. In general, the parameters θ1, θ2, ... , θk will not be 
subject to any a priori restrictions; i.e., they may take any values. However, the 
parameters may in some cases be restricted to certain intervals. 

Let X be a continuous random variable and its probability density function 
f(x;θ) depends on an parameter θ which is real k-dimensional parameter having values 
in a specified parameter space Dθ, Dθ ⊆ Rk, k≥1. Thus we are confronted, not with 
one distribution of probability, but with a family of distributions. To each value of θ, 
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θ∈Dθ, there corresponds one member of the family which will be denoted by the 
symbol {f(x;θ) ; θ∈Dθ}. Any member of this family of probability density functions 
will be denoted by the symbol f(x;θ), θ∈Dθ. 

Let C be a statistical population and X a common property for all elements of 
this population.  We suppose that this common property is a continuous random 
variable which has the probability density function f(x, θ), θ∈Dθ, Dθ⊆R, θ- unknown 
parameter and Sn(X)=(X₁, X₂, ..., Xn) a random sample of size n from this population. 

A general problem is that of defining a statistic θ̂  = t(X₁, X₂, ..., Xn), so that if 
x₁, x₂, ..., xn are the observed experimental values of X₁, X₂, ..., Xn, then the number 
t(x₁, x₂, ..., xn) is an estimate of θ and it is usually written as θ̂ 0 = t(x₁, x₂, ..., xn), that 
is, we have g : Rⁿ → R,where Rⁿ=R×R×...×R is the sample space and R is the one-
dimensional sample space (the real line). In this case the statistic (X₁, X₂, ..., Xn) 
represents an estimator for the unknown parameter θ. Thus, we recall some very 
important definitions. 

 
Definition 1.1 An estimator θ = t(X₁, X₂, ..., Xn) is a function of the random sample 
vector (a statistic) 

Sn(X) = (X₁, X₂, ..., Xn) 
that estimates θ but is not dependent on θ.  

     
Definition 1.2 Any statistic whose mathematical expectation is equal to a parameter θ 
is called an unbiased estimator. Otherwise, the statistic is said to be biased.  

 
Definition 1.3 Any statistic that converges stochastically to a parameter θ is called a 
consistent estimator of the parameter θ, that is, if we have 

 
∞→n

lim P[ | θ̂  - θ| ≤ ε]=1 for all ε > 0.    (1.1) 

 
Definition 1.4 An estimator θ = t(X₁, X₂, ..., Xn) of θ is said to be a minimum 
variance unbiased estimator of θ if it has the following two properties: 

    a) E(θ) = θ, that is, θ is an unbiased estimator, 
    b) Var(θ) ≤ Var(θ∗) for any other estimator θ∗ = h(X₁, X₂, ..., Xn), which is 

also unbiased for θ, that is, E(θ∗) = θ. 
 
In the next we suppose that the parameter θ is unknown and we estimate a 

specified function of θ, g(θ), with the help of statistic θ = t(X₁, X₂, ..., Xn) which is 
based on a random sample of size n, Sn(X) = (X₁, X₂, ..., Xn), where Xi are 
independent and identically distributed random variable as the random variable X, that 
is, we have: f(x;θ) = f(xi,θ), i=1, n, θ ∈ Dθ. 



Ion Mihoc, Cristina I. Fătu - On the bilateral truncated exponential distributions 
 

 5

A well known means of measuring the quality of the estimator 
θ=t(X₁,X₂,...,X_{n})            (1.3) 

is to use the inequality of Cramér-Rao which states that, under certain regularity 
conditions for f(x; θ) (more particularly, it requires the possibility of differentiating 
under the integral sign) any unbiased estimator of g(θ) has variance which satisfies the 
following inequality 

 Var t ≥ 
)(

)]('[ 2

θ
θ

XIn
g
⋅

 = 
)θ(I

)]θ('g[

n

2
 , (1.4) 

where 

 IX(θ) = dx)θ;x(f
θ

)θ;x(fln 2

Ω
∫ 








∂
∂

 =  (1.6) 

