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Abstract. In this paper, the extended F-implicit complementarity problem (ex-
tended (F-ICP)) and extended F-implicit variational inequality problem (extended
(F-IVIP)) are introduced in semi-inner product spaces. Under certain assumptions,
we prove the equivalence between the extended (F-ICP) and extended (F-IVIP).
Moreover, we establish some new existence theorems of solutions for the extended
(F-ICP) and extended (F-IVIP). We present an alternative proof for the existence
theorem of solutions of the extended (F-IVIP).
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1. Introduction and Preliminaries

Variational inequalities introduced in the early sixties have witnessed an explosive
growth in theoretical advances, algorithmic development and applications across all
the discipline of pure and applied mathematics. It combines novel theoretical and
algorithmic advances with new domain of applications. The variational inequality,
as an important subject of current mathematics, has not only stimulated new results
dealing with partial differential equations, but also has been used in a large variety
of problems arising in mechanics, physics, optimization and control, economic and
transportation equilibrium, and engineering sciences. Variational inequalities theory,
the origin of which can be traced back to Stampacchia [12], provides us with a simple,
natural, general and unified framework to study a wide class of problems arising in
pure and applied sciences. Because of its wide applications, the classical variational
inequality has been well studied and generalized in various directions.

Complementarity theory provides us with a natural and elegant framework for
the study of many unrelated free boundary value and equilibrium problems. The
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linear complementarity problem is applied for the development of theory and algo-
rithms in linear and quadratic programming problems. Nonlinear complementarity
problems have been applied to the solution of Nash equilibrium, traffic assignment
or network equilibrium, spatial price equilibrium and the general equilibrium prob-
lems. The complementarity and variational inequality theory are powerful tools for
the development of the modern science and technological age. The classical comple-
mentarity problem can be considered as equivalent form of the variational inequality
problem. The classical complementarity and variational inequality problems have
been extended and generalized to study a wide class of problems arising in me-
chanics, physics, optimization and control, nonlinear programming, game theory,
economics, finance, regional, structural, transportation and elasticity etc.

Lumer [11] introduced the concept of semi-inner product in the following sense.

Semi-inner product. Let X be a vector space over the field F of real or complex
numbers. A functional [ , ] : X×X → F is called a semi-inner product if it satisfies
the following conditions:

(i) [x+ y, z] = [x, z] + [y, z] for all x, y, z ∈ X
(ii) [λx, y] = λ[x, y] for all λ ∈ F and x, y ∈ X
(iii) [x, x] > 0 for x 6= 0
(iv) |[x, y]|2 ≤ [x, x][y, y] for all x, y ∈ X.

The pair (X, [ , ]) is called a semi-inner product space.

A semi-inner product space is a normed linear space with the norm ‖x‖ = [x, x]
1
2 .

Every normed linear space can be made into a semi-inner product space in infinitely
many different ways. Giles [4] had shown that if the underlying space X is a uni-
formly convex smooth Banach space then it is possible to define a semi-inner product
uniquely. Also the unique semi-inner product has the following nice properties:

(i) [x, λy] = λ[x, y] for all scalars λ.
(ii) [x, y] = 0 if and only if y is orthogonal to x, that is if and only if ‖y‖ ≤ ‖y+λx‖

for all scalars λ.
(iii) Generalized Riesz representation theorem:- If f is a continuous linear func-

tional on X then there is a unique vector y ∈ X such that f(x) = [x, y] for all
x ∈ X.

(iv) The semi-inner product is continuous, that is for each x, y ∈ X, we have
Re[y, x+ λy]→ Re[y, x] as λ→ 0.

The sequence space lp, p > 1 and the function space Lp, p > 1 are uniformly
convex smooth Banach spaces. So one can define semi-inner product on these spaces
uniquely. Giles [4] had shown that the function space Lp, p > 1 is a semi-inner
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product space with the semi-inner product defined by:

[f, g] :=
1

‖g‖p−2p

∫
X
f(x)|g(x)|p−1sgn(g(x))dµ, ∀f, g ∈ LP (X,µ).

