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1.Introduction and necessary background materials

Let f and g be two non constant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f and g have the same set of a-points
with the same multiplicities, we say that f and g share the value a CM (Counting
Multiplicities)and if we do not consider the multiplicities, then f and g are said
to share the value a IM (Ignoring Multiplicities). We do not explain the standard
notations and definitions of the value distribution theory as these are available in [9].
Let S be a set of distinct elements of C∪{∞} and Ef (S) =

⋃
a∈S{z : f(z)−a = 0},

where each zero is counted according to its multiplicity. If we do not count the
multiplicity then we replace the above set by Ef (S). If Ef (S) = Eg(S) we say that
f and g share the set S CM. On the other hand if Ef (S) = Eg(S), we say that f
and g share the set S IM. When we let r, a real number, tend towards ∞ we will
always assume that while approaching to∞, r may avoid some subset E, say, of the
real line of finite measure, not necessarily the same at every occurrence.

In 1976 F.Gross proposed the following question in [8].
Question A. Can one find finite sets Sj,j = 1, 2 such that any two nonconstant

entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be identical ?
Gross also raised question about the cardinalities of such sets if it exist.
Yi[17] and independently Fang and Xu[5] gave the one and same positive answer

to this question. Now it is natural to ask the following question.
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Question B. Can one find finite sets Sj, j = 1, 2 such that any two nonconstant
meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be
identical ?

In 1994 Yi[15] gave an affirmative answer to Question B and proved that there
exist two finite sets S1(with two elements)and S2(with nine elements) such that any
two nonconstant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for
j = 1, 2 must be identical.

In 1996 Li and Yang [13] proved that there exist two finite sets S1(with one
element)and S2(with fifteen elements) such that any two nonconstant meromorphic
functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be identical.

In 1997 Fang and Guo[4] obtained a better result than that of Li and Yang.
They succeeded in establishing the above result with two sets with less cardinalities
namely S1 with one element and S2 with nine elements.

Suppose that the polynomial P (w)is defined by

P (w) = awn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2 (1)

where n ≥ 3 is an integer and a and b are two nonzero complex numbers satisfying

abn−2 6= 2. We also define

R(w) =
awn

n(n− 1)(w − α1)(w − α2)
, (2)

where α1, α2are two distinct roots of n(n−1)w2−2n(n−2)bw+(n−1)(n−2)b2 = 0.
It can be shown that P (w) has only simple roots.{See [1,2].}

In 2002 Yi[19] proved the following result in which he not only reduced the
cardinalities of the set S but also relaxed the sharing of the poles from CM to IM.

Theorem A.[19] Let S = {w | P (w) = 0}, where P (w)is given by (1)and
n(≥ 8). Suppose that f and g are two nonconstant meromorphic functions such that
Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}) then f ≡ g.

As a consequence of Question B, Yi and Lü[20] raised the following question in
2004.

Question C. Can one find finite sets Sj,j = 1, 2 such that any two nonconstant
meromorphic functions f and g satisfying for Ef (Sj) = Eg(Sj) j = 1, 2 must be
identical ?

In this direction they established the following results which also improved results
already obtained by Yi[16].

Theorem B.[20] Let S = {w | P (w) = 0}, where P (w)is given by (1)and
n(≥ 12). Suppose that f and g are two nonconstant meromorphic functions such
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that Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞})
then f ≡ g.

Theorem C.[20] Let S = {w | P (w) = 0}, where P (w)is given by (1)and
n(≥ 13). Suppose that f and g are two nonconstant meromorphic functions such
that Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞})
then f ≡ g.

In 2001 Lahiri introduced the notion of weighted sharing as follows.

Definition 1.[10,11] Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m
is counted m times if m ≤ k and
k + 1times if m > k. If Ek(a; f) = Ek(a; g), we say that f and g share the value a
with weight k.

The definition implies that if f, g share a value a with weight k, then z0 is a zero
of f − a with multiplicity m(≤ k) if and only if it is a zero of g− a with multiplicity
m(≤ k) and z0 is a zero of f − a of multiplicity
m(> k) if and only if it is a zero of g − a with multiplicity n(> k) where m is not
necessarily equal to n.

We write f , g share (a, k) to mean f , g share the value a with weight k. Clearly
if f , g share (a, k) then f , g share (a, p) for all integers p , 0 ≤ p < k. Also we note
that f , g share a value a IM or CM if and
only f , g share (a, 0) or (a,∞) respectively.