  = _ dx
θ

)θ;x(fln
)θ;x(f

1 2

Ω
∫ 








∂
∂

,    (1.7) 

 
and 

In(θ) = nE



















∂
∂ 2

θ
)θ;x(fln

 = n dx)θ;x(f
θ

)θ;x(fln 2

Ω
∫ 








∂
∂

  (1.8) 

The quantity IX(θ) is known as Fisher′s information measure and it measures 
the information about g(θ) which is contained in an observation of X. Also, the 
quantity In(θ) = n.IX(θ) measures the information about g(θ) contained in a random 
sample Sn(X) = (X₁, X₂, ..., Xn), then when Xi, i = 1, n, are independent and 
identically distributed random variables with density f(x; θ), θ ∈ Dθ. 

An unbiased estimator of g(θ) that achieves this minimum from (1.5) is known 
as an efficient estimator. 

 
 
2. Exponential Families of Distributions  
  
Let X be a random variable defined on a probability space (Ω,K,P) and its 

probability density function (or probability function) f(x; θ) which depends on an 
parameter (or random parameter) θ with values in a specified parameter space Dθ, Dθ 

⊆ R, that is, f(x; θ) is an member of the family {f(x; θ) ; θ ∈Dθ}. There is a special 
family of probability distributions, namely the exponential family of probability 
distributions.  

 
Definition 2.1 [8] A family of distribution with probability density function or 
probability function f(x; θ); θ ∈ Dθ, is sad to belong to the exponential family of 
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distributions (the on-parameter exponential families) if f(x; θ) can be expressed in the 
form 

 f(x; θ) = c(θ)h(x) exp







∑
=

k

1i
ii )x(t)θ(π , ∀θ ∈Dθ,     (2.1) 

 
for some measurable functions πi, ti, i = 1, k, and some integer k.  
 
Remark 2.1 The exponential families of distributions are frequently called the 
“Koopman - Pitman – Darmois” families of distributions from the fact that these 
three authors independently and almost simultaneously (1937-1938) studied their main 
properties.  

 
Remark 2.2 Examples of exponential families of distributions are: the binomial 
distributions Bin (n, p) with n known and 0 < p < 1, the Poisson distributions Poi(λ), 
the negative binomial distributions Negbin(a, p) with a known, the geometric 
distributions Geo(p), the normal distributions N(µ, σ²) with θ = (µ, σ²), the gamma 
distributions Γ(a, b) with θ = (a, b), the chi-squared distribution χn², the 
exponential distribution Exp(λ), and the beta distributions Beta(α, β) with θ = (α, 
β).  

 
Remark 2.3 If each πi(θ) = πi, i = 1, k is taken to be a parameter in (2.1), so that 

  

 f(x; π) = c(π)h(x) exp







∑
=

k

1i
ii )x(tπ  = 

 = c(π)h(x) exp{π(θ)[T(x)]’},  (2.2) 
where 

π = π(θ) = (π₁,π₂,...,πk) = (π₁(θ), π₂(θ),..., πk(θ))∈Rk (2.3) 
and 

 T(x) = (t₁(x),t₂(x),...,t_{k}(x)),  (2.4) 
we say that, for the exponential family, has been given its natural parameterization.  
 
Definition 2.2 [8] In an exponential family, the natural parameter is the vector 
(2.3), and 

 Π = Dπ = 












∞<








∈ ∫ ∑
=

dx)x(tπexp)x(h:Rπ
S

k

1i
ii

k ,  (2.5) 

 
is called the natural parameter space, where S is the sample space, that is, the set 
of possible values for the random variable X. 
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Obviously, for any θ ∈ Dθ, the point (π₁(θ),π₂(θ),...,πk(θ)) must lie in Π. 
 
 
3. Definitions and properties for the bilateral truncated Gamma 

distributions  
     
Let X be a continuous random variable, defined on a probability space (Ω,K,P) 

and f(x; θ) its probability density function, where θ = (θ₁,θ₂), θ ∈Dθ, Dθ-the 
parameter space or the set of admissible values of  θ, Dθ ⊆ R². 