Classical variational inequality and complementarity problem in Hilbert
space. Let H be a Hilbert space, K be a nonempty closed convex subset of H.
Let T be an operator defined on H. The problem is to find a vector u ∈ K such
that 〈Tu, v − u〉 ≥ 0, ∀v ∈ K. This is known as the classical variational in-
equality problem introduced and studied by Stampacchia [12] in 1964. The classical
complementarity problem is to find a vector x ∈ K such that 〈Tx, x〉 = 0 and
〈Tx, y〉 ≥ 0, ∀y ∈ K (see Borwein and Dempster [1]).

In 1995, Khan [9] proved the existence and uniqueness theorem of the solution
for a class of mildly nonlinear complementarity problems in a uniformly convex and
strongly smooth Banach space equipped with a semi-inner product. Ceng and Yao
[2] in 2007, established an extragradient-like approximation method for solving vari-
ational inequality problems and fixed point problems in a Hilbert space. Recently
in 2011, Junlouchai and Plubtieng [8] proved an existence theorem for the solutions
of generalized variational inequality problem for upper semi-continuous multivalued
mappings with compact contractible values over compact convex subsets in a reflex-
ive Banach space. For some recent literature one may refer to He [5], Huang and
Gu [7], Wong et al. [13], Yu and Yang [15], Zeng and Yao [16].

F-CP and F-VIP in Banach space. Let X be a Banach space and K be a closed
convex cone in X. Yin et al. [14] introduced a class of F-complementarity problem
(F-CP) which consists of finding an x ∈ K such that

〈Tx, x〉+ F (x) = 0, 〈Tx, y〉+ F (y) ≥ 0, ∀y ∈ K,

where T : K → X∗, X∗ denotes the space of continuous linear functionals on X,
F : K → R and 〈Tx, y〉 denotes the value of the functional Tx at a point y. They
proved that (F-CP) is equivalent to the following F-variational inequality problem
(F-VIP): find x ∈ K such that

〈Tx, y − x〉+ F (y)− F (x) ≥ 0, ∀y ∈ K,

where F is a positively homogeneous convex function. They also proved the existence
of solutions for (F-CP) under the assumption of F-pseudo monotonicity.

Huang and Li [6] studied a new class of F-implicit complementarity problems
(F-ICP) and F-implicit variational inequality (F-IVIP) problems in Banach spaces.
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They proved the equivalence between the (F-ICP) and (F-IVIP) and established
some new existence results of the said problems.

(F-ICP) and (F-IVIP) in Banach space: Let X be a real Banach space with
dual space X∗ and K be a nonempty closed convex cone of X. Let T : K → X∗,
g : K → K and F : K → R be mappings. The (F-ICP) is to find x ∈ K such that

〈Tx, g(x)〉+ F (g(x)) = 0, and 〈Tx, y〉+ F (y) ≥ 0, ∀y ∈ K.

The (F-IVIP) is to find x ∈ K such that

〈Tx, y − g(x)〉 ≥ F (g(x))− F (y), ∀y ∈ K.

In this paper, the extended F-implicit complementarity problem (extended (F-
ICP)) and extended F-implicit variational inequality problem (extended (F-IVIP))
are introduced in a real continuous semi-inner product space. The equivalence be-
tween the two problems extended (F-ICP) and extended (F-IVIP) is proved under
certain assumptions. Moreover, we establish some new existence theorems of solu-
tions for the extended (F-ICP) and extended (F-IVIP) by using the KKM theorem
[3] and Lin’s result [10] without F-pseudo monotonicity condition. The extended
(F-ICP) and extended (F-IVIP) are defined here as follows:

Extended F-implicit complementarity problem (Extended (F-ICP)): Let X be
a continuous real semi-inner product space and K be a non empty closed convex
subset of X. Let F, f : K → R be two real valued functions on K, g : K → K be
another function and c be a real positive constant. The extended (F-ICP) is to find
x ∈ K such that

[g(x), x] + F (g(x)) + cf(x) = 0, [y, x] + F (y) ≥ 0, ∀y ∈ K.