Definition 2.[11] Let S be a set of distinct elements of C ∪ {∞} and k be a
positive integer or∞. We denote by Ef (S, k)the set

⋃
a∈S Ek(a; f). Clearly Ef (S) =

Ef (S,∞) and Ef (S) = Ef (S, 0).

Recently Banerjee[1] improved and supplemented Theorem A and Theorem B as
follows.

Theorem D.[1] Let S = {w | P (w) = 0}, where P (w)is given by (1)and n(≥
8). Suppose that f and g are two nonconstant meromorphic functions such that
Ef (S, 2) = Eg(S, 2) and
Ef ({∞}, 0) = Eg({∞}, 0) then f ≡ g.

Theorem E.[1] Let S = {w | P (w) = 0}, where P (w)is given by (1)and n(≥
9). Suppose that f and g are two nonconstant meromorphic functions such that
Ef (S, 1) = Eg(S, 1) and
Ef ({∞}, 0) = Eg({∞}, 0) then f ≡ g.

Theorem F.[1] Let S = {w | P (w) = 0}, where P (w)is given by (1)and n(≥
12). Suppose that f and g are two nonconstant meromorphic functions such that
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Ef (S, 0) = Eg(S, 0) and
Ef ({∞}, 3) = Eg({∞}, 3) then f ≡ g.

Note that none of the above mentioned theorems of Banerjee improves Theorem
C, which has been claimed to be the best result till date in[20]. In a most recent
paper Banerjee, however established the following result as a special case of which
one can obtain Theorem C as well as Theorem F.

Theorem G.[2] Let S = {w | P (w) = 0}, where P (w)is given by (1)and n(≥ 9).
If f and g be two nonconstant meromorphic functions such that Ef (S, 0) = Eg(S, 0)
and Ef ({∞}, k) = Eg({∞}, k) and
11
4 min{Θf ,Θg} > 9

2 + 2(n−3)
(n−5){(n−2)k+(n−3)} + 10

n−5 −
n
2 then f ≡ g, where Θf =

Θ(0; f) + Θ(b; f) and Θg is defined similarly.

Remark 1. In Theorem G when n ≥ 12 and k = 3 we get Theorem F. Again
when n ≥ 13 and k = 0 we get Theorem C. Thus Theorem G improves both
Theorems C and F.

Strictly speaking Theorem G is a generalization of Theorems C and F rather
than direct improvements since it can neither reduce the cardinality of the shared
set S in Theorem C nor it reduces the weight of the shared
set {∞} in Theorem F. In this paper we propose our first theorem below as a
corollary of which we may get the desired improvements of Theorem C and Theorem
F.

Theorem 1. Let S = {w | P (w) = 0}, where P (w)is given by (1)and n(≥
9). If f and g be two nonconstant meromorphic functions such that Ef (S, 0) =
Eg(S, 0) and Ef ({∞}, k) = Eg({∞}, k) and min{3Θ(0; f) + 2Θ(b; f), 3Θ(0; g) +
2Θ(b; g)} > 4 + 8

n−5 + 2n−6
(n−5){(n−2)k+(n−3)} −

n
2 then f ≡ g.

Following corollary is a natural consequence of above theorem.

Corollary 1. Let S = {w | P (w) = 0}, where P (w)is given by (1)and n(≥ 12).
If f and g be two nonconstant meromorphic functions such that Ef (S, 0) = Eg(S, 0)
and Ef ({∞}, 0) = Eg({∞}, 0) then f ≡ g.

Recently Banerjee also obtained the following results in two different papers
where he has considered the shared set S with less number of elements to obtain the
uniqueness of functions under different conditions improving some previous results.

Theorem H.[2] Let S = {w | P (w) = 0}, where P (w)is given by (1)and n(≥ 6).
If f and g be two nonconstant meromorphic functions such that Ef (S, 2) = Eg(S, 2)
and Ef ({∞}, 0) = Eg({∞}, 0) and 2min{Θf ,Θg} > 3 + 3

2(n−3) + 6
3n−11 −

n
2 then

f ≡ g, where Θf = Θ(0; f) + Θ(b; f) and Θg is defined similarly.
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Theorem I.[3] Let S = {w | P (w) = 0}, where P (w)is given by (1)and n(≥ 7).
If f and g be two nonconstant meromorphic functions such that Ef (S, 2) = Eg(S, 2)
and Ef ({∞},∞) = Eg({∞},∞) and min{Θ1

f ,Θ
1
g} > 7+ 2

n−3−n then f ≡ g, where

Θ1
f = 4Θ(0; f) + 4Θ(b; f) + Θ(∞; f) and Θ1

g is defined similarly.

