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THE STRUCTURE OF Q-GROUPS WITH IRREDUCIBLE
ELEMENTS OF ORDER 2

Sh. Gorjian, A. Gilani, M. Taheri

Abstract. A finite group whose irreducible complex characters are rational is
called a Q-group, and element of second order in the group is called irreducible if it
cannot write the combination of two elements of second order. In this paper we will
classify Q-groups which elements of second order are irreducible.
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1. Introduction

One way of the effective for studying finite group is matrix representation theory
specially characters theory. This theory concept was mastermind by Frobenius, and
then have been developed by mathematician as Shor, Burnside and Brauer. For
example can divide groups with regard to the their value character what they are
field.

In this paper, G is a group finite and χ a complex character of G. The field
generated by all χ(g) such that g ∈ G, is denoted by Q(χ). By definition a complex
character χ is called rational if Q(χ) = Q. A finite group is called a rational or a Q-
group if every irreducible complex character of G is rational. Examples of Q-group
are the dihedral group D2n only for n = 1, 2, 3, 4, 6 and symmetric group Sn and
quaternion group Q8. Also it is shown in [3] that if G is a solvable Q-group, then
π(G) ⊆ {2, 3, 5} where π(G) denote the set of prime divisors of |G|. But classifying
finite Q-group still remains an open research problem. In the book [6] several open
problems have been raised concerning Q-group.

Throughout the paper, the semi- direct product of groups H and K is denoted
by H : K, and a cyclic group of order n by Cn. Also, if p is a prime number, Ep

denotes the elementary abelian p-group of order pn and greatest normal subgroup
of odd order is denoted by O(G), and NG(< g >) the normalizer of < g > in G,
CG(< g >) the centralizer of < g > in G.
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2. Preliminaries

Definition 1. Let G be a group and I is the set of members second order in G.
g ∈ G is called a member of irreducible second order if Ig = {g′ ∈ I : gg′ ∈ I} = ∅.

Definition 2. Let G be a group. g ∈ G is called rational if all generators cyclic
subgroup < g > conjugate together in G.

Before starting our main theorem, we will mention some well-known results about
Q-groups. An alternative characterization of Q-group is the following result which
can be found in [5].

Result 1. A group G is Q-groups if and only if for every g ∈ G, of order n the
members g and gm are conjugation in G, whenever (m,n) = 1. Equivalently is for
each g ∈ G we must have:

NG(< g >)

CG(< g >
∼= Aut(< g >)

Also, in [7] it is proved, if p be a prim number then

NG(< g >)p
CG(< g >)p

∼= Aut(< g >)p

Result 2. Quotients and direct products of Q-groups are Q-groups.

Theorem 1. Let G be a finite 2-group such that only has a member of second order
than G is a cyclic group or generalized quaternion group.

Proof. [1] (theorem 6.19).

Lemma 1. Let G be a Q-group then there is an member of irreducible second order
in G if and only if that sylow 2-subgroup be C2 or Q8. (i.e members of irreducible
second order f a Q-groups is a type of C2 or Q8 ).

Proof. Let g be member of irreducible second order in G and P ∈ Syl2(G), then
g ∈ P . Since G is Q-group and P ∈ Syl2(G) therefore Z(P ) is an elementary abelian
2-group and Z(P ) ≤ CG(< g >), hence g is the only member of second order in
CG(< g >), thus Z(P ) =< g >, therefore P ≤ CG(< g >). So P is a 2-group and
only has an member of second order. Therefore by theorem 1, P is cyclic group C2n

or generalized quaternion group Q2n .
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If P = C2n then n = 1, because Z(P ) is a elementary abelian 2-group, therefore
P = C2. But if P = Q2n then there is generators a, b such that b−1ab = a−1,
a2

n−1
= 1, a2

n−2
= b. By Result 1, we have,

[NG(< a >) : CG(< a >)] =| Aut(< a >) |= φ(|a|) = 2n−2.

Also by part two of result 1, and above relation we have

|NG(< a >)2| = 2n−2|CG(< a >)2| ≥ 2n−2|a| = 2n−2 × 2n−1 = 22n−3.

Since P = Q2n and NG(< g >)2 ≤ Q2n , therefore 22n−3 ≤ 22, and hence n ≤ 3.
Furthermore we defined generalized quaternion for n ≥ 3, so it is P = Q8.

Conversely: Let C2 or Q8 be in Syl2(G) and x be member of second order in
P . If g 6= 1 and g 6= x be an other element of second order in CG(< x >) then
< x > × < g > is 2-subgroup in G. Therefore by theorem sylow, < x > × < g >
in P or conjugation of P . If P = C2, then < x > × < g > is in C2 which is a
contradiction because < x > × < g > is a member of four order that is not in C2.
But if P = Q8 then a2 is only member of second order in Q8, which a is a generator
Q8, thus a2 /∈< x >, therefore < x > × < g >/∈ Q8, i.e < x > is not product to
members of second order. Therefore x is irreducible.

