ON UNIVALENT INTEGRAL OPERATOR

by
 Daniel Breaz and Nicoleta Breaz

Abstract. Let S be the class of regular and univalent function $f(\mathrm{z})=z+a_{2} z^{2}+\ldots$, in the unit disc, $U=\{z:|z|<1\}$. We prove new univalence criteria for the integral operator $F_{\alpha \beta}$.

Theorem 1. If the function f is regular in unit disc $\mathrm{U}, f(\mathrm{z})=z+a_{2} z^{2}+\ldots$, and

$$
\begin{equation*}
\left(1-|z|^{2}\right) \cdot\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1,(\forall) z \in U \tag{1}
\end{equation*}
$$

then the function f is univalent in U .
Theorem 2. If the function g is regular in U and $|g(z)|<1$ in U , then for all $\xi \in U$ and $z \in U$ the following inequalities hold

$$
\begin{equation*}
\left|\frac{g(\xi)-g(z)}{1-\overline{g(z) g(\xi)}}\right| \leq\left|\frac{\xi-z}{1-\bar{z} \xi}\right| \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|g^{\prime}(z)\right| \leq \frac{1-|g(z)|^{2}}{1-|z|^{2}} \tag{3}
\end{equation*}
$$

the equalities hold only in case $g(z)=\varepsilon \frac{z+u}{1+\bar{u} z}$ where $|\varepsilon|=1$ and $|u|<1$.
Remark A For $z=0$, from inequality (2) we obtain for every $\xi \in U$

$$
\begin{equation*}
\left|\frac{g(\xi)-g(0)}{1-\overline{g(0) g(\xi)}}\right| \leq|\xi| \tag{4}
\end{equation*}
$$

and, hence

$$
\begin{equation*}
|g(\xi)| \leq \frac{|\xi|+|g(0)|}{1+|g(0)||\xi|} \tag{5}
\end{equation*}
$$

Considering $g(0)=a$ and $\xi=z$ then $|g(z)| \leq \frac{|z|+|a|}{1+|a| z \mid}$,
for all $z \in U$.

Theorem 3. Let γ be a complex number and the function $h \in S, h(\mathrm{z})=z+a_{2} z^{2}+\ldots$. If

$$
\begin{equation*}
\left|\frac{z h^{\prime}(z)-h(z)}{z h(z)}\right| \leq 1,(\forall) z \in U, \tag{7}
\end{equation*}
$$

for all $z \in U$ and the constant $|\gamma|$ satisfies the condition

$$
\begin{equation*}
|\gamma| \leq \frac{1}{\max _{|z| \leq 1}\left[\left(1-|z|^{2}\right) \cdot|z| \cdot \frac{|z|+|c|}{1+|c| \cdot|z|}\right]}, \tag{8}
\end{equation*}
$$

then the function

$$
\begin{equation*}
F_{\gamma}(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\gamma} \cdot d t \in S \tag{10}
\end{equation*}
$$

Theorem 4. Let $\alpha, \beta \in C, f, g \in S, f(\mathrm{z})=z+a_{2} z^{2}+\ldots, g(\mathrm{z})=z+b_{2} z^{2}+\ldots$, If

$$
\begin{align*}
& \left|\frac{z f^{\prime}(z)-f(z)}{z f(z)}\right| \leq 1,(\forall) z \in U, \tag{11}\\
& \left|\frac{z g^{\prime}(z)-g(z)}{z g(z)}\right| \leq 1,(\forall) z \in U, \tag{12}\\
& \frac{1}{|\alpha|}+\frac{1}{|\beta|}<1, \tag{13}\\
& |\alpha \cdot \beta| \leq \frac{1}{\max _{|z| \leq 1}\left[\left(1-|z|^{2}\right) \cdot|z| \cdot \frac{|z|+|c|}{1+|c| \cdot|z|}\right]}, \tag{14}
\end{align*}
$$

where

$$
\begin{equation*}
|c|=\frac{\left|\alpha a_{2}+\beta b_{2}\right|}{|\alpha \cdot \beta|}, \tag{15}
\end{equation*}
$$

then

$$
F_{\alpha \beta}(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\alpha} \cdot\left(\frac{g(t)}{t}\right)^{\beta} d t \in S
$$

Proof:

$$
f, g \in S \text {, and } \frac{f(z)}{z} \neq 0, \frac{g(z)}{z} \neq 0 .
$$

For $z=0$ we are $\left(\frac{f(z)}{z}\right)^{\alpha} \cdot\left(\frac{g(z)}{z}\right)^{\beta}=1$.

