COINCIDENCE AND FIXED POINT THEOREMS IN TOPOLOGICAL ORDERED SPACES

M. Omidi, M.A. Omidi, R. Omidi, M. Fouzoni and A. Karamian

ABSTRACT. This study concerns with employing the concept of \triangle -kkm maps, to verify coincidence and fixed point theorems in topological ordered spaces. The primary aim is substitute a new mild condition instead of the compactness of spaces.

2000 Mathematics Subject Classification: 39B82, 44B20, 46C05.

Keywords: Topological semilattice, Generalized \triangle -kkm mapping, Coincidence point, Fixed point, Partial ordering.

1. INTRODUCTION AND PRELIMINARIES

A semilattice is a partially ordered set X, with the partial order " \leq " for which any pair (x, x') of elements has a least upper bound denoted by x * x'. It is easy to see that any nonempty finite subset A of X has a least upper bound denoted by, sup A. In a partially ordered set (X, \leq) , two arbitrary elements x and x' are not necessary comparable, but in the case where $x \leq x'$, the set $[x, x'] = \{y \in X \ x \leq y \leq x'\}$ is called an order interval.

Now assume that (X, \leq) is a semilattice and $A \subseteq X$ is a nonempty finite subset. Then the set $\triangle(A) = \bigcup_{a \in A} [a, \sup A]$ is well defined and it has the following properties:

- $A \subseteq \triangle(A)$,
- if $A \subseteq B$ then $\triangle(A) \subseteq \triangle(B)$.

We say that a subset $E \subseteq X$ is \triangle -convex if for each nonempty finite subset $A \subseteq E$, $\triangle(A)$ is a subset of E.

A topological semilattice or more exactly a topological sup-semilattice, is a topological space X with a partial ordering \leq for which it is a semilattice with a continuous sup operation, i.e., the function, $(x, x') \rightarrow x * x'$, from $X \times X$ to X is continuous.

In the following example we give a \triangle -convex set.

Example 1. Let $X = \{ (x, 1) : 0 \le x < 1 \} \bigcup \{ (x, y) : 0 \le y \le 1, x \ge 1, y \ge x - 1 \}$ be a subset of \mathbb{R}^2 . With the partial ordering on \mathbb{R}^2 defined by

$$(a,b) \le (c,d) \Leftrightarrow c-a \ge 0, d-b \ge 0 \text{ and } d-b \le c-a,$$

X is \triangle -convex.

For each $D \subseteq X$, $\langle D \rangle$ denote the family of finite subset of D,

$$\triangle(D) = \bigcup_{A \in \langle D \rangle} \triangle(A)$$

If X is a nonempty set, 2^X denote the family of all subset of X. Let X and Y be two topological spaces, for $R \subseteq X \times Y$ and $x \in X$ and $y \in Y$ we put,

$$R(x) = \{ y \in Y \ (x, y) \in R \}, R^{-1}(y) = \{ x \in X \ (x, y) \in R \}.$$
(1)

We recall the following theorem from [3].

Theorem 2. Let X be topological semilattice with path-connected intervals, $X_0 \subseteq X$ be a nonempty subset of X and $R \subseteq X_0 \times X$ be a binary relation such that

- For each $x \in X_0$, the set $R(x) = \{y \in Y : (x, y) \in R\}$ is not nonempty and closed in $R(X_0)$,
- There exists $x_0 \in X_0$ such that the set $R(x_0)$ is compact,
- For any nonempty finite subset $A \subseteq X_0$

$$\bigcup_{x \in A} [x, \sup A] \subseteq \bigcup_{x \in A} R(x)$$
 (2)

Then the set $\bigcap_{x \in X_0} R(x)$ is not nonempty.

Definition 1. Let X be a topological semilattice and $X_0 \subseteq X$ be a nonempty subset of X. Then a multivalued $F: X_0 \to 2^X$ is a \triangle -kkm map if $\triangle(A) \subseteq \bigcup_{x \in A} F(x)$ for each $A \in \langle X_0 \rangle$.