Then when the vector parameter covers the parameter space  Dθ we obtain the 
family of probability density functions {f(x; θ); θ ∈Dθ}.  
 

Definition 3.1. The continuous random variable X follows the Gamma distribution 
with parameters θ₁ = a > 0 and θ₁ = b > 0 if its probability density function is of the 
following form 

 

 fX(x;a,b) = 








>
Γ

≤

−− 0 xif  
)(

0 xif            0         

1 bxa
a

ex
a

b  (3.1) 

where 

 Γ(a) = ∫
+∞

−−

0

t1a dtet  (3.2) 

is Euler's Gamma function or the complete Euler function. 
For a such random variable the mean value E(X) and the variance Var X have 

the following values 

 E(X) = 
b
a

, Var X = 2b
a

,    (3.3) 

where θ = (a, b) is the vector parameters, θ ∈Dθ =R 2
+ .  

 
Definition 3.2 [5] We say that the continuous random variable X has a Gamma 
distribution, truncated to the left at X = α and to the right at X = β, if its probability 
density function, denoted by fα↔β, is of the form 

fα↔β(x; a, b) = 




><
≤≤−−

φor α xif                 0        
βxα if    ex)b,a(C bx1a

,  α, β ∈R, α ≥  0,    (3.4) 

where C(a, b) is a constant with one of the following forms: 



Ion Mihoc, Cristina I. Fătu - On the bilateral truncated exponential distributions 
 

 8

 C(a, b) = 

∫ −−
β

α

bx1a dtet

1
;  α, β ∈R, 0 ≤  α ≤  β,     (3.5) 

or 

 C(a, b) = 
)]a(Γ)a(Γ)[a(Γ

b

αβ

a

−
;  α, β ∈R, 0 ≤  α ≤  β,     (3.6)  

if a, b ∈R+, or 

 C(a, b) = 

∑
−

=

−−−−−−
− −

1a

0k

bβk1abαk1ak
1a

a

]e)bβ(e)bα[(A

b
  (3.7) 

 
where 

 A k
1a−  = (a-1)(a-2) ... [(a-1) - (k-1)], k=0, …, a-1,     (3.8) 

if a∈N*, b∈R+.  
 
Corollary 3.1 For the integral which appear at the denominator of the relation (3.5) 
we have one of the expressions: 

 I(α, β) = ab
1 ∑

−

=

−−−−−−
− −

1a

0k

bβk1abαk1ak
1a ]e)bβ(e)bα[(A  (3.9) 

if α, β∈R, 0 ≤ α ≤ β, and a ∈ N*, b ∈ R+, or 

I(α, β) = ab
)a(Γ

[Γβ(a) - Γα(a)],     (3.10) 

if α, β ∈R, 0 ≤ α ≤ β, and a, b∈R+.  
Lemma 3.1 The family of Gamma distribution, truncated to the left at X = α and to 
the right at X = β, {fα↔β(x;a b) ; a, b ∈R+}, is an exponential family. 
Proof. Because, for the x > 0, we have 

 xa-1e-bx = e-bx+(a-1) ln x,    (3.11) 
the probability density function, fα↔β(x;a,b), may be rewritten in the following form 

 fα↔β(x;a,b) = 








− ∑
=

2

1i
ii

αβ

a
)x(t)θ(πexp

)]a(Γ)a(Γ)[a(Γ
b

.    (3.12) 

If we have in view the definition 2.1, as well as, the following correspondences: 
 θ = (a,b), a,b∈R⁺ 

 c(θ) = 
)]()()[( aaa

ba

αβ Γ−ΓΓ
 , Γ(a) = ∫

∞
−−

0

1 dxex bxa  
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 h(x) = 1, k=2  (3.13) 
 π₁(θ) = -b,  π2(θ) = a-1 
 t₁(x) = x,  t2(x) = ln x, 

we can establish that indeed the family of Gamma distribution, truncated to the left at 
X = α and to the right at X = β, is an exponential family.  
Theorem 3.1 If Xα↔β is a random variable with a Gamma distribution, truncated to the 
left at X = α and to the right at X = β, where α, β∈R, α ≥  0, and its probability 
density has the form 

fα↔β(x;a,b) = 








><

≤≤
Γ−ΓΓ

−−

βα

βα
αβ

or x  xif                           0                  

x  if   
)]()()[(

1 bxa
a

ex
aaa

b
 (3.14) 

then the mean value (the expected value) has one of the following forms: 