In our next Theorem we improve Theorem I by reducing the cardinality of the
set S from 7 to 5 and extending the Theorem for any weight k, for the shared set
{∞}. Also we claim that our next result will also improve Theorem H.Thus our
next result will combine both Theorems H and I in an improved result. Note that
in the definition of the polynomial P (w), we require abn−2 6= 2. For our purpose,
in addition to it we assume abn−2 6= 1, by which the polynomial P (w) will not lose
any of its properties mentioned above. Thus from now on our set S is given by
S = {w | P (w) = 0} where P (w) is given by (1) with abn−2 6= 2, 1.

We state below our next Theorem

Theorem 2. Let S = {w | P (w) = 0}, where P (w)is given by (1)and n(≥ 5) and
abn−2 6= 2, 1. Suppose that f and g are two nonconstant meromorphic functions such
that Ef (S, 2) = Eg(S, 2) and Ef ({∞}, k) = Eg({∞}, k)where k is a nonnegative
integer or ∞.
If min{Θ1

f ,Θ
1
g} > 7 + 2

n−3 + 8n−24
(3n−11){(n−2)k+n−3} − n, then f ≡ g where Θ1

f and Θ1
g

are same as Theorem I.

Remark 2. When k =∞ in Theorem 2 we get the conclusion of Theorem I with
the shared set S containing less number of elements(five elements). Thus Theorem
2 improves Theorem I.

When n ≥ 8 in Theorem 2 we obtain Theorem D. Thus Theorem 2 improves
Theorem D. Also it is easy to verify that the condition on ramification index in this
theorem is weaker than the condition in the Theorem H for n = 6 and n = 7. Since
when n ≥ 8 the condition on ramification indices cease to exist both in Theorems H
and 2, Theorem 2 improves Theorem H.

We close this section with a few more definitions.

Definition 3. For a ∈ C∪{∞} For a positive integer m we denote by N(r, a; f |≥
m) the counting function of those a-points of fwhose multiplicities are not less than
m where each a-point is counted according to its multiplicity. We agree to write
N(r, a; f |≥ m) to denote the corresponding reduced counting function.

Definition 4.[10,18,20] Let f and g be two nonconstant meromorphic functions
such that f and g share (a, k)where a ∈ C∪{∞}. Let z0 be an a-point of f with multi-
plicity p, an a-point of g of multiplicity q. We denote by NL(r, a; f)(NL(r, a; g)) the

counting function of those a-points of fand g where p > q(q > p), by N
(k+1
E (r, a; f)

the counting functions of those a-points of f and g where p = q ≥ k + 1 each point
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in these counting functions is counted only once. In the same way we can define

N
(k+1
E (r, a; g). Clearly N

(k+1
E (r, a; f) = N

(k+1
E (r, a; g). We denote by N∗(r, a; f, g)

the reduced counting function of those a-points of f whose multiplicities differ
from the corresponding a-points of g. Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and

N∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g). We also denote by N
1)
E (r, a; f) the counting

function of those a-points of f , g for which p = q = 1.

Definition 5.[1] Let f and g share the value 1 IM.Let z0 be a 1-point of f and
g with multiplicities p and q respectively. Let s be a positive integer. We denote by
Nf>s(r, 1; g) the reduced counting function of those 1-points of f and g such that
p > q = s.

2.Lemmas

In this section we present some lemmas which will be required to establish our
results. In the lemmas several times we use the function H defined by H = F ′′

F ′ −
2F ′

F−1 −
G′′

G′ + 2G′

G−1 .
Let f and g be two nonconstant meromorphic functions and

F = R(f), G = R(g), (3)

where R(w) is given by (2). From (2) and (3) it is clear that

T (r, f) =
1

n
T (r, F ) + S(r, f), T (r, g) =

1

n
T (r,G) + S(r, g). (4)

Lemma 1.[2] Let F and G be given by (3)where n ≥ 3 is an integer and H 6≡ 0. If
F , G share (1,m)and f, g share (∞, k), where 0 ≤ m <∞. Then {n2 +1}{T (r, f)+
T (r, g)} ≤ 2[N(r, 0; f) +N(r, 0; g) +N(r, b; f) +N(r, b; g)] +N(r,∞; f) +N(r,∞; g)
+N∗(r,∞; f, g)− (m− 3

2)N∗(r, 1;F,G) + S(r, f) + S(r, g).