We consider the function $h(z)=\frac{1}{|\alpha \cdot \beta|} \cdot \frac{F_{\alpha \beta}^{\prime \prime}(z)}{F_{\alpha \beta}^{\prime}(z)}$, where $|\alpha \cdot \beta|$ satisfy (14).
We calculate the derivative by order 1 and 2 for $F_{\alpha \beta}$.
We are: $F_{\alpha \beta}^{\prime}(z)=\left(\frac{f(z)}{z}\right)^{\alpha} \cdot\left(\frac{g(z)}{z}\right)^{\beta}$

$$
F_{\alpha \beta}^{\prime \prime}(z)=\alpha\left(\frac{f(z)}{z}\right)^{\alpha-1} \cdot \frac{z f^{\prime}(z)-f(z)}{z^{2}} \cdot\left(\frac{g(z)}{z}\right)^{\beta}+\beta\left(\frac{g(z)}{z}\right)^{\beta-1} \cdot \frac{z g(z)-g(z)}{z^{2}} \cdot\left(\frac{f(z)}{z}\right)^{\alpha}
$$

Then $h(z)$ are the form:
$h(z)=\frac{1}{|\alpha \cdot \beta|} \cdot \frac{F_{\alpha \beta}^{\prime \prime}(z)}{F_{\alpha \beta}^{\prime}(z)}=\frac{1}{|\alpha \cdot \beta|} \cdot \frac{\alpha\left(\frac{f(z)}{z}\right)^{\alpha-1} \cdot \frac{z f^{\prime}(z)-f(z)}{z^{2}} \cdot\left(\frac{g(z)}{z}\right)^{\beta}}{\left(\frac{f(z)}{z}\right)^{\alpha} \cdot\left(\frac{g(z)}{z}\right)^{\beta}}+$
$+\frac{1}{|\alpha \cdot \beta|} \cdot \frac{\beta\left(\frac{g(z)}{z}\right)^{\beta-1} \cdot \frac{z g(z)-g(z)}{z^{2}} \cdot\left(\frac{f(z)}{z}\right)^{\alpha}}{\left(\frac{f(z)}{z}\right)^{\alpha} \cdot\left(\frac{g(z)}{z}\right)^{\beta}}$.
$=\frac{1}{|\alpha \cdot \beta|} \cdot \alpha \cdot \frac{z f^{\prime}(z)-f(z)}{z f(z)}+\frac{1}{|\alpha \cdot \beta|} \cdot \beta \cdot \frac{z g^{\prime}(z)-g(z)}{z g(z)}$.
We are $h(0)=\frac{1}{|\alpha \cdot \beta|} \cdot \alpha a_{2}+\frac{1}{|\alpha \beta|} \cdot \beta b_{2}$ and the condition (11) and (12)
But $|h(z)|=\left|\frac{1}{|\alpha \cdot \beta|} \cdot \alpha \cdot \frac{z f^{\prime}(z)-f(z)}{z f(z)}+\frac{1}{|\alpha \cdot \beta|} \cdot \beta \cdot \frac{z g^{\prime}(z)-g(z)}{z g(z)}\right| \leq$
$\leq \frac{|\alpha|}{|\alpha \cdot \beta|} \cdot\left|\frac{z f^{\prime}(z)-f(z)}{z f(z)}\right|+\frac{|\beta|}{|\alpha \cdot \beta|} \cdot\left|\frac{z g^{\prime}(z)-g(z)}{z g(z)}\right| \leq \frac{1}{|\alpha|}+\frac{1}{|\beta|}<1$ from (13) and $|h(z)|<1$.
$|h(0)|=\frac{\left|\alpha a_{2}+\beta b_{2}\right|}{|\alpha \beta|}=|c|$
Applied Remark A for the function h obtained: $|h(z)| \leq \frac{|z|+|c|}{1+|c| \cdot|z|},(\forall) z \in U$
But $\left.|h(z)|=\frac{1}{\mid \alpha \cdot \beta}|\cdot| \frac{F_{\alpha \beta}^{\prime \prime}(z)}{F_{\alpha \beta}^{\prime}(z)} \right\rvert\,$