 E(Xα↔β) = 
b
a

 + 
)]a(Γ)a(Γ)[a(Γb

e)bβ(e)bα(

αβ

bβabαa

−
− −−

,   (3.15) 

if α, β∈R, 0 ≤ α ≤ β, and a, b ∈R⁺, or 

 E(Xα↔β) = 
b
a

 + 

∑
−

=

−−−−−−
−

−−

−

−
1a

0k

bβk1abαk1ak
1a

bβabαa

]e)bβ(e)bα[(Ab

e)bβ(e)bα(  ,  

  (3.16) 
if α, β∈R, 0 ≤ α ≤ β, and a∈N∗, b ∈R⁺.  
 
Proof. In accordance with the definition of the mean value E(Xα↔β), we have 

 E(Xα↔β) = 
)]()()[( aaa

ba

αβ Γ−ΓΓ ∫ −
β

α

dxex bxa   (3.17) 

 By integrating by parts in (3.17), that is, letting 

 






=

=
− dxedv

xu
bx

a

⇒  bx

a

e
b

v
dxaxdu

−

−

−=

=
1

1

 (3.17a) 

then E(Xα↔β) can be rewritten as follows 

E(Xα↔β) = 
)]a(Γ)a(Γ)[a(Γ

b

αβ

a

−
 {(1/b)[αae-αb – βae-βb] + 

b
a
∫ −−
β

α

bx1a dxex } 

= 
)]a(Γ)a(Γ)[a(Γ

b

αβ

a

−
{(1/b)[αae-αb – βae-βb] + 

b
a

I(α,β)}. (3.18) 
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Then, if we have in view the form (3.9) of the integral I(α,β), from (3.18) we 
obtain 

    E(Xα↔β) = 
)]a(Γ)a(Γ)[a(Γ

1

αβ −
 {

b
a ]e)bβ(e)bα[( bβabαa −− −  + 

  +
b
a ∑

−

=

−−−−−−
− −

1a

0k

bβk1abαk1ak
1a ]e)bβ(e)bα[(A } (3.19) 

which is an uncomfortable form for the mean value E(Xα↔β). 
    The first form of the mean value, (3.15), can be obtained using (3.10) and 

(3.18).  
 

Remark 3.1 It is easy to see that, from the relations (3.9) and (3.10), we obtain an 
important eqaulity, namely 

Γ(a)[Γβ(a) - Γα(a)] = ∑
−

=

−−−−−−
− −

1a

0k

bβk1abαk1ak
1a ]e)bβ(e)bα[(A   

  (3.20) 
This last relation together with the relation (3.15) gives us the possibility to fine 

a new form (the third form) of the mean value, namely 

E(Xα↔β) =  
b
a

 + 

∑
−

=

−−−−−−
−

−−

−

−
1a

0k

bβk1abαk1ak
1a

bβabαa

]e)bβ(e)bα[(Ab

e)bβ(e)bα(
, a>0,b>0.     