Lemma 2.[1] Let F and G be given by (3) and H 6≡ 0. If F , G share (1,m) and
f, g share (∞, k), where 0 ≤ m <∞, 0 ≤ k <∞, then [(n−2)k+n−3]N(r,∞; f |≥
k+1) = [(n−2)k+n−3]N(r,∞; g |≥ k+1) ≤ N(r, 0; f)+N(r, 0; g)+N∗(r, 1;F,G)+
S(r, f) + S(r, g).

Lemma 3.[1] Let F and G be given by (3) and H 6≡ 0. If F , G share (1,m)and f ,
g share (∞, k), where 0 ≤ m <∞, 0 ≤ k <∞, then [(n− 2)k + n− 3]N(r,∞; f |≥
k + 1) = [(n − 2)k + n − 3]N(r,∞; g |≥ k + 1) ≤ m+2

m+1 [N(r, 0; f) + N(r, 0; g)] +
2

m+1N(r,∞; f) + S(r, f) + S(r, g).

Lemma 4.[2] Let F and G be given by (3). Also let S be given as in Theorem
1, where n ≥ 3 is an integer. If Ef (S, 0) = Eg(S, 0) then S(r, f) = S(r, g).
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Lemma 5. If f and g share (1, 0) then N(r, 1; g)−N(r, 1; g) ≥ 2NL(r, 1; g) +

NL(r, 1; f) +N
(2
E (r, 1; f) +N

(3
E (r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f). Proof: Let z0

be a 1-point of f and g of respective multiplicities p and q.We denote by N2(r)and
N3(r)the counting functions of those 1-points of f and g when 2 ≤ q = p and
1 ≤ p < q respectively where each point in these counting functions is counted q− 2
times.
Since f, g share (1, 0) we have N(r, 1; g)−N(r, 1; g)

≥ NL(r, 1; g) +N3(r) +N2(r) +N
(2
E (r, 1; f) +NL(r, 1; f)−Nf>1(r, 1; g).

Now observing N2(r) ≥ N
(3
E (r, 1; f) and N3(r) ≥ NL(r, 1; g) − Ng>1(r, 1; f)our

lemma follows from above.

Lemma 6.[2] Let F , G be given by (3). If F , G share (1,m),where 0 ≤ m <
∞,then

(i) NL(r, 1;F ) ≤ 1
m+1 [N(r, 0; f) +N(r,∞; f)] + S(r, f),

(ii) NL(r, 1;G) ≤ 1
m+1 [N(r, 0; g) +N(r,∞; g)] + S(r, g)

Lemma 7.[1] Let F , G be given by (3)and H 6≡ 0. If F , G share (1,m) and
f , g share (∞, k),where 0 ≤ k ≤ ∞,then

N
1)
E (r, 1;F ) ≤ NL(r, 1;F ) +NL(r, 1;G) +N(r, 0; f) +N(r, b; f)

+N∗(r,∞; f, g)+N(r, 0; g)+N(r, b; g)+N0(r, 0; f ′)+N0(r, 0; g′)+S(r, F )+S(r,G)
where N0(r, 0; f ′) denotes the reduced counting function corresponding to the zeros
of f ′which are not the zeros of

f(f − b) and F − 1, N0(r, 0; g′)is defined similarly.

Lemma 8. Let F and G be given by (3). If F , G share (1, 0) and f , g share
(∞, k) and H 6≡ 0 then

(n+ 1)T (r, f) + T (r, g)

≤ 2{N(r, 0; f) +N(r, b; f) +N(r, 0; g) +N(r, b; g) +N(r,∞; f)}

+N(r,∞; f |≥ k + 1) + 2NL(r, 1;F ) + S(r, f) + S(r, g).
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Proof. We denote by N0(r, 0; f ′) the counting function of those zeros of f ′ which are
not the zeros of f(f − 1) and F − 1. N0(r, 0; g′) is defined similarly. By the second
fundamental theorem we get

(n+ 1)T (r, f) + (n+ 1)T (r, g)

≤ N(r, 1;F )+N(r, 0; f)+N(r, b; f)+N(r,∞; f)+N(r, 1;G)+N(r, 0; g)+N(r, b; g)+
N(r,∞; g)

−N0(r, 0; f ′)−N0(r, 0; g′) + S(r, g) + S(r, f)

= {N(r, 0; f) +N(r, b; f) +N(r,∞; f) +N(r, 0; g) +N(r, b; g) +N(r,∞; g)}

+N
1)
E (r, 1;F )+N(r, 1;F |≥ 2)+N(r, 1;G)−N0(r, 0; f ′)−N0(r, 0; g′)+S(r, g)+S(r, f)

