ON CERTAIN CLASSES OF P-VALENT FUNCTIONS INVOLVING DZIOK-SRIVASTAVA OPERATOR

R. M. El-Ashwah, M. K. Aouf, A. M. Abd-Eltawab

Abstract. This paper gives some inclusion relationships of certain class of p-valent functions which are defined by using the Dziok-Srivastava operator. Further, a property preserving integrals is considered. Some of our results generalize previously known results.

2000 Mathematics Subject Classification: 30C45.
Keywords: p-Valent functions, Hadamard product, linear operators, Jack's lemma, inclusion relationships.

1. Introduction

Let $A(p)$ denote the class of all functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad(p \in \mathbb{N}=\{1,2,3, \ldots\} ; z \in U) \tag{1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$ and let $A(1)=A$.

For function f given by (1) and g given by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{n=1}^{\infty} b_{n+p} z^{n+p}, \tag{2}
\end{equation*}
$$

the Hadamard product (or convolution) of f and g is defined by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} b_{n+p} z^{n+p}=(g * f)(z) \tag{3}
\end{equation*}
$$

For complex parameters a_{1}, \ldots, a_{q} and $b_{1}, \ldots, b_{s}\left(b j \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ; j=\right.$ $1, \ldots, s)$, the generalized hypergeometric function ${ }_{q} F_{s}$ is defined by the following infinite series:

$$
\begin{align*}
{ }_{q} F_{s}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right) & =\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{q}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{s}\right)_{n}} \frac{z^{n}}{n!} \tag{4}\\
\quad\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}\right. & =\mathbb{N} \cup\{0\} ; z \in U),
\end{align*}
$$

where $(\theta)_{n}$ is the Pochhammer symbol (or shift factorial) defined, in terms of the Gamma function Γ, by

$$
(\theta)_{n}=\frac{\Gamma(\theta+n)}{\Gamma(\theta)}= \begin{cases}1 & (n=0) \\ \theta(\theta+1) \ldots(\theta+n-1) & (n \in \mathbb{N})\end{cases}
$$

Corresponding a function $h_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)$ defined by

$$
\begin{equation*}
h_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)=z^{p}{ }_{q} F_{s}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right) \quad(z \in U), \tag{5}
\end{equation*}
$$

Dziok and Srivastava [5] (see also [6]) considered a linear operator

$$
H_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right): A(p) \rightarrow A(p)
$$

defined by the following Hadamard product:

$$
\begin{gather*}
H_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z)=h_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right) * f(z), \tag{6}\\
\left(q \leq s+1 ; q, s \in \mathbb{N}_{0} ; z \in U\right) .
\end{gather*}
$$

If $f \in A(p)$ is given by (1), then we have

$$
\begin{equation*}
H_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z)=z^{p}+\sum_{n=1}^{\infty} \Gamma_{n}\left[a_{1} ; b_{1}\right] a_{n+p} z^{n+p}(z \in U), \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{n}\left[a_{1} ; b_{1}\right]=\frac{\left(a_{1}\right)_{n} \ldots\left(a_{q}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{s}\right)_{n}} \frac{1}{n!} \quad(n \in \mathbb{N}) . \tag{8}
\end{equation*}
$$

To make the notation simple, we write

$$
\begin{equation*}
H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)=H_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z) \tag{9}
\end{equation*}
$$

It easily follows from (7) that

$$
\begin{equation*}
z\left(H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}=a_{1} H_{p, q, s}\left[a_{1}+1 ; b_{1}\right] f(z)-\left(a_{1}-p\right) H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z) . \tag{10}
\end{equation*}
$$

R. M. El-Ashwah, M. K. Aouf, A. M. Abd-Eltawab - On certain classes ...

The linear operator $H_{p, q, s}\left[a_{1} ; b_{1}\right]$ is a generalization of many other linear operators considered earlier.