  (3.21) 
 

Theorem 3.2  If Xα↔β is a random variable with a Gamma distribution, truncated to 
the left at X = α and to the right at X = β, where α, β ∈R, α ≥  0, and its probability 
density has the form (3.14), then the variance Var(Xα↔β) has the form 

Var(Xα↔β) = 2b
a

 - 
)]a(Γ)a(Γ)[a(Γb

e)bβ(e)bβ(

αβ
2

bα1abβ1a

−
− −+−+

 + 

+ 2b
1a −

)]a(Γ)a(Γ)[a(Γ
e)bα(e)bβ(

αβ

bαabβa

−
− −−

 - 












−
− −−

)]a(Γ)a(Γ)[a(Γb
e)bα(e)bβ(

αβ

bαabβa
  (3.22) 

 
Proof. In order to obtain the variance of the random variable X_{α↔β} we shall use 
the formula 

 
 µ₂(Xα↔β) = Var(Xα↔β) = E[(Xα↔β)²] - [E(Xα↔β)]²,    (3.23) 
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where E[(Xα↔β)²] = α₂(Xα↔β) = α₂ is the  2-th order moment of Xα↔β about the origin. 
Using the definition for the moment α₂, namely 

 E[(Xα↔β)²] = C(a,b) ∫ −+
β

α

bx1a dxex , (3.24) 

where 
 

 C(a,b) = 
)]a(Γ)a(Γ)[a(Γ

b

αβ

a

−
 ,     (3.25) 

and integrating by parts, that is, letting 

 






=

=
−

+

dxedv

xu
bx

1a

⇒  bx

1a

e
b
1v

dxx)1a(du
−

−

−=

+=
 (3.26) 

we can obtain a new expression for this moment 

E((Xα↔β)2) = C(a,b)










 +

+
−

∫ −
−+−+ β

α

bxa
bβ1abα1a

dxex
b

1a
b

eβeα
=  

C(a,b)
b

eβeα bβ1abα1a −+−+ −
 + 

b
1a +

E(Xα↔β) = 
)]a(Γ)a(Γ)[a(Γb

e)bβ(e)bα(

αβ
2

bβ1abα1a

−
− −+−+

 + 

b
1a +













−
−

+
−−

)]a(Γ)a(Γ)[a(Γb
e)bβ(e)bα(

b
a

αβ

bβabαa
 ,  (3.27) 

if we had in view the Theorem 3.1. 
This last form, (3.27), may be express and in a form more convenient, namely 
 

E((Xα↔β)2) = 2b
)1a(a +

 - 
)]a(Γ)a(Γ)[a(Γb

e)bβ(e)bα(

αβ
2

bβ1abα1a

−
− −+−+

 - 

 

 - 2b
1a +













−
− −−

)]a(Γ)a(Γ)[a(Γ
e)bα(e)bβ(

αβ

bαabβa
.  (3.28) 

Using the relations (3.28), (3.25) and (3.23) we obtain just the form (3.22) for 
the variance of the random variable Xα↔β which follows the Gamma distribution, 
truncated to the left at X = α and to the right at X = β, α, β∈R, α≥0. 
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4. Fisher's information measures for the truncated Gamma distribution  
     
Let Xα↔β be a random variable which has a Gamma distribution, truncated to 

the left at X = α and to the right at X = β, with probability density function of the form 
 

fα↔β(x;a,b) = 




><
≤≤−−

φor α xif                 0        
βxα if    ex)b,a(C bx1a

,  α, β ∈R, α ≥  0,    (4.1) 

where 

   C(a, b) = 
)]a(Γ)a(Γ)[a(Γ

b

αβ

a

−
;  α, β ∈R, 0 ≤  α ≤  β,     (4.2)  

if a, b ∈R+, where 

 Γ(a) = ∫
∞

−−

0

t1a dtet , a > 0,     (4.3) 

is Euler's Gamma function, and 

Γβ(a) = 
)a(Γ

ba
 ∫ −−
β

0

bx1a dxex  , Γα(a) = 
)a(Γ

ba
 ∫ −−
α

0

bx1a dxex   (4.4) 

Theorem 4.1 If Xα↔β follows a Gamma distribution, truncated to the left at X = α 
and to the right at X = β, with probability density function of the form (4.1), where a, b 
∈R⁺, a- parameter known, b- parameter unknown, then the Fisher information 
measure corresponding to Xα↔β has the following form 

baXI
↔

(b) = 2b
a

 - 
)]a(Γ)a(Γ)[a(Γb

e)bα(e)bβ(

αβ
2

bα1abβ1a

−
− −+−+

 + 

     + 2b
1a −

)]a(Γ)a(Γ)[a(Γ
e)bα(e)bβ(

αβ

bαabβa

−
− −−

 - 
2

αβ

bαabβa

)]a(Γ)a(Γ)[a(Γ
e)bα(e)bβ(












−
− −−

. (4.5) 