Note that since F , G share (1, 0) we have

N(r, 1;F |≥ 2) = N
(2
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G)−NG>1(r, 1;F )

Since f, g share (∞, k), N∗(r,∞; f, g) ≤ N(r,∞; f |≥ k + 1), and hence using
Lemma 7 with m = 0 and Lemma 5 we obtain from above

(n+ 1)T (r, f) + (n+ 1)T (r, g)

≤ {N(r, 0; f) +N(r, b; f) +N(r,∞; f) +N(r, 0; g) +N(r, b; g) +N(r,∞; g)}

+NL(r, 1;F ) +NL(r, 1;G) +N(r, 0; f) +N(r, b; f)

+N∗(r,∞; f, g) +N(r, 0; g) +N(r, b; g) +N0(r, 0; f ′) +N0(r, 0; g′)

+N
(2
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G)−NG>1(r, 1;F )

+N(r, 1;G)−N0(r, 0; f ′)−N0(r, 0; g′) + S(r, g) + S(r, f)

≤ 2{N(r, 0; f) +N(r, b; f) +N(r, 0; g) +N(r, b; g)}

+N(r,∞; f)+N(r,∞; g)+N(r,∞; f |≥ k+1)+NL(r, 1;F )+N(r, 1;G)+NF>1(r, 1;G)+
S(r, f) + S(r, g)

≤ 2{N(r, 0; f) +N(r, b; f) +N(r, 0; g) +N(r, b; g) +N(r,∞; f)}

140



A. Sarkar, P. Chattopadhyay - Results on meromorphic functions ...

+N(r,∞; f |≥ k + 1) + 2NL(r, 1;F ) + nT (r, g)−m(r, 1;G) + S(r, f) + S(r, g).

Therefore

(n+ 1)T (r, f) + T (r, g)

≤ 2{N(r, 0; f) +N(r, b; f) +N(r, 0; g) +N(r, b; g) +N(r,∞; f)}

+N(r,∞; f |≥ k + 1) + 2NL(r, 1;F ) + S(r, f) + S(r, g). This completes the proof.

Lemma 9.[2] Let f , g be two non-constant meromorphic functions sharing (∞, 0)
and suppose that α1 and α2 are two distinct roots of the equation n(n − 1)w2 −
2n(n − 2)bw + (n − 1)(n − 2)b2 = 0. Then fn

(f−α1)(f−α2)
. gn

(g−α1)(g−α2)
6≡ n2(n−1)2

a2
,

where n ≥ 3 is an integer.

Lemma 10.[7] Let Q(w) = (n− 1)2(wn− 1)(wn−2− 1)−n(n− 2)(wn−1− 1)2, then
Q(w) = (w−1)4(w−β1)(w−β2)..(w−β2n−6) where βj ∈ C\{0, 1}, (j = 1, 2, .., 2n−6)
which are pairwise distinct.

Lemma 11.Let F , G be given by (5), where n ≥ 4 is an integer. If f , g share
(∞, 0) then F ≡ G⇒ f ≡ g.
Proof.From the definitions of F , G we observe that F ≡ G ⇒ fn

(f−α1)(f−α2)
≡

gn

(g−α1)(g−α2)
. Therefore f , g share (0,∞) and (∞,∞). Then from above and in view

of the definition of R(w) we obtain

n(n−1)f2g2(fn−2−gn−2)−2n(n−2)bfg(fn−1−gn−1)+(n−1)(n−2)b2(fn−gn) = 0.
(5)

Let h = f
g that is f = gh which on substitution in (5) yields

n(n−1)h2g2(hn−2−1)−2n(n−2)bhg(hn−1−1)+(n−1)(n−2)b2(hn−1) = 0. (6)

Note that since f and g share (0,∞) and (∞,∞),0,∞ are the exceptional values of
Picard of h. If h is non-constant then from Lemma 2.10 and (6) we have

{n(n− 1)h(hn−2 − 1)g − n(n− 2)b(hn−1 − 1)}2 = −n(n− 2)b2Q(h) (7)

where Q(h) = (h−1)4(h−β1)(h−β2)...(h−β2n−6), βj ∈ C\{0, 1},j = 1, 2, .., 2n−6
which are pairwise distinct. From (7) we observe that each zero of h − βj ,j =
1, 2, .., 2n−6 is of order at least two.Therefore by the second main theorem we obtain
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(2n−6)T (r, h) ≤ N(r,∞;h)+N(r, 0;h)+
∑2n−6

j=1 N(r, βj ;h)+S(r, h) ≤
1
2(2n − 6)T (r, h) + S(r, h), which is a contradiction for n ≥ 4. Thus h must be a
constant. From (7) it follows that hn−2−1 = 0 and hn−1−1 = 0 which implies that
h ≡ 1. Therefore f ≡ g. This completes the proof.

