THE STRUCTURE OF \mathbb{Q}-GROUPS WITH IRREDUCIBLE ELEMENTS OF ORDER 2

Sh. Gorjian, A. Gilani, M. Taheri

Abstract. A finite group whose irreducible complex characters are rational is called a \mathbb{Q}-group, and element of second order in the group is called irreducible if it cannot write the combination of two elements of second order. In this paper we will classify \mathbb{Q}-groups which elements of second order are irreducible.

2000 Mathematics Subject Classification: 20C15, 20G05.
Keywords: \mathbb{Q}-groups, Member irreducible of second order, Semi-direct product.

1. Introduction

One way of the effective for studying finite group is matrix representation theory specially characters theory. This theory concept was mastermind by Frobenius, and then have been developed by mathematician as Shor, Burnside and Brauer. For example can divide groups with regard to the their value character what they are field.

In this paper, G is a group finite and χ a complex character of G. The field generated by all $\chi(g)$ such that $g \in G$, is denoted by $\mathbb{Q}(\chi)$. By definition a complex character χ is called rational if $\mathbb{Q}(\chi)=\mathbb{Q}$. A finite group is called a rational or a \mathbb{Q} group if every irreducible complex character of G is rational. Examples of \mathbb{Q}-group are the dihedral group $D_{2 n}$ only for $n=1,2,3,4,6$ and symmetric group S_{n} and quaternion group Q_{8}. Also it is shown in [3] that if G is a solvable \mathbb{Q}-group, then $\pi(G) \subseteq\{2,3,5\}$ where $\pi(G)$ denote the set of prime divisors of $|G|$. But classifying finite \mathbb{Q}-group still remains an open research problem. In the book [6] several open problems have been raised concerning \mathbb{Q}-group.

Throughout the paper, the semi- direct product of groups H and K is denoted by $H: K$, and a cyclic group of order n by C_{n}. Also, if p is a prime number, E_{p} denotes the elementary abelian p-group of order p^{n} and greatest normal subgroup of odd order is denoted by $O(G)$, and $N_{G}(<g>)$ the normalizer of $\langle g\rangle$ in G, $C_{G}(\langle g\rangle)$ the centralizer of $\langle g\rangle$ in G.

2. Preliminaries

Definition 1. Let G be a group and I is the set of members second order in G. $g \in G$ is called a member of irreducible second order if $I_{g}=\left\{g^{\prime} \in I: g g^{\prime} \in I\right\}=\varnothing$.

Definition 2. Let G be a group. $g \in G$ is called rational if all generators cyclic subgroup $<g>$ conjugate together in G.

Before starting our main theorem, we will mention some well-known results about \mathbb{Q}-groups. An alternative characterization of \mathbb{Q}-group is the following result which can be found in [5].

Result 1. A group G is \mathbb{Q}-groups if and only if for every $g \in G$, of order n the members g and g^{m} are conjugation in G, whenever $(m, n)=1$. Equivalently is for each $g \in G$ we must have:

$$
\frac{N_{G}(<g>)}{C_{G}(<g>} \cong A u t(<g>)
$$

Also, in [7] it is proved, if p be a prim number then

$$
\frac{N_{G}(<g>)_{p}}{C_{G}(<g>)_{p}} \cong A u t(<g>)_{p}
$$

Result 2. Quotients and direct products of \mathbb{Q}-groups are \mathbb{Q}-groups.
Theorem 1. Let G be a finite 2-group such that only has a member of second order than G is a cyclic group or generalized quaternion group.

Proof. [1] (theorem 6.19).
Lemma 1. Let G be a \mathbb{Q}-group then there is an member of irreducible second order in G if and only if that sylow 2-subgroup be C_{2} or Q_{8}. (i.e members of irreducible second order f a \mathbb{Q}-groups is a type of C_{2} or Q_{8}).