Let X be a topological semilattice and $X_0 \subseteq X$ be a nonempty subset. Also let Y be a nonempty set and $F: X \to 2^Y$, $H: X_0 \to 2^Y$ be two mappings. We say that H is a generalized \triangle -kkm mapping w.r.t. F, if for each $A \in \langle X_0 \rangle$, $F(\triangle(A)) \subseteq H(A)$.

For a mapping $F : X \to 2^Y$ which X and Y are arbitrary sets, we define $F^-, F_c^- : Y \to 2^X$ by

$$F^{-}\left(y\right)=\left\{x\in X:y\in F(x)\right\}$$

and

$$F_{c}^{-}(y) = X - F^{-}(y) = \{x \in X : y \notin F(x)\}$$

If X be a topological semilattice, Y be a nonempty set and $K: Y \to 2^X$ be a mapping, then the mapping $\triangle - K: Y \to 2^X$ is defined by

$$(\triangle - K)(y) = \bigcup_{A \in \langle K(y) \rangle} \triangle (A)$$
.

2. Main results

We start this section with the following theorem that is one of our main results.

Theorem 3. Let X be a topological semilattice, $X_0 \subseteq X$ be a nonempty, Y be a nonempty set and $F: X \to 2^Y$, $H: X_0 \to 2^Y$ be two mappings. Then the following conditions are equivalent:

- a) H is generalized \triangle -kkm mapping w.r.t. F.
- **b)** $(\triangle H_c^-)(y) \subseteq F_c^-(y)$ for each $y \in Y$.
- c) $\triangle (H_c^- oF)$ has no fixed point.

Proof. (a)⇒(b) Let *H* be a generalized △-kkm mapping w.r.t. *F*. Suppose that there exists $y \in Y$ such that $(\triangle - H_c^-)(y) \nsubseteq F_c^-(y)$. Then there exists $D \in \langle H_c^-(y) \rangle$ and $x \in \triangle(D)$ such that $x \notin F_c^-(y)$. Therefore $y \notin H(D)$ and $y \in F(x)$. Therefore $F(\triangle(D)) \nsubseteq H(A)$, which is in contradiction with (a).

(b) \Rightarrow (c) Let there exists $x_0 \in X$ such that $x_0 \in (\triangle - (H_c^- oF))(x_0)$, then there exists $y \in F(x_0)$ and $D \in H_c^-(y) >$ such that $x_0 \in \triangle(D)$. Since

$$x_0 \in \Delta(D) \subseteq \bigcup_{A \in \langle H_c^-(y) \rangle} \Delta(A) = (\Delta - H_c^-)(y),$$

and $y \in F(x_0)$, $x_0 \notin F_c^-(y)$, this is in contradiction with (b).

(c) \Rightarrow (a) Suppose that H is not a genralized \triangle -kkm mapping w.r.t. F. Then there exists $D \in \langle X_0 \rangle$, $x_0 \in \triangle(D)$ and $y \in F(x_0) - H(D)$. Since $y \notin H(D)$, we have $D \subseteq H_c^-(y)$ and consequently

$$x_0 \in \Delta(D) \subseteq (\Delta - H_c^-)(y) \subseteq (\Delta - H_c^-)(F(x_0))$$

Hence x_0 is a fixed point for $\triangle - (H_c^- oF)$.

Let X be a topological semilattice and Y be a topological space. A mapping $F: X \to 2^Y$ is said to have the \triangle -kkm property if for each closed-valued mapping $H: X_0 \subseteq X \to 2^Y$ generalized \triangle -kkm w.r.t. F, the family $\{H(x)\}_{x \in X_0}$ has the finite intersection property.

Theorem 4. Let X be a topological semilattice, $X_0 \subseteq X$ be nonempty, Y be a topological space, $K: X_0 \to 2^Y$, $H: X \to 2^Y$ and $F: X \to 2^Y$. Suppose that

- **a)** F has the \triangle -kkm property,
- **b)** F(X) K(x) is closed for each $x \in X_0$,
- c) for each $y \in F(X)$, $(\triangle K^{-})(y) \subseteq H^{-}(y)$,
- **d**) $F(X) \subseteq K(A)$ for some $A \in \langle X_0 \rangle$.

Then H and F have a coincidence point $x_0 \in X$.