Lemma 12.[2] Let F , G be given by (3) and S be defined as in Theorem 1,
where n ≥ 4. If Ef (S, 0) = Eg(S, 0) then S(r, f) = S(r, g).

3.Proof of theorems

Proof of Theorem 1. Since Ef (S, 0) = Eg(S, 0), we see that F , G share (1, 0).
We first suppose that H 6≡ 0. From Lemma 3 we obtain for m = 0 and k = 0,

N(r,∞; f) ≤ 2
n−5{N(r, 0; f) +N(r, 0; g)}

and for m = 0 and k = k , N(r,∞; f |≥ k+ 1) ≤ 2n−6
(n−5)[(n−2)k+(n−3)]{N(r, 0; f) +

N(r, 0; g)}.

Hence using the above inequalities we obtain from Lemma 8 and Lemma 6 with
m = 0

(n+ 1)T (r, f) + T (r, g) ≤ 4N(r, 0; f) + 4N(r,∞; f) + 2N(r, b; f) + 2N(r, 0; g)

+2N(r, b; g) +N(r,∞; f | ≥ k + 1) + S(r, f) + S(r, g) (8)

Similarly we obtain

(n+ 1)T (r, g) + T (r, f) ≤ 4N(r, 0; g) + 4N(r,∞; f) + 2N(r, b; g) + 2N(r, 0; f)

+2N(r, b; f) +N(r,∞; f | ≥ k + 1) + S(r, f) + S(r, g) (9)

Combining (8) and (9)we obtain from above for ε > 0
(n+ 2){T (r, f) + T (r, g)}

≤ 6N(r, 0; f) + 8N(r,∞; f) + 4N(r, b; f)

+ 6N(r, 0; g) + 4N(r, b; g) + 2N(r,∞; f |≥ k + 1) + S(r, f) + S(r, g)

≤ 6N(r, 0; f) + 4N(r, b; f) + 6N(r, 0; g) + 4N(r, b; g)

+ 16
n−5{N(r, 0; f) +N(r, 0; g)}+ 4n−12

(n−5)[(n−2)k+(n−3)]{N(r, 0; f) +N(r, 0; g)}

+ S(r, f) + S(r, g)
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≤ {10− 6Θ(0; f)− 4Θ(b, f) + ε}T (r, f) + {10− 6Θ(0; g)− 4Θ(b, g) + ε}T (r, g)

+ { 16
n−5 + 4n−12

(n−5)[(n−2)k+(n−3)]}{T (r, f) + T (r, g)}.

and hence

{3Θ(0; f) + 2Θ(b, f)− 4− 8
n−5 −

2n−6
(n−5)[(n−2)k+(n−3)] + n

2 −
ε
2}T (r, f)

+ {3Θ(0; g) + 2Θ(b, g) − 4 − 8
n−5 −

2n−6
(n−5)[(n−2)k+(n−3)] + n

2 −
ε
2}T (r, g) ≤ S(r, f) +

S(r, g), r 6∈ E. This leads to a contradiction for arbitrary ε > 0. Hence H ≡ 0. We
do not prove the rest of the part of the

Theorem as it is same as the proof of the corresponding part of Theorem 2.

Proof of Theorem 2. Since Ef (S, 2) = Eg(S, 2) according to the definitions of
F and G we observe that F , G share (1, 2). If possible suppose that H 6≡ 0. Since
n ≥ 6, using Lemma 1 for m = 2 and Lemma 2 for k = 0 and Lemma 3 for m = 2
we obtain for ε > 0 (n2 + 1){T (r, f) + T (r, g)}

≤ 2{N(r, 0; f) + N(r, 0; g) + N(r, b; f) + N(r, b; g)} + N(r,∞; f) +N(r,∞; g) +
N∗(r,∞; f, g)−1

2N∗(r, 1;F,G)+S(r, f)+S(r, g)≤ 2{N(r, 0; f)+N(r, 0; g)+N(r, b; f)+
N(r, b; g)}+N(r,∞; f) +N(r,∞; g)+N(r,∞; f |≥ k+1)− 1