Lemma 2. Let G be a Q-group with member of irreducible second order of type
Q8. If O(G) be abelian then O(G) is elementary abelian p-group, such that p = 3 or
p = 5.

Proof. Since |O(G)| = 3n × 5m. But 3 and 5 dose not appear together in |O(G)|.
Because otherwise, there are members x, y in O(G) such that |x| = 3, |y| = 5, Since
O(G) is abelian so (|x|, |y|) = 1, therefore x.y is a member of 15 order in O(G).
Since G is a Q-group, by result 1 we have

[NG(< xy >)2 : CG(< xy >)2] = |Aut(< xy >)2| = φ(15) = 8 = 23.

Since Q8 is sylow 2-group in G, therefore NG(<xy>)2
CG(<xy>)2

∼= Q8 which this is a con-

tradiction. because Q8 is not abelian but Aut(< xy >) is abelian. Therefore O(G)
is a 3-group or 5-group. Since O(G) is abelian thus O(G) is the elementary ableian
p-group, such that p = 3, p = 5.

Lemma 3. Let G be a Q-group with member of irreducible second order of type Q8.
Then G has a elementary abelian normal p-group as Ep, such that G ∼= Ep : Q8

(p = 3, p = 5).
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Proof. Since G is a Q-group with members of irreducible second order of type Q8.
Then N has a normal subgroup similar N such that G ∼= N : Q8 and |N | = 3n×5m.
Therefore with supposed that N = O(G), furthermore O(G) is abelian group, by
lemma 2, then N is an elementary abelian p-group. We know N = O(G) is a normal
in G. Thus N is a Ep. Therefore G ∼= Ep : Q8 (p = 3, p = 5)

Lemma 4. G is a Q-group with members of irreducible second order of type C2 if
and only if G ∼= E3 :< g > such that E3 may by trivial and g be the member of
second order which inverse every member of E3.

Proof. Let P =< g > then P is abelian group. Since G is a Q-group therefore
G = G′P such that G′ is 3-group. Now we will show G′ is elementary abelian 3-
group and g is a member of second order which inverse every the member G′. Let
a ∈ G′ and a 6= 1. Since G′ is 3-group so |a| = 3n. Since G is a Q-goup, by result 1,
we have

[NG(< a >)r2 : CG(< a >)2] = |Aut(< a >)2| = φ(|a|) = 2.

Since |P | = 2, so CG(< a >)2 =< 1 > . Therefore ag = gag−1 = gag 6= a. Now we
define of the following function:

f : G′ → G′

f(a)→ ag = gag

It is clear, f is a automorphism such that any member does not fixed. Since |g| = 2
then |f | = 2. Since f is a endomorphism without fixed point of second order.
Therefore by theorem 4.1.10 of [4], G′ is abelian group and f project every member
of G′ it is inverse. Since G′ is abelian group then Z(G′) = G′. Furthermore G′ is a
3-sylow subgroup in G therefore Z(G′) is a elementary abelian 3-group. (namely G′

is a elementary abelian 3-group).
Conversely: Let G = E3 :< g > and E3 be a elementary abelian 3-group

therefore for all x ∈ G, we have x = ag such that a ∈ E3, than x2 = (ag)2 =
(ag)(ag) = a(gag) = aa−1 = 1 (because, we define that endomorphism f in above
is without fixed point of second order and project every member it is inverse).

Also g 6= 1. According to above we have if the member be form product the
member of E3 in G then is a member of second order and only the member which
their order are unequal 2, they are in E3. Since E3 is a elementary abelian 3-group,
and also, G is a Q-group because generators cyclic group are conjugate. *(Because
with hypothesis a ∈ E3, thus a and a−1 is a generators < a >, such that a and a−1

conjugate. By definition 2, G is a Q-group).
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Now prove g is member of irreducible second order. Since G is a Q-group and
the order each Q-group is even, so g is only member of second order in CG(< g >).
Thus that is enough which show CG(< g >) =< g >.

If x = ag such that a ∈ E3 and x ∈ CG(< g >), then with regrded to *, we have

xg = gx⇒ (ag)g = g(ga)⇒ a = gag ⇒ a = a−1 ⇒ a = 1⇒ x = g.

Since x was a member of arbitrary of CG(< g >) thus CG(< g >) = (< g >).
Therefore g is a member of second order such that C2

∼=< g >. Then by 2.6, g is a
member of irreducible second order. Also g 6= 1 because, if g = 1 then ag = ga, and
therefore a2 = 1, which is a contradiction (a ∈ E3).

Remark 1. Copy of 2-dimension irreducible representation Q8 on field C3 namely
irreducible FG-submodule which analogous with irreducible representation ρ : Q8 →
GL(2, C3).