Proof. Define a mapping $T: X_0 \to 2^Y$ by T(x) = F(X) - K(x). By condition (b), T has a closed-valued and

$$\bigcap_{x \in A} T(x) = \bigcap_{x \in A} \left(F(X) - K(x) \right) = F(X) - \bigcup_{x \in A} K(x) = \phi$$

Then family $\{T(x)\}_{x \in X_0}$ does not have the finite intersection property, but F has the \triangle -kkm property. Therefore, T is not a generalized \triangle -kkm mapping w.r.t F. By Theorem 3, there exists a $x_0 \in X$ such that $x_0 \in (\triangle - (T_c^- oF))(x_0)$. Hence there exists $y_0 \in F(x_0)$ and $E \in T_c^-(y_0) >$ such that $x_0 \in \triangle(EE)$. Since $E \subseteq T_c^-(y_0)$, successively we have

$$y_0 \notin T(E), y_0 \in \bigcap_{x \in E} K(x)$$
, then $E \subseteq K^-(y_0)$.

By (c) we get $x_0 \in \triangle E \subseteq H^-(y_0)$, where $y_0 \in H(x_0)$. So we have

$$y_0 \in H(x_0) \cap F(x_0)$$

Corollary 5. Let X be a topological semilattice, $X_0 \subseteq X$ be a nonempty and $K : X_0 \to 2^X$, $H : X \to 2^X$ be two mappings such that:

- a) K has open values
- **b)** for each $y \in X$, $K^{-}(y)$ is nonempty and $(\triangle K^{-})(y) \subseteq H^{-}(y)$
- c) there is $A \in \langle X_0 \rangle$ such that X = K(A).

Then H has a fixed point.

Proof. For each $x \in X$, define $F(x) = \{x\}$. Therefore F has the \triangle -kkm property, hence conditions of Theorem 4 are fulfilled. So there exists $x_0 \in X$ such that

$$H(x_0) \cap F(x_0) \neq \emptyset$$

Therefore, $x_0 \in H(x_0)$.

Acknowledgements. The first and fourth authors gratefully acknowledge the *kharazmi university of Tehran* for financial support.

References

[1] C. D. Horvath, Some results on multivalued mappings and inequalities without convexity, in Nonlinear and convex Analysis, B. L. Lin and S. Simons, Marcel Dekker, 1987, 96-106.

[2] C.D. Horvath, contractibility and generalized convexity, J.Math .Anal .Appl., 156 (1991), 341-357.

[3] C.D. Horvath and J.V. Llinares Ciscar, Maximal elements and fixed points for binary relation on topological ordered spaces, J. Math. Econom., 25 (1996), 291-306.

[4] M. Balaj and D. Erzse, *Fixed points coincidence points and generalized G-kkm mapping*, J. Fixed point theory, 6 (2005), 3-9.

[5] M. Bianchi and R. Pini, A note on equilibrium problems with properly quasimonotone bifunctions, J. Global Optim. 20 (2001), 67-76.

[6] T.H. Chang and C.L. Yen, *KKM property and fixed point theorems*, J. Math. Anal. Appl., 203 (1996), 224-235.

[7] L.J. Lin, Q.H. Ansarin and J.Y. Wu, *Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems*, J Optim . Theory Appl., 117 (2003), 121-137.

Mashaalh Omidi

Department of Mathematics, Faculty of Computer and Mathematical Science, Kharazmi university of Tehran Tehran, Iran email: std_m.omidi@khu.ac.ir, m.omidi1978@gmail.com,

Mohammad Amin Omidi Department of Mathematics, Razi University of Kermanshah, Kermanshah, Iran email: amin.omid64@gmail.com,

Roholah Omidi Department of Mathematics, Razi University of Kermanshah, Kermanshah, Iran email: *rh.omidi@gmail.com*,

Mohammad Fozouni Department of Mathematics, Faculty of Computer and Mathematical Science, Kharazmi university of Tehran Tehran, Iran email: fozouni@khu.ac.ir, fozouni@hotmail,

Ardeshir Karamian Department of Mathematics, Faculty of Mathematics, University of Sistan and Balochestan, Zahedan, Iran email: ar_karamian1979@yahoo.com.