Extended F-implicit variational inequality problem (Extended (F-IVIP)): Let X
be a continuous real semi-inner product space and K be a non empty closed convex
subset of X. Let F, f : K → R be two real valued functions on K, g : K → K be
another function and c be a real positive constant. The extended (F-IVIP) is to find
x ∈ K such that

[y − g(x), x] ≥ F (g(x))− F (y) + cf(x), ∀y ∈ K.

Remark.

• When c = 0, the extended (F-ICP) and extended (F-IVIP) reduce to (F-ICP)
and (F-IVIP), respectively.
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• When c = 0 and g = I, where I is the identity map, our definitions reduce to
(F-CP) and (F-VIP).

• When c = 0, g = I and F = 0, our definitions reduce to the classical comple-
mentarity and variational inequality problems in Banach spaces.

2. Main Results

We prove an equivalence theorem between the extended (F-ICP) and extended (F-
IVIP).

Theorem 1. If x is a solution of the extended (F-ICP), then x is also a solution
of the extended (F-IVIP). Conversely, if F : K → R is a positive homogeneous and
convex function, f : K → R is positive and x solves the extended (F-IVIP), then x
solves the extended (F-ICP).

Proof. Let x be a solution of the extended (F-ICP), then there exists x ∈ K such
that

[g(x), x] + F (g(x)) + cf(x) = 0, [y, x] + F (y) ≥ 0, ∀y ∈ K.

Now

[y − g(x), x] = [y, x]− [g(x), x]

≥ F (g(x)) + cf(x)− F (y), ∀y ∈ K.

Thus x is a solution of the extended (F-IVIP).
Conversely, let x be a solution of the extended (F-IVIP), then there exists x ∈ K
such that

[y − g(x), x] ≥ F (g(x))− F (y) + cf(x), ∀y ∈ K. (1)

Since f : K → R is positive, F : K → R is a positive homogeneous convex function
and K is a convex cone, then taking y = 2g(x) in (1), we get:

[2g(x)− g(x), x] ≥ F (g(x))− 2F (g(x)) + cf(x).

⇒ [g(x), x] ≥ −F (g(x)) + cf(x).

⇒ [g(x), x] + F (g(x))− cf(x) ≥ 0.

⇒ [g(x), x] + F (g(x)) + cf(x) ≥ 0. (2)
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Again taking y = 1
2g(x), we get

[
1

2
g(x)− g(x), x] ≥ F (g(x))− 1

2
F (g(x)) + cf(x).

⇒ −1

2
[g(x), x] ≥ 1

2
F (g(x)) + cf(x).

⇒ [g(x), x] + F (g(x)) + 2cf(x) ≤ 0.

⇒ [g(x), x] + F (g(x)) + cf(x) ≤ 0. (3)

Now, from (2) and (3), we get

[g(x), x] + F (g(x)) + cf(x) = 0. (4)

Using (1) and (4), we obtain

[y, x] = [y − g(x), x] + [g(x), x]

≥ F (g(x))− F (y) + cf(x)− F (g(x))− cf(x).

⇒ [y, x] + F (y) ≥ 0, ∀y ∈ K.

Hence x is a solution of the extended (F-ICP).

To prove the main theorem of the extended F-implicit variational inequality
problem, we first define KKM-map and state the famous KKM-lemma.

Definition 1. Let K be a nonempty subset of a topological vector space X. A point-
to-set mapping T : K → 2X is called a Knaster-Kuratowski-Mazurkiewicz-mapping
(KKM-mapping) if for every finite subset {x1, x2, ..., xn} of K,

conv{x1, x2, ..., xn} is contained in
n⋃

i=1

T (xi), where conv{x1, x2, ..., xn} denotes the

convex hull of {x1, x2, ..., xn}.

