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ON UNIVALENT INTEGRAL OPERATOR 
 

by 
Daniel Breaz and Nicoleta Breaz 

 
Abstract. Let S be the class of regular and univalent function ( ) ...,z 2

2 ++= zazf  in the unit 
disc, { }1: <= zzU .We prove new univalence criteria for the integral operator αβF . 

 
Theorem 1. If the function f is regular in unit disc U, ( ) ...,z 2

2 ++= zazf and  
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′
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then the function f is univalent in U. 
Theorem 2. If the function g is regular in U and ( ) 1<zg  in U, then for all U∈ξ and 

Uz∈  the following inequalities hold 
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the equalities hold only in case ( )
zu
uzzg

+
+

=
1

ε  where 1=ε  and 1<u . 

Remark A For z=0 , from inequality (2) we obtain for every U∈ξ  
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and, hence  

( ) ( )
( ) ξ

ξ
ξ

01
0

g
g

g
+

+
≤ ,                                       (5) 

Considering ( ) ag =0  and z=ξ  then ( )
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for all Uz∈ . 
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Theorem 3. Let γ  be a complex number and the function Sh∈ , ( ) ...,z 2
2 ++= zazh . 

If   
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for all Uz∈  and the constant γ  satisfies the condition  
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then the  function  
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Theorem 4. Let ( ) ( ) ...,z...,z ,,  ,, 2
2

2
2 ++=++=∈∈ zbzgzazfSgfCβα . 

If 
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Proof:  

 ,, Sgf ∈  and ( ) ( ) 0,0 ≠≠
z
zg

z
zf . 

For  z=0  we are  ( ) ( ) 1=
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We consider the function  ( ) ( )
( )zF
zF

zh
αβ
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′′
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1 , where βα ⋅  satisfy (14). 

We calculate the  derivative by order  1 and  2 for αβF . 
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Then  h(z) are the form: 
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Applied Remark A  for the function h obtained: ( ) ( ) Uz
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And we have  
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Let’s consider the function [ ] RH →1,0: , ( ) ( ) zx
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Using this result in (16) we have: 
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Remark B. For ( ) 1,, >∈= ββ Czzg , we obtained theorem 3. 
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