2N∗(r, 1;F,G)+S(r, f)+
S(r, g) ≤ 2{N(r, 0; f)+N(r, 0; g)+N(r, b; f)+N(r, b; g)}+N(r,∞; f) +N(r,∞; g)+

4n−12
(3n−11){(n−2)k+n−3} [N(r, 0; f) +N(r, 0; g)]− 1

2N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ 2{N(r, 0; f) +N(r, 0; g) +N(r, b; f) +N(r, b; g)}+ 1
2{N(r,∞; f) +N(r,∞; g)}

+ 1
n−3{N(r,∞; f)+N(r,∞; g)}+ 4n−12

(3n−11){(n−2)k+n−3} [N(r, 0; f)+N(r, 0; g)]+S(r, f)+

S(r, g)

≤ (92 − 2Θ(0, f) − 2Θ(b, f) − 1
2Θ(∞, f) + 1

n−3 + 4n−12
(3n−11){(n−2)k+n−3} + ε)T (r, f)

+(92 − 2Θ(0, g)− 2Θ(b, g)− 1
2Θ(∞, g) + 1

n−3 + 4n−12
(3n−11){(n−2)k+n−3} + ε)T (r, g).

Thus {Θf − (7 + 2
n−3 + 8n−24

(3n−11){(n−2)k+n−3} −n)− 2ε}T (r, f) +{Θg − (7 + 2
n−3 +

8n−24
(3n−11){(n−2)k+n−3} − n)− 2ε}T (r, g)

≤ S(r, f) + S(r, g) which is a contradiction. Hence H ≡ 0. Then

F ≡ AG+B

CG+D
(10)
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where A,B,C,D are constants such that AD − BC 6= 0. Also T (r, F ) = T (r,G) +
O(1), and hence from (4)

T (r, f) = T (r, g) +O(1) . (11)

Since R(w) − c = a(w−b)3Qn−3(w)
n(n−1)(w−α1)(w−α2)

, where c = abn−2

2 6= 1, 12 and Qn−3(w) is a
polynomial in w of degree n−3, then in view of the definitions of F and G we notice
that

N(r, c;F ) ≤ N(r, b; f) + (n− 3)T (r, f) ≤ (n− 2)T (r, f) + S(r, f),

N(r, c;G) ≤ N(r, b; g) + (n− 3)T (r, g) ≤ (n− 2)T (r, g) + S(r, g). (12)

Now we consider the following cases.

Case 1.C 6= 0.
Since f, g share (∞,∞) it follows from (10) that∞ is an exceptional value of Picard
of f and g. Therefore in view of the definitions of F and G it follows that

N(r,∞;F ) = N(r, α1; f) +N(r, α2; f)

N(r,∞;G) = N(r, α1; g) +N(r, α2; g). (13)

Subcase 1.1 A 6= 0.
Suppose B 6= 0. Then from (10)it follows that N(r,−B

A ;G) = N(r, 0;F ). Thus
from the second main theorem we have from (4) and (13)

nT (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N(r,−B
A

;G) + S(r,G)

≤ N(r, 0; g) +N(r, α1; g) +N(r, α2; g) +N(r, 0; f) + S(r, g) (14)

Clearly (14) leads to a contradiction if n ≥ 5.

Therefore B = 0. Then F ≡
A
C
.G

G+D
C

and N(r, −DC ;G) = N(r,∞;F ). We also note that

c = abn−2

2 6= 0. If possible suppose c = −D
C . Also suppose that F has no 1-points.

This amounts to saying that f has no wi-points where wi ∈ S and i = 1, 2, .., n(≥ 4),
which is not possible. Therefore F must have some 1-points. Since F , G share 1-
points, we have A = C + D = C − cC and hence F = (C−cC)G

CG−cC = (1−c)G
G−c , since

C 6= 0 by our assumption. Then since c 6= 1
2 ,N(r, c;F ) = N(r, c2

2c−1 ;G). Thus by

the second main theorem and (12) we have 2nT (r, g) ≤ N(r, 0;G) + N(r,∞;G) +

N(r, c;G) +N(r, c2

2c−1 ;G) + S(r, g) ≤ N(r, 0; g) +N(r, α1; g) +N(r, α2; g) +

N(r, α1; f)+N(r, α2; f)+(n−2)T (r, f)+S(r, g) ≤ (5+n−2)T (r, g)+S(r, g)
which leads to a contradiction for n ≥ 4.
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Next let c 6= −D
C . Hence as before by the second main theorem2nT (r, g) ≤

N(r, 0;G) +N(r,∞;G) +N(r, −DC ;G) +N(r, c;G) + S(r,G)

≤ N(r, 0; g) +N(r, α1; g) +N(r, α2; g) +N(r, α1; f) +N(r, α2; f) + (n−
2)T (r, g) + S(r, g)

≤ (5 + n− 2)T (r, g) + S(r, g).
which leads to a contradiction for n ≥ 4.