 
Proof. Because Xα↔β is a continuous random variable and θ = b is an unknown 
parameter it follows that the Fisher information measure, with respect to the unknown 
parameter b, has the form 

 
baXI

↔
(b) = ∫ ↔

↔








∂

∂β

α
βα

2
βα dx)b,a;x(f
b

)b,a;x(fln
 (4.6) 

But, using the property of the probability density function fα↔β(x;a,b), that is, 
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 ∫ ↔

β

α
βα dx)b,a;x(f =1,     (4.7) 

and if we can differentiate twice, with respect to b,under the integral signs then, we get 

db
d
∫ ↔

β

α
βα dx)b,a;x(f = ∫ ↔

↔

∂

∂β

α
βα

βα dx)b,a;x(f
b

)b,a;x(fln
 = 0,    (4.8) 

and 

2

2

db
d

∫ ↔

β

α
βα dx)b,a;x(f = ∫ ↔

↔

∂

∂β

α
βα2

βα
2

dx)b,a;x(f
b

)b,a;x(fln
 +  

                       + ∫ ↔
↔









∂

∂β

α
βα

2
βα dx)b,a;x(f
b

)b,a;x(fln
 = 0 (4.9) 

 
From these last relations, (4.8) and (4.9), we obtain the following very 

important equalities, namely 

E 







∂

∂ ↔

b
)b,a;x(fln βα = 0,    (4.10) 

E




















∂

∂ ↔
2

βα

b
)b,a;x(fln

 = ∫ ↔
↔









∂

∂β

α
βα

2
βα dx)b,a;x(f
b

)b,a;x(fln
= 

 = - ∫ ↔
↔

∂

∂β

α
βα2

βα
2

dx)b,a;x(f
b

)b,a;x(fln
 (4.11) 

 
Having this last equality,(4.11), the relation (4.6) can be rewritten in a new 

form 

 
baXI

↔
(b) = - ∫ ↔

↔

∂

∂β

α
βα2

βα
2

dx)b,a;x(f
b

)b,a;x(fln
, (4.12) 

 
which represents a new relation of definition for Fisher's information measure. 

Now, by means of the probability density function (4.1), we obtain 
ln fα↔β(x;a,b) = a ln b – ln Γ(a) – ln[Γβ(a) - Γα(a)] + (a-1)ln x - bx, (4.13) 

where Γ(a), Γβ(a) and Γα(a) have been specified in (4.3) and (4.4). 
From (4.13), we find that 
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b

)b,a;x(fln βα

∂

∂ ↔  = 
b
a

 - x - 
)a(Γ)a(Γ

b
)a(Γ

b
)a(Γ

αβ

αβ

−
∂

∂
−

∂

∂

 (4.14) 

Using (3.4), we get 

b
)a(Γβ

∂

∂
=

b∂
∂











∫ −−
β

0

bx1a
a

dxex
)a(Γ

b
 = 

)a(Γ
ab 1a−

∫ −−
β

0

bx1a dxex  -  

 -
)a(Γ

ba

∫ −
β

0

bxa dxex  = 
b
a











∫ −−
β

0

bx1a
a

dxex
)a(Γ

b
- 

 
)a(Γb
)1a(Γ +












+ ∫ −
+ β

0

bxa
1a

dxex
)1a(Γ

b
 = 

b
a

[Γβ(a) - Γβ(a+1)]. (4.15) 

But, for the integral 

 Γβ(a+1) = 










+ ∫ −
+ β

0

bxa
1a

dxex
)1a(Γ

b
 ,  (4.16) 

then when we apply the well known formula for integration by parts, that is, letting 

 u =xa, dv = e-bx  ⇒ du = axa-1dx, v= - 
b
1

e-bx,  

we obtain a new form 

 Γβ(a+1) = Γβ(a) - 
)1a(Γ

)bβ( a

+
e-βb  (4.17) 