Proof. Let g be member of irreducible second order in G and $P \in \operatorname{Syl}_{2}(G)$, then $g \in P$. Since G is \mathbb{Q}-group and $P \in S y l_{2}(G)$ therefore $Z(P)$ is an elementary abelian 2-group and $Z(P) \leq C_{G}(<g>)$, hence g is the only member of second order in $C_{G}(<g>)$, thus $Z(P)=<g>$, therefore $P \leq C_{G}(<g>)$. So P is a 2-group and only has an member of second order. Therefore by theorem $1, P$ is cyclic group $C_{2^{n}}$ or generalized quaternion group $Q_{2^{n}}$.

If $P=C_{2^{n}}$ then $n=1$, because $Z(P)$ is a elementary abelian 2-group, therefore $P=C_{2}$. But if $P=Q_{2^{n}}$ then there is generators a, b such that $b^{-1} a b=a^{-1}$, $a^{2^{n-1}}=1, a^{2^{n-2}}=b$. By Result 1, we have,

$$
\left[N_{G}(<a>): C_{G}(<a>)\right]=|\operatorname{Aut}(<a>)|=\phi(|a|)=2^{n-2} .
$$

Also by part two of result 1 , and above relation we have

$$
\left|N_{G}(<a>)_{2}\right|=2^{n-2}\left|C_{G}(<a>)_{2}\right| \geq 2^{n-2}|a|=2^{n-2} \times 2^{n-1}=2^{2 n-3} .
$$

Since $P=Q_{2^{n}}$ and $N_{G}(<g>)_{2} \leq Q_{2^{n}}$, therefore $2^{2 n-3} \leq 2^{2}$, and hence $n \leq 3$. Furthermore we defined generalized quaternion for $n \geq 3$, so it is $P=Q_{8}$.

Conversely: Let C_{2} or Q_{8} be in $\operatorname{Syl}_{2}(G)$ and x be member of second order in P. If $g \neq 1$ and $g \neq x$ be an other element of second order in $\left.C_{G}(<x\rangle\right)$ then $\langle x\rangle \times\langle g\rangle$ is 2-subgroup in G. Therefore by theorem sylow, $\langle x\rangle \times\langle g\rangle$ in P or conjugation of P. If $P=C_{2}$, then $\langle x\rangle \times<g>$ is in C_{2} which is a contradiction because $\langle x\rangle \times\langle g\rangle$ is a member of four order that is not in C_{2}. But if $P=Q_{8}$ then a^{2} is only member of second order in Q_{8}, which a is a generator Q_{8}, thus $a^{2} \notin<x>$, therefore $\langle x\rangle \times<g>\notin Q_{8}$, i.e $\langle x\rangle$ is not product to members of second order. Therefore x is irreducible.

Lemma 2. Let G be $a \mathbb{Q}$-group with member of irreducible second order of type Q_{8}. If $O(G)$ be abelian then $O(G)$ is elementary abelian p-group, such that $p=3$ or $p=5$.

Proof. Since $|O(G)|=3^{n} \times 5^{m}$. But 3 and 5 dose not appear together in $|O(G)|$. Because otherwise, there are members x, y in $O(G)$ such that $|x|=3,|y|=5$, Since $O(G)$ is abelian so $(|x|,|y|)=1$, therefore $x . y$ is a member of 15 order in $O(G)$. Since G is a \mathbb{Q}-group, by result 1 we have

$$
\left[N_{G}(<x y>)_{2}: C_{G}(<x y>)_{2}\right]=\left|A u t(<x y>)_{2}\right|=\phi(15)=8=2^{3} .
$$

Since Q_{8} is sylow 2-group in G, therefore $\frac{N_{G}(\langle x y\rangle)_{2}}{C_{G}\left(\langle x y>)_{2}\right.} \cong Q_{8}$ which this is a contradiction. because Q_{8} is not abelian but $\operatorname{Aut}(\langle x y\rangle)$ is abelian. Therefore $O(G)$ is a 3 -group or 5 -group. Since $O(G)$ is abelian thus $O(G)$ is the elementary ableian p-group, such that $p=3, p=5$.