Lemma 2. (Fan [3]) Let K be a nonempty convex subset of a Housdorff topological
vector space X. Let G : K → 2K be a KKM-mapping such that for any y ∈ K, G(y)
is closed and G(y) is compact for some y ∈ K. Then there exists x ∈ K such that
x ∈ G(y) for all y ∈ K. Hence ∩y∈KG(y) is nonempty.

Now we prove the following theorem for the existence of solution of the extended
(F-IVIP).

Theorem 3. Let X be a continuous real semi-inner product space and K be a
nonempty closed convex subset of X. Assume that
(a) F, f : K → R are lower semi-continuous functions, g : K → K is continuous,
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and c is a positive real constant;
(b) there exists a function h : K ×K → R such that

(i) h(x, x) ≥ 0, ∀x ∈ K
(ii) h(x, y)− [y − g(x), x] ≤ F (y)− F (g(x))− cf(x), ∀x, y ∈ K
(iii) the set {y ∈ K : h(x, y) < 0} is convex for all x ∈ K;

(c) there exists a non empty, compact and convex subset C of K such that for
all x ∈ K \ C (complement of C), there exists y ∈ C such that [y − g(x), x] <
F (g(x))− F (y) + cf(x).

Then the extended (F-IVIP) has a solution. Moreover, the solution set of the
extended (F-IVIP) is compact.

Proof. Construct the sets G(y) = {x ∈ C : [y − g(x), x] ≥ F (g(x))− F (y) + cf(x)}
for all y ∈ K. For each y ∈ K, we claim that G(y) is closed. Let {xn} be a sequence
in G(y) and {xn} converges to x. Then

[y − g(xn), xn] ≥ F (g(xn))− F (y) + cf(xn), ∀n.

As n→∞, we have

[y − g(x), x] = lim
n→∞

[y − g(xn), xn] ≥ lim
n→∞

F (g(xn))− F (y) + c lim
n→∞

f(xn)

≥ F (g(x))− F (y) + cf(x).

Hence x ∈ G(y) and G(y) is closed. Since any element x ∈
⋂

y∈K G(y) is a solution
of the extended (F-IVIP), we show that

⋂
y∈K G(y) 6= φ. Since C is compact, it is

sufficient to prove that the family {G(y)}y∈K has the finite intersection property.
Let {y1, y2, ...., yn} be a finite subset of K and set B = conv(C∪{y1, y2, ...., yn}),

where conv denotes the closure of the convex hull. Then B is compact and convex
subset of K. We construct the following point-to-set mappings F1, F2 : B → 2B as
follows :

F1(y) = {x ∈ B : [y − g(x), x] ≥ F (g(x))− F (y) + cf(x)}
F2(y) = {x ∈ B : h(x, y) ≥ 0}, ∀y ∈ B.

We use the KKM-lemma to show the finite intersection property of the family
{G(y)}y∈K . To show this, we need the following steps:

(A) F1(y) is nonempty : From (b) (i) and (ii), we have h(y, y) ≥ 0 and h(y, y) −
[y − g(y), y] ≤ F (y) − F (g(y)) − cf(y). This implies that [y − g(y), y] ≥ F (g(y)) −
F (y) + cf(y), and hence F1(y) is nonempty.

(B) F1(y) is closed: Let {xn} be sequence of elements in F1(y) and {xn} converges
to x. We have [y − g(xn), xn] ≥ F (g(xn))− F (y) + cf(xn). Letting n→∞, we get
[y − g(x), x] ≥ F (g(x))− F (y) + cf(x). Thus x ∈ F1(y), and hence F1(y) is closed.

117



N. K. Sahu, C. Nahak, S. Nanda – Extended F-implicit complementarity. . .

(C) F1(y) is compact : F1(y) is compact since it is a closed subset of the compact
set B.