Remark 1

(i) $H_{1,2,1}(a, b ; c) f(z)=\left(I_{c}^{a, b} f\right)(z)\left(a, b \in \mathbb{C} ; c \notin \mathbb{Z}_{0}^{-}\right)$, where the linear operator $I_{c}^{a, b}$ was investigated by Hohlov [9];
(ii) $H_{p, 2,1}(n+p, 1 ; 1) f(z)=D^{n+p-1} f(z)(n>-p, p \in \mathbb{N})$, where the linear operator D^{n+p-1} was studied by Goel and Sohi [8]. In the case when $p=1, D^{n} f(z)$ is the Ruscheweyh derivative of $f(z)$ (see [14]);
(iii) $H_{p, 2,1}(c+p, 1 ; c+p+1) f(z)=\mathcal{F}_{c, p}(z)=\frac{c+p}{z c} \int_{0}^{z} t^{c-1} f(t) d t(c>-p)$, where the operator $\mathcal{F}_{c, p}$ is the generalized Bernardi-Libera-Livingston integral operator (see [4]) and $\mathcal{F}_{c, 1}=\mathcal{F}_{c}$ was introduced by Bernardi [1];
(iv) $H_{p, 2,1}(p+1,1 ; p+1-\lambda) f(z)=\Omega_{z}^{(\lambda, p)} f(z)(0 \leq \lambda<1)$, where the operator $\Omega_{z}^{(\lambda, p)}$ was investigated by Srivastava and Aouf [16];
(v) $H_{p, 2,1}(a, 1 ; c) f(z)=L_{p}(a, c) f(z)\left(a \in \mathbb{R} ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}\right)$, where the linear operator $L_{p}(a, c)$ was studied by Saitoh [15] which yields the operator $L(a, c) f(z)$ introduced by Carlson and Shaffer [2] for $p=1$;
(vi) $H_{1,2,1}(\mu, 1 ; \lambda+1) f(z)=I_{\lambda, \mu} f(z)(\lambda>-1, \mu>0)$, where $I_{\lambda, \mu}$ is the Choi-Saigo-Srivastava operator [4] which is closely related to the Carlson-Shaffer [2] operator $L(\mu, \lambda+1) f(z)$;
(vii) $H_{p, 2,1}(p+1,1 ; n+p) f(z)=I_{n+p-1} f(z)(n>-p ; n \in \mathbb{Z})$, where I_{n+p-1} is the Noor operator of order $n+p-1$ which considered by Liu and Noor [12];
(viii) $H_{p, 2,1}(\lambda+p, c ; a) f(z)=I_{p}^{\lambda}(a, c) f(z)\left(a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-} ; \lambda>-p\right)$, where $I_{p}^{\lambda}(a, c)$ is the Cho-Kwon-Srivastava operator [3].
Definition 1. We say that a function $f(z) \in A(p)$ is in the class $T_{p, q, s}^{\alpha}\left[a_{1} ; b_{1}\right]$, if it satisfies the following condition:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\alpha \quad(0 \leq \alpha<1 ; p \in \mathbb{N} ; z \in U) . \tag{11}
\end{equation*}
$$

Using (10) , condition (11) can be re-written in the form

$$
\begin{align*}
& \operatorname{Re}\left\{a_{1} \frac{H_{p, q, s}\left[a_{1}+1 ; b_{1}\right] f(z)}{p z^{p}}-\left(a_{1}-p\right) \frac{H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)}{p z^{p}}\right\}>\alpha \tag{12}\\
& (0 \leq \alpha<1 ; p \in \mathbb{N} ; z \in U) .
\end{align*}
$$

We note that:

$$
T_{p, 2,1}^{\alpha}(n+p, 1 ; 1)=T_{n+p-1}(\alpha) \quad(n>-p, p \in \mathbb{N}),
$$

where the class $T_{n+p-1}(\alpha)$ studied by Goel and Sohi [8].

2. Basic properties of the class $T_{p, q, s}^{\alpha}\left[a_{1} ; b_{1}\right]$

Unless otherwise mentioned, we shall assume in the reminder of this paper that $q \leq s+1, q, s \in \mathbb{N}_{0}, 0 \leq \alpha<1, p \in \mathbb{N}$ and $a_{1}>0$.