Lemma 3. Let G be $a \mathbb{Q}$-group with member of irreducible second order of type Q_{8}. Then G has a elementary abelian normal p-group as E_{p}, such that $G \cong E_{p}: Q_{8}$ ($p=3, p=5$).

Proof. Since G is a \mathbb{Q}-group with members of irreducible second order of type Q_{8}. Then N has a normal subgroup similar N such that $G \cong N: Q_{8}$ and $|N|=3^{n} \times 5^{m}$. Therefore with supposed that $N=O(G)$, furthermore $O(G)$ is abelian group, by lemma 2 , then N is an elementary abelian p-group. We know $N=O(G)$ is a normal in G. Thus N is a E_{p}. Therefore $G \cong E_{p}: Q_{8}(p=3, p=5)$

Lemma 4. G is a \mathbb{Q}-group with members of irreducible second order of type C_{2} if and only if $G \cong E_{3}:<g>$ such that E_{3} may by trivial and g be the member of second order which inverse every member of E_{3}.

Proof. Let $P=<g>$ then P is abelian group. Since G is a \mathbb{Q}-group therefore $G=G^{\prime} P$ such that G^{\prime} is 3 -group. Now we will show G^{\prime} is elementary abelian 3group and g is a member of second order which inverse every the member G^{\prime}. Let $a \in G^{\prime}$ and $a \neq 1$. Since G^{\prime} is 3 -group so $|a|=3^{n}$. Since G is a \mathbb{Q}-goup, by result 1 , we have

$$
\left[N_{G}(<a>)_{r} 2: C_{G}(<a>)_{2}\right]=\left|A u t(<a>)_{2}\right|=\phi(|a|)=2 .
$$

Since $|P|=2$, so $C_{G}(<a>)_{2}=<1>$. Therefore $a^{g}=g a g^{-1}=g a g \neq a$. Now we define of the following function:

$$
\begin{gathered}
f: G^{\prime} \rightarrow G^{\prime} \\
f(a) \rightarrow a^{g}=g a g
\end{gathered}
$$

It is clear, f is a automorphism such that any member does not fixed. Since $|g|=2$ then $|f|=2$. Since f is a endomorphism without fixed point of second order. Therefore by theorem 4.1.10 of [4], G^{\prime} is abelian group and f project every member of G^{\prime} it is inverse. Since G^{\prime} is abelian group then $Z\left(G^{\prime}\right)=G^{\prime}$. Furthermore G^{\prime} is a 3 -sylow subgroup in G therefore $Z\left(G^{\prime}\right)$ is a elementary abelian 3-group. (namely G^{\prime} is a elementary abelian 3 -group).

Conversely: Let $G=E_{3}:<g>$ and E_{3} be a elementary abelian 3-group therefore for all $x \in G$, we have $x=a g$ such that $a \in E_{3}$, than $x^{2}=(a g)^{2}=$ $(a g)(a g)=a(g a g)=a a^{-1}=1$ (because, we define that endomorphism f in above is without fixed point of second order and project every member it is inverse).

Also $g \neq 1$. According to above we have if the member be form product the member of E_{3} in G then is a member of second order and only the member which their order are unequal 2, they are in E_{3}. Since E_{3} is a elementary abelian 3-group, and also, G is a \mathbb{Q}-group because generators cyclic group are conjugate. *(Because with hypothesis $a \in E_{3}$, thus a and a^{-1} is a generators $\langle a\rangle$, such that a and a^{-1} conjugate. By definition $2, G$ is a \mathbb{Q}-group).

Now prove g is member of irreducible second order. Since G is a \mathbb{Q}-group and the order each \mathbb{Q}-group is even, so g is only member of second order in $C_{G}(<g>)$. Thus that is enough which show $C_{G}(<g>)=<g>$.

If $x=a g$ such that $a \in E_{3}$ and $x \in C_{G}(<g>)$, then with regrded to ${ }^{*}$, we have

$$
x g=g x \Rightarrow(a g) g=g(g a) \Rightarrow a=g a g \Rightarrow a=a^{-1} \Rightarrow a=1 \Rightarrow x=g
$$

Since x was a member of arbitrary of $C_{G}(<g>)$ thus $C_{G}(<g>)=(<g>)$. Therefore g is a member of second order such that $C_{2} \cong<g>$. Then by $2.6, g$ is a member of irreducible second order. Also $g \neq 1$ because, if $g=1$ then $a g=g a$, and therefore $a^{2}=1$, which is a contradiction $\left(a \in E_{3}\right)$.