(D) F2 is a KKM-mapping : Assume that F2 is not a KKM-mapping. Then there

exists a finite subset {u1, u2, ....., un} of B and λi ≥ 0, i = 1, 2, ..., n with
n∑

i=1

λi = 1

such that u =
n∑

i=1

λiui /∈
n⋃

j=1

F2(uj). Then h(u, uj) < 0 for j = 1, 2, ...., n. From

the assumption (b) (iii), we have h
(
u,

n∑
i=1

λiui
)
< 0. This implies that h(u, u) < 0,

which contradicts the assumption (b) (i). Hence F2 is a KKM-mapping.

(E) F1 is a KKM-mapping : Let x ∈ F2(y). This implies that h(x, y) ≥ 0, ∀y ∈ B.
From (b) (ii), we have

0− [y − g(x), x] ≤ F (y)− F (g(x))− cf(x)

⇒ [y − g(x), x] ≥ F (g(x))− F (y) + cf(x).

This implies that x ∈ F1(y) and F2(y) ⊆ F1(y), ∀y ∈ B. Thus F1 is also a
KKM-mapping.

From Lemma 2, there exists x ∈ B such that x ∈ F1(y) for all y ∈ B. Hence we
have

[y − g(x), x] ≥ F (g(x))− F (y) + cf(x), ∀y ∈ B.

By assumption (c), we get x ∈ C and moreover x ∈ G(yi) for i = 1, 2, ...., n. So
{G(y)}y∈K has the finite intersection property.

Since g : K → K is continuous, F : K → R and f : K → R are lower semi-
continuous functions, then it is easy to see that the solutions set of extended (F-
IVIP) is closed. From the assumption (c), any element outside the set C cannot be
a solution of the extended (F-IVIP). Therefore the solution set of the extended (F-
IVIP) must be contained in C. Since C is compact, the solution set of the extended
(F-IVIP) is also compact.

Taking f = 0 in the above Theorem 3, we have the following corollary for the
existence of the solution of the (F-IVIP).

Corollary 4. Assume that
(a) g : K → K is continuous and F : K → R is lower semi-continuous function;
(b) there exists a function h : K ×K → R such that

(i) h(x, x) ≥ 0, ∀x ∈ K
(ii) h(x, y)− [y − g(x), x] ≤ F (y)− F (g(x)), ∀x, y ∈ K
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(iii) the set {y ∈ K : h(x, y) < 0} is convex for all x ∈ K;
(c) there exists a non empty, compact and convex subset C of K such that for all
x ∈ K \ C, there exists y ∈ C such that [y − g(x), x] < F (g(x))− F (y).
Then the (F-IVIP) has a solution. Moreover, the solution set of (F-IVIP) is com-
pact.

When g = I, we have the following corollary for the existence of the solution of
the extended (F-VIP).

Corollary 5. Assume that
(a) F, f : K → R are lower semi-continuous functions;
(b) there exists a function h : K ×K → R such that

(i) h(x, x) ≥ 0, ∀x ∈ K
(ii) h(x, y)− [y − x, x] ≤ F (y)− F (x)− cf(x), ∀x, y ∈ K and 0 < c ∈ R
(iii) the set {y ∈ K : h(x, y) < 0} is convex for all x ∈ K;

(c) there exists a non empty, compact and convex subset C of K such that for all
x ∈ K \ C, there exists y ∈ C such that [y − x, x] < F (x)− F (y)− cf(x).
Then the extended (F-VIP) has a solution. Moreover, the solution set of the extended
(F-VIP) is compact.

Theorem 6. Let g : K → K be a continuous function, f : K → R be positive and
lower semi-continuous function and F : K → R be lower semi-continuous, positive,
homogeneous and convex function. If the assumptions (b) and (c) in Theorem 3
hold, then the extended (F-ICP) has a solution. Moreover, the solution set of the
extended (F-ICP) is compact.