We begin by recalling the following result (Jack's lemma), which we shall apply in proving our inclusion theorems below.
Lemma 1 [10]. Let the (nonconstant) function $w(z)$ be analytic in U, with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in U$, then $z_{0} w^{\prime}\left(z_{0}\right)=\xi w\left(z_{0}\right)$, where ξ is a real number and $\xi \geq 1$.
Theorem 1. The following inclusion property holds true for the class $T_{p, q, s}^{\alpha}\left[a_{1} ; b_{1}\right]$:

$$
\begin{equation*}
T_{p, q, s}^{\alpha}\left[a_{1}+1 ; b_{1}\right] \subset T_{p, q, s}^{\alpha}\left[a_{1} ; b_{1}\right] . \tag{13}
\end{equation*}
$$

Proof. Let $f(z) \in T_{p, q, s}^{\alpha}\left[a_{1}+1 ; b_{1}\right]$, and define a regular function $w(z)$ in U such htat $w(0)=0, w(z) \neq-1$ by

$$
\begin{equation*}
a_{1} H_{p, q, s}\left[a_{1}+1 ; b_{1}\right] f(z)-\left(a_{1}-p\right) H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)=p z^{p} \frac{1+(2 \alpha-1) w(z)}{1+w(z)} . \tag{14}
\end{equation*}
$$

Differentiating (14) with respect to z, we obtain

$$
\begin{equation*}
\frac{\left(H_{p, q, s}\left[a_{1}+1 ; b_{1}\right] f(z)\right)^{\prime}}{p z^{p-1}}=\frac{1+(2 \alpha-1) w(z)}{1+w(z)}-\frac{2(1-\alpha)}{a_{1}} \frac{z w^{\prime}(z)}{(1+w(z))^{2}} . \tag{15}
\end{equation*}
$$

We claim that $|w(z)|<1$ for $z \in U$. Otherwise there exists a point $z_{0} \in U$ such that $\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$. Applying Jack's lemma, we have

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=\xi w\left(z_{0}\right) \quad(\xi \geq 1) \tag{16}
\end{equation*}
$$

From (15) and (16), we have

$$
\begin{equation*}
\frac{\left(H_{p, q, s}\left[a_{1}+1 ; b_{1}\right] f\left(z_{0}\right)\right)^{\prime}}{p z_{0}^{p-1}}=\frac{1+(2 \alpha-1) w\left(z_{0}\right)}{1+w\left(z_{0}\right)}-\frac{2(1-\alpha)}{a_{1}} \frac{\xi w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)^{2}} . \tag{17}
\end{equation*}
$$

Since $\operatorname{Re}\left\{\frac{1+(2 \alpha-1) w\left(z_{0}\right)}{1+w\left(z_{0}\right)}\right\}=\alpha, \xi \geq 1$, and $\frac{\xi w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)^{2}}$ is real and positive, we see that $\operatorname{Re}\left\{\frac{\left(H_{p, q, s}\left[a_{1}+1 ; b_{1}\right] f\left(z_{0}\right)\right)^{\prime}}{p z_{0}^{p-1}}\right\}<\alpha$, which obviously contradicts $f(z) \in T_{p, q, s}^{\alpha}\left[a_{1}+1 ; b_{1}\right]$. Hence $|w(z)|<1$ for $z \in U$, and it follows from (14) that $f(z) \in T_{p, q, s}^{\alpha}\left[a_{1} ; b_{1}\right]$. This completes the proof of Theorem 1.

Remark 2.

(i) Taking $q=2, s=1, a_{1}=n+p(n>-p)$ and $a_{2}=b_{1}=1$ in Theorem 1 we obtain the result obtained by Goel and Sohi [8, Theorem 1];
(ii) Taking $q=2, s=1$ and $a_{1}=a_{2}=b_{1}=1$ in Theorem 1 , then

$$
T_{p, 2,1}^{\alpha}(1,1 ; 1)=T_{p}(\alpha)=\left\{f(z) \in A(p): \operatorname{Re}\left\{\frac{f^{\prime}(z)}{p z^{p-1}}\right\}>\alpha, \quad 0 \leq \alpha<1\right\}
$$

and from Umezawa [17