Remark 1. Copy of 2-dimension irreducible representation Q_{8} on field C_{3} namely irreducible $F G$-submodule which analogous with irreducible representation $\rho: Q_{8} \rightarrow$ $G L\left(2, C_{3}\right)$.

3. Main Theorem

Theorem 2. Let G be a \mathbb{Q}-group with members of irreducible second order then for G exactly one of the following occurs:
(1) If members of second order of type C_{2} then $G \cong E_{3}: C_{2}$, such that E_{3} is a elementary abelian 3-group and C_{2} inverse every members E_{3}.
(2) If members of second order are type of Q_{8} then one of the following possibilities holds:
(i) $G \cong E_{3}: Q_{8}$, such that E_{3} is trivial or direct addition copies of 2-dimension irreducible representation Q_{8} on field C_{3}
(ii) $G \cong\left(C_{5} \times C_{5}\right): Q_{8}$, such that action Q_{8} over $C_{5} \times C_{5}$ is to shape 2-dimension irreducible representation Q_{8} on field C_{5}.

Proof. (1): It is similar to Lemma 4.
(2-i): G is a \mathbb{Q}-group with members of irreducible second order of type Q_{8}. Therefore by $2.8, G$ has an elementary abelian normal p-group is similar to E_{p}, such that $G=E_{p}: Q_{8}$ and $p=3$ or $p=5$.

Suppose Q_{8} acts on E_{p} by conjugately therefore there is a homomorphism ρ : $Q_{8} \rightarrow A u t\left(E_{p}\right), i \mapsto \rho_{i}$ such that $\rho_{i}: E_{p} \rightarrow E_{p}, x \mapsto x^{i}$.

Also, $A u t\left(E_{p}\right) \cong G L(V) \cong G L(n . F)$, therefore $\rho: Q_{8} \rightarrow G L(n, F)$ is a representations on field F with p members. Of course V^{+}space is equivalent G). Furthermore by theorem Maschke, V is the direct addition of irreducible $F G$-submodules.

We know that irreducible representation of Q_{8} are 1-dimension or 2-dimension. But thus irreducible representation are not 1-dimension, because with suppose that N is 1-dimension ($N=<x>$). Since Q_{8} have four liner character, hence they are corresponds with four irreducible representation of 1-dimension. Therefore we can suppose representation of $\rho_{(2)}: Q_{8} \rightarrow G L(1, \mathbb{C})$ is corresponds with liner character χ_{2}. By $\rho_{(2)}$ and $i \in Q_{8}$ we have $x \rho_{(2) i}=x^{i}$ then $x^{i}=x \rho_{(2) i}=x[1]_{i}=x \cdot \chi_{2}(1)=x .1=x$, namely for every liner character there is similar member $i \in Q_{8}$ such that $x^{i}=x$. Thus $x \in C_{Q_{8}}(<i>)$. which is a contraction because in lemma 4 we proved that in such condition we must have $C_{Q_{8}}(<i>)=<i>$. So $V=E_{p}$ can not 1-dimension.

With regarded to remark $1, E_{p}$ is direct addition of copies of the 2 -dimension irreducible representation Q_{8} on field C_{p}. By lemma $3, p=3$ or $p=5$.

If $p=3$ then $G=E_{3}: Q_{8}$. Since Q_{8} acts on E_{3} by conjugately therefore ρ : $Q_{8} \rightarrow \operatorname{Aut}\left(E_{3}\right)$ and $g \mapsto \rho_{g}$ such that $\rho_{g}: E_{3} \rightarrow E_{3}$ and $x \mapsto x^{g}$ is an homomorphism that is not fixed point, in other words, $x^{g} \neq x$ for all $x \in E_{3}$ and $1 \neq g \in Q_{8}$.