Proof. The proof follows from Theorem 1 and Theorem 3.

It is easy to see that assumptions (i) and (ii) of (b) in Theorem 3 imply that
[x − g(x), x] ≥ F (g(x)) − F (x) + cf(x), ∀x ∈ K. Replacing the assumption (iii)
of (b) in Theorem 3 by the convexity property of F and by applying Lemma 2, we
obtain the following result for the existence of solution of the extended (F-IVIP).

Theorem 7. Let F, f : K → R be lower semi-continuous functions, g : K →
K be continuous and c be a positive real constant. Assume that [x − g(x), x] ≥
F (g(x)) − F (x) + cf(x), ∀x ∈ X. Moreover, if there exists a nonempty, compact
and convex subset C of K such that for all x ∈ K \ C, there exists y ∈ C such that
[y − g(x), x] < F (g(x))− F (y) + cf(x), then the extended (F-IVIP) has a solution.
Also the solution set of the extended (F-IVIP) is compact.

Proof. Construct a set A = {(x, y) ∈ K×K : [y−g(x), x] ≥ F (g(x))−F (y)+cf(x)}.
The proof of the theorem consists of four steps:
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Step-1 For each x ∈ K, we have (x, x) ∈ A by our assumption [x − g(x), x] ≥
F (g(x))− F (x) + cf(x), ∀x ∈ K.

Step-2 Since g : K → K is continuous, F : K → R is lower semi-continuous and
f : K → R is continuous, the sets Ay = {x ∈ K : (x, y) ∈ A} are closed in K for all
y ∈ K.

Step-3 We show that Ax = {y ∈ K : (x, y) /∈ A} is convex or empty for any given
x ∈ K.
Suppose that Az 6= φ for some z ∈ K. To show that Az is convex. Let yt =
ty1 + (1 − t)y2 for any y1, y2 ∈ Az and t ∈ [0, 1]. Since y1, y2 ∈ Az, we have
[yi − g(z), z] < F (g(z))− F (yi) + cf(z) for i = 1, 2.
Again since F : K → R is convex, we have

[yt − g(z), z] = [ty1 + (1− t)y2 − g(z), z]

= t[y1 − g(z), z] + (1− t)[y2 − g(z), z]

< tF (g(z))− tF (y1) + tcf(z)

+(1− t)F (g(z))− (1− t)F (y2) + (1− t)cf(z)

= F (g(z))− {tF (y1) + (1− t)F (y2)}+ cf(z)

= F (g(z))− F (yt) + cf(z).

Therefore yt ∈ Az, and hence Az is convex.

Step-4 Let B = {x ∈ K : (x, y) ∈ A, ∀y ∈ C}. We show that B is compact.
By assumption, for each x ∈ K \ C there exists an element y ∈ C such that [y −
g(x), x] < F (g(x)) − F (y) + cf(x). This implies that (x, y) /∈ A, so that x /∈ B.

Hence we have B ⊆ C. Since B =
⋂
y∈C

Ay and Ay are closed, it follows that B is

closed. Hence B is compact being a closed subset of the compact set C.

From the above four steps and Lemma 2.2, there exists x ∈ K such that x×K ⊆
A, that is [y − g(x), x] ≥ F (g(x))− F (y) + cf(x), ∀y ∈ K.

As in Step-2, we can show that the solutions set of the extended (F-IVIP) is
closed. From the assumptions, any element outside the set C cannot be a solution
of the extended (F-IVIP). Therefore, the solutions set of the extended (F-IVIP)
must be contained in C. The solutions set is compact being a closed subset of a
compact set.

Theorem 8. Assume that g : K → K is continuous, f : K → R is continuous and
positive, F : K → R is positive, homogeneous, lower semi-continuous and convex
function. If all assumptions of Theorem 7 hold, then the extended (F-ICP) has a
solution. Moreover, the solutions set of (F-ICP) is compact.
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Proof. The proof follows from Theorem 1 and Theorem 7.