A such relation is holds and in the general case, namely 

 Γβ(a+k) = Γβ(a+k-1) - 
)ka(Γ

)bβ( 1ka

+

−+

e-βb  (4.18) 

From (4.15) and (4.17), we get the following relation 

 
b

)a(Γβ
∂

∂
 = 

)1a(Γb
)bβ( a

+
e-βb (4.19) 

which is holds and in general case, namely 

 
b

)ka(Γβ
∂

+∂
 = 

b
ka +

)1ka(Γ
)bβ( ka

++

+

e-βb,  k∈N, a+k+1>0.     (4.20) 

In a similar manner, from (4.4), we obtain 

 
b

)a(Γα
∂

∂
 =  

)1a(Γb
)bα( a

+
e-αb.  (4.21) 
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From (4.14), (4.19) and (4.21), we conclude that 

 
b

)b,a;x(fln βα

∂

∂ ↔  = 
b
a

 - x - 
)]a(Γ)a(Γ)[a(Γb

e)bα(e)bβ(

αβ

bαabβa

−
− −−

 (4.22) 

Then, from (4.22), we obtain 

2
βα

2

b

)b,a;x(fln

∂

∂ ↔  = - 2b
a

 - 
b∂
∂













−
− −−

)]a(Γ)a(Γ)[a(Γb
e)bα(e)bβ(

αβ

bαabβa
 = 

= - 2b
a

 - 2b
1a −

)]a(Γ)a(Γ)[a(Γ
e)bα(e)bβ(

αβ

bαabβa

−
− −−

 + 2b
1

)]a(Γ)a(Γ)[a(Γ
e)bα(e)bβ(

αβ

bαabβa

−
− −−

  

+
2

αβ

bαabβa

)]a(Γ)a(Γ)[a(Γb
e)bα(e)bβ(













−
− −−

, (4.23) 

if we have in view the following relations 

b
]e)bα(e)bβ[( bαabβa

∂
−∂ −−

 = 
b
a

[(βb)ae-βb-(αb)ae-αb] - 

- 
b
1

 [(βb)a+1e-βb-(αb)a+1e-αb],      

  
b

)]a(Γ)a(Γ)[a(Γ αββ

∂

−∂
 = Γ(a) [Γβ(a) - Γβ(a)] + [(βb)ae-βb-(αb)ae-αb]  (4.25) 

Using this last relation and taking into account (4.12) we can express Fisher's 
information measure just in the form (4.5). Thus, the proof is complete.  

 
Corollary 4.1 If X follows a Gamma distribution and Xα↔β follows a Gamma 
distribution, truncated to the left at X = α and to the right at X = β, then the Fisher 
information 

baXI
↔

(b) and Var(Xα↔β) always are equal, that is, we have 

    
baXI

↔
(b) = Var(Xα↔β), α, β∈R, 0 ≤ α ≤ β, a, b∈R+. 

 
Proof. This equality follows from the relations (3.22) and (4.5).  

   
Corollary 4.2 If α and β → +∞, then the random variable Xα↔β becomes an ordinary 
Gamma variable X and we have 

∞→→ β,0α
lim fα↔β(x;a,b) = fX(x;a,b) = 









>

≤

−− 0 xif  ex
)a(Γ

b

0 xif            0         

bx1a
a  (4.27) 

and 
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baXI

↔
(b) = IX(b) = Var(X) = 2b

a
,  (4.28) 

where a, b ∈R+.  
Corollary 4.3 If α, β → +∞ and a = 1, then the random variable Xα↔β becomes a 
negative exponential distribution X and we have 

∞→→ β,0α
lim fα↔β(x;a,b)|a=1 = fX(x;b) = 





>>

≤
− 0b 0, xif              be

0 xif            0         
bx  (4.29) 

and 

 
baXI

↔
(b) = IX(b) = Var(X) = 2b

1
,  (4.30) 
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