And we have $\left.\frac{1}{|\alpha \cdot \beta|} \cdot \frac{F_{\alpha \beta}^{\prime \prime}(z)}{F_{\alpha \beta}^{\prime}(z)} \right\rvert\, \leq \frac{|z|+|c|}{1+|c| \cdot|z|},(\forall) z \in U \Leftrightarrow$
$\Leftrightarrow\left|\frac{F_{\alpha \beta}^{\prime \prime}(z)}{F_{\alpha \beta}^{\prime}(z)}\right| \leq|\alpha \cdot \beta| \cdot \frac{|z|+|c|}{1+|c| \cdot|z|},(\forall) z \in U \Leftrightarrow$
$\Leftrightarrow\left|\left(1-|z|^{2}\right) \cdot z \cdot \frac{F_{\alpha \beta}^{\prime \prime}(z)}{F_{\alpha \beta}^{\prime}(z)}\right| \leq|\alpha \cdot \beta| \cdot\left(1-|z|^{2}\right) \cdot|z| \cdot \frac{|z|+|c|}{1+|c| \cdot|z|},(\forall) z \in U$.(applied th.1) (16)
Let's consider the function $H:[0,1] \rightarrow R, H(x)=\left(1-x^{2}\right) \cdot x \cdot \frac{x+|c|}{1+|c| \cdot x}, \quad x=|z|$

$$
H\left(\frac{1}{2}\right)=\left(1-\frac{1}{4}\right) \cdot \frac{1}{2} \cdot \frac{\frac{1}{2}+|c|}{1+|c| \cdot \frac{1}{2}}=\frac{3}{8} \cdot \frac{1+|c|}{2+|c|}>0 \Rightarrow \max _{x \in[0,1]} H(x)>0 .
$$

Using this result in (16) we have:
$\left|\left(1-|z|^{2}\right) \cdot z \cdot \frac{F_{\alpha \beta}^{\prime \prime}(z)}{F_{\alpha \beta}^{\prime}(z)}\right| \leq|\alpha \cdot \beta| \cdot \max _{x \in[0,1]}\left[\left(1-|z|^{2}\right) \cdot|z| \cdot \frac{|z|+|c|}{1+|c| \cdot|z|}\right],(\forall) z \in U$ and (14) implies $\left(1-|z|^{2}\right) \cdot\left|\frac{z F_{\alpha \beta}^{\prime \prime}(z)}{F_{\alpha \beta}^{\prime}(z)}\right| \leq 1,(\forall) z \in U$ and using the theorem 1 obtained $F \in S$.
Remark B. For $g(z)=z, \beta \in C,|\beta|>1$, we obtained theorem 3 .

REFERENCES

[1] V.Pescar- On some integral operations which preserve the univalence,,Journal of Mathematics, Vol. xxx (1997) pp.1-10, Punjab University
[2] J. Becker, Lownersche Differentialgleichung und quasikonform fortsezbare schichte Funktionen, J. Reine Angew. Math. 225 (1972), 23-43.
[3] N.N. Pascu- An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Braşov, (1987), 43-48.
[4] N.N. Pascu, V. Pescar, On the integral operators of Kim-Merkens and Pfaltzgraff, Studia(Mathematica), Univ. Babeş-Bolyai, Cluj-Napoca, 32, 2(1990), 185-192.

Authors:

Daniel Breaz, Nicoleta Breaz-, 1 Decembrie 1918" University of Alba Iulia, str. N.Iorga, No.13, Departament of Mathematics and Computer Science, dbreaz@lmm.uab.ro, nbreaz@lmm.uab.ro.