In the following example, we construct an extended (F-IVIP) and an extended
(F-ICP) in a semi-inner product space. We find a solution of the extended (F-IVIP)
and show that it is also a solution of the extended (F-ICP).

Example 1. Consider the real sequence space l3. The semi-inner product in l3 is
defined as

[x, y] =
1

‖y‖

∞∑
n=1

|yn|ynxn, ∀x = (xn), y = (yn) ∈ l3.

Let K = {(x1, x2, 0, 0, ....) : x1, x2 ≥ 0}, which is a nonempty closed convex cone of
l3.

Let C = {(x1, x2, 0, 0, ....) : 0 ≤ x1, x2 ≤ 1} be the nonempty compact convex
subset of K.

Let g : K → K be defined by g(x) = (x2
2 ,

x1
2 , 0, 0, ....), F : K → R be defined by

F (x) = x1 and f : K → R be defined by f(x) = ‖x‖, where x = (x1, x2, 0, 0, ...) ∈ K.

The extended (F-IVIP) is to find x ∈ K such that

[y − g(x), x] ≥ F (g(x))− F (y) + cf(x), ∀y ∈ K,

where c is a positive real constant. Choosing any positive real constant c, we see
that x = (0, 0, 0, 0, ..) is a solution to the proposed extended (F-IVIP). For any
y = (y1, y2, 0, 0, ..) ∈ K, we have

g(x) = (0, 0, 0, ..), [y − g(x), x] = 0, f(x) = 0, F (g(x)) = 0, F (y) = y1

and
[y − g(x), x] = 0 = F (g(x))− F (y) + cf(x), ∀y ∈ K.

Hence x is a solution to the proposed extended (F-IVIP). Again we see that

[g(x), x] + F (g(x)) + cf(x) = 0 + 0 +
1

2
‖x‖ = 0

and
[y, x] + F (y) = y1 ≥ 0, ∀y ∈ K.

Thus x is also a solution to the extended (F-ICP). Under the given assumptions one
can see that both the extended (F-IVIP) and the extended (F-ICP) are equivalent
by Theorem 1.

Note that Theorem 1 is not true if we remove the positivity conditions on the
functions F and on f . We can see this in the following example.
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Example 2. Consider the real sequence space l3. The semi-inner product in l3 is
defined as

[x, y] =
1

‖y‖

∞∑
n=1

|yn|ynxn, ∀x = (xn), y = (yn) ∈ l3.

Let K = {(x1, x2, 0, 0, ....) : 0 ≤ x1, x2 ≤ 1}, which is a nonempty closed convex
subset of l3. Let g : K → K be defined by g(x) = (x1, 0, 0, ....), F : K → R
be defined by F (x) = −x1, and f : K → R be defined by f(x) = −x2, where
x = (x1, x2, 0, 0, ...) ∈ K.

The extended (F-IVIP) is to find x ∈ K such that

[y − g(x), x] ≥ F (g(x))− F (y) + cf(x), ∀y ∈ K.

Choosing c = 2, we find that x = (1, 1, 0, 0, ..) is a solution to the proposed extended
F-IVIP. For any y = (y1, y2, 0, 0, ..) ∈ K, we calculate that
[y − g(x), x] = 1

2
1
3

(y1 + y2 − 1), f(x) = −1, g(x) = (1, 0, 0, ..), F (g(x)) = −1,

F (y) = −y1, F (g(x))− F (y) + 2f(x) = y1 − 3.
It is clear that 1

2
1
3

(y1 + y2 − 1) ≥ y1 − 3 for all y = (y1, y2, 0, 0, ..) ∈ K, and hence

x = (1, 1, 0, 0, 0, ., .) is a solution to the proposed extended (F-IVIP).
Again we see that

[g(x), x] + F (g(x)) + cf(x) =
1

2
1
3

− 1− 2 6= 0.

Thus x is not a solution of the extended (F-ICP).
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