3. Main Theorem

Theorem 2. Let G be a Q-group with members of irreducible second order then for
G exactly one of the following occurs:

(1) If members of second order of type C2 then G ∼= E3 : C2, such that E3 is a
elementary abelian 3-group and C2 inverse every members E3.

(2) If members of second order are type of Q8 then one of the following possibil-
ities holds:

(i) G ∼= E3 : Q8, such that E3 is trivial or direct addition copies of 2-dimension
irreducible representation Q8 on field C3

(ii) G ∼= (C5×C5) : Q8, such that action Q8 over C5×C5 is to shape 2-dimension
irreducible representation Q8 on field C5.

Proof. (1): It is similar to Lemma 4.

(2-i): G is a Q-group with members of irreducible second order of type Q8.
Therefore by 2.8, G has an elementary abelian normal p-group is similar to Ep, such
that G = Ep : Q8 and p = 3 or p = 5.

Suppose Q8 acts on Ep by conjugately therefore there is a homomorphism ρ :
Q8 → Aut(Ep), i 7→ ρi such that ρi : Ep → Ep, x 7→ xi.

Also, Aut(Ep) ∼= GL(V ) ∼= GL(n.F ), therefore ρ : Q8 → GL(n, F ) is a represen-
tations on field F with p members. Of course V + space is equivalent G). Further-
more by theorem Maschke, V is the direct addition of irreducible FG-submodules.
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We know that irreducible representation of Q8 are 1-dimension or 2-dimension. But
thus irreducible representation are not 1-dimension, because with suppose that N is
1-dimension (N =< x >). Since Q8 have four liner character, hence they are corre-
sponds with four irreducible representation of 1-dimension. Therefore we can sup-
pose representation of ρ(2) : Q8 → GL(1,C) is corresponds with liner character χ2.
By ρ(2) and i ∈ Q8 we have xρ(2)i = xi then xi = xρ(2)i = x[1]i = x.χ2(1) = x.1 = x,
namely for every liner character there is similar member i ∈ Q8 such that xi = x.
Thus x ∈ CQ8(< i >). which is a contraction because in lemma 4 we proved that in
such condition we must have CQ8(< i >) =< i >. So V = Ep can not 1-dimension.

With regarded to remark 1, Ep is direct addition of copies of the 2-dimension
irreducible representation Q8 on field Cp. By lemma 3, p = 3 or p = 5.

If p = 3 then G = E3 : Q8. Since Q8 acts on E3 by conjugately therefore ρ :
Q8 → Aut(E3) and g 7→ ρg such that ρg : E3 → E3 and x 7→ xg is an homomorphism
that is not fixed point, in other words, xg 6= x for all x ∈ E3 and 1 6= g ∈ Q8.

Now we assume (x, g) be generator E3 : Q8. Since the generator any cyclic group
are conjugate then by definition 2, E3 : Q8 is a Q-group such that E3 is direct ad-
dition of copies of 2-dimension irreducible representation of Q8 on field C3 and case
(2-i) of the theorem is proved now.

(2-ii): If p = 5 then G = E3 : Q8. It is similar to proof (2− i). We have G is a
Q-group and E5 is direct addition copies of 2-dimension irreducible representations
of Q8 on feild five member C5. Now we show E5 = V = C5 × C5. Since G = E5 :
Q8 and E5 is direct addition copies of the 2-dimension irreducible representation
then E5 = V ⊕ ... ⊕ V , such that any V is copy of the 2-dimension irreducible
representation. Now if we define representation of ρ : Q8 → GL(2,C) such that:

1→
(

1 0
0 1

)
, i→

(
0 1
3 2

)
, j →

(
0 1
2 0

)
, k →

(
3 0
0 2

)
.

Then E5 = V = C5×C5 because, in otherwise, if we have two copy the vector space
V such that < V1, V2 > ⊕ < V3, V4 >⊆ E5 and V1 + V3 + V4 be a generator of 5
order then 3V1 + 3V3 + 3V4 is a another generator for this cyclic group. Since the
generators any cyclic group are conjugately and E5 : Q8 is a Q-group and Q8 acts on
E5 by conjugately thus there is similar member g ∈ Q8 such that (V1 + V3 + V4)

g =
3V1 + 3V3 + 3V4, so V g

1 = 3V1 and (V3 +V4)
g = 3V3 + 3V4, furthermore by definition

homomorphism ρ : Q8 → GL(2,C), on member Q8 and V g
1 = 3V1 if and only if

g = k. But if g = k, we have (V3 + V4)
k = 3V3 + 2V4 6= 3V3 + 3V4. So there is not

any g in Q8. Thus E5 = C5 × C5, therefore G ∼= (C5 × C5) : Q8.
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