Subcase 1.2 A = 0. Then clearly B 6= 0 and F ≡ 1
γG+δ where γ = C

B and

δ = D
B .

Since F and G have some 1-points, then γ + δ = 1 and so F ≡ 1
γG+1−γ . Suppose

γ 6= 1. If 1
1−γ 6= c then by second main theorem

2nT (r, f) ≤ N(r, 0;F ) +N(r, 1
1−γ ;F ) +N(r, c;F ) +N(r,∞;F ) + S(r, F )

≤ N(r, 0; f)+(n−2)T (r, f)+N(r, 0; g)+N(r, α1; f)+N(r, α2; f)+S(r, f)
⇒ (n+ 2)T (r, f) ≤ N(r, 0; f) +N(r, 0; g) +N(r, α1; f) +N(r, α2; f) + S(r, f),which
is a contradiction for n ≥ 4.

If c = 1
1−γ , then F ≡ c

(c−1)G+1 . If c 6= 1
1−c , then by the second main theorem we

obtain
2nT (r, g) ≤ N(r, 0;G)+N(r, c;G)+N(r, 1

1−c ;G)+N(r,∞;G)+S(r, g) ≤
N(r, 0; g) + (n− 2)T (r, g) +N(r,∞;F ) +N(r, α1; g) +N(r, α2; g) + S(r, g)

≤ N(r, 0; g) + (n− 2)T (r, g) +N(r, α1; f) +N(r, α2; f) +N(r, α1; g) +
N(r, α2; g) + S(r, g).

Thus (n+2)T (r, g) ≤ N(r, 0; g)+N(r, α1; f)+N(r, α2; f)+N(r, α1; g)+N(r, α2; g)+
S(r, g), which leads to a contradiction for n ≥ 4.

If c = 1
1−c then G ≡ c(F−c)

F and as above we obtain

nT (r, f) ≤ N(r, 0;F ) +N(r, c;F ) +N(r,∞;F ) + S(r, f)

≤ N(r, 0; f) +N(r, 0; g) +N(r, α1; f) +N(r, α2; f) + S(r, f).

Above leads to a contradiction for n ≥ 5. Therefore we must have γ = 1 and
hence FG ≡ 1, which is impossible by lemma 9.

Case 2.C = 0.

145



A. Sarkar, P. Chattopadhyay - Results on meromorphic functions ...

Clearly A 6= 0 and F ≡ αG + β, where α = A
D , β = B

D . Since F and G must have
some 1-points, α+β = 1 and so F ≡ αG+ 1−α. Suppose α 6= 1. If 1−α 6= c, then
by the second main theorem and (12) we obtain

2nT (r, f) ≤ N(r, 0;F ) +N(r, c;F ) +N(r,∞;F ) +N(r, 1− α;F ) + S(r, f)

≤ N(r, 0; f) +N(r,∞; f) +N(r, α1; f) +N(r, α2; f) + (n− 2)T (r, f) +N(r, 0;G) +
S(r, f).

Thus(n+2)T (r, f) ≤ N(r, 0; f)+N(r,∞; f)+N(r, α1; f)+N(r, α2; f)+N(r, 0; g)+
S(r, f) which leads to a contradiction for n ≥ 4.
If 1 − α = c,then F ≡ (1 − c)G + c.Since c 6= 1we obtain from the second main
theorem and (12)
2nT (r, g) ≤ N(r, 0;G) +N(r, c;G) +N(r,∞;G) +N(r, c

c−1 ;G) + S(r, g)

≤ N(r, 0; g)+(n−2)T (r, g)+N(r,∞; g)+N(r, α1; g)+N(r, α2; g)+N(r, 0;F )+S(r, g).
Thus (n+2)T (r, g) ≤ N(r, 0; g)+N(r, α1; g)+N(r, α2; g)+N(r,∞; g)+N(r, 0; f)+

S(r, f)
which leads to a contradiction for n ≥ 4. So α = 1. Hence F ≡ G and therefore

by Lemma 11, f ≡ g. This completes the proof.
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