Now we assume (x, g) be generator $E_{3}: Q_{8}$. Since the generator any cyclic group are conjugate then by definition $2, E_{3}: Q_{8}$ is a \mathbb{Q}-group such that E_{3} is direct addition of copies of 2-dimension irreducible representation of Q_{8} on field C_{3} and case (2-i) of the theorem is proved now.
(2-ii): If $p=5$ then $G=E 3: Q_{8}$. It is similar to proof $(2-i)$. We have G is a \mathbb{Q}-group and E_{5} is direct addition copies of 2-dimension irreducible representations of Q_{8} on feild five member C_{5}. Now we show $E_{5}=V=C_{5} \times C_{5}$. Since $G=E_{5}$: Q_{8} and E_{5} is direct addition copies of the 2-dimension irreducible representation then $E_{5}=V \oplus \ldots \oplus V$, such that any V is copy of the 2-dimension irreducible representation. Now if we define representation of $\rho: Q_{8} \rightarrow G L(2, \mathbb{C})$ such that:

$$
1 \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), i \rightarrow\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right), j \rightarrow\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right), k \rightarrow\left(\begin{array}{cc}
3 & 0 \\
0 & 2
\end{array}\right)
$$

Then $E_{5}=V=C_{5} \times C_{5}$ because, in otherwise, if we have two copy the vector space V such that $<V_{1}, V_{2}>\oplus<V_{3}, V_{4}>\subseteq E_{5}$ and $V_{1}+V_{3}+V_{4}$ be a generator of 5 order then $3 V_{1}+3 V_{3}+3 V_{4}$ is a another generator for this cyclic group. Since the generators any cyclic group are conjugately and $E_{5}: Q_{8}$ is a \mathbb{Q}-group and Q_{8} acts on E_{5} by conjugately thus there is similar member $g \in Q_{8}$ such that $\left(V_{1}+V_{3}+V_{4}\right)^{g}=$ $3 V_{1}+3 V_{3}+3 V_{4}$, so $V_{1}^{g}=3 V_{1}$ and $\left(V_{3}+V_{4}\right)^{g}=3 V_{3}+3 V_{4}$, furthermore by definition homomorphism $\rho: Q_{8} \rightarrow G L(2, \mathbb{C})$, on member Q_{8} and $V_{1}^{g}=3 V_{1}$ if and only if $g=k$. But if $g=k$, we have $\left(V_{3}+V_{4}\right)^{k}=3 V_{3}+2 V_{4} \neq 3 V_{3}+3 V_{4}$. So there is not any g in Q_{8}. Thus $E_{5}=C_{5} \times C_{5}$, therefore $G \cong\left(C_{5} \times C_{5}\right): Q_{8}$.

References

[1] L. Dornhoff, Group resnatation theory, Part A, Marcel Dekker. (1971).
[2] W. FEit, J. G. Thompson, Solvabillhty of groups of odd order, Pacific. J. Math. Soc. 13 (1988), 775-1029.
[3] R. Gow, Group whose characters are rational-valued, J.Algebra. 40 (1976), 280299.
[4] D. Gorenstein, Finet groups, Harper and row, (1988).
[5] B. Hupper, Endliche Gruppen, New York. (1987).
[6] D. Keetzing, Structare and representation of \mathbb{Q}-group, Berlin-Heidelbreg-New York-Tokyo, (1984).
[7] D.S. Passman, Permutation groups, New York, (1968).

Shojaali Gorjian
Department of Mathematics, Faculty of Science, Khazar University,
Mazandaran, Iran
email: shoja.gorjian@gmail.com
Aghil Gilani
Department of Mathematics, Gorgan Branch-Kordkuy Center, Islamic Azad University, Kordkuy, Iran
email: ag.gilani@yahoo.com, a.gilani@kordkuyiau.ac.ir
Sayed Mostafa Taheri
Department of Mathematics, Golestan University,
Gorgan, Iran
email: taheri_sm@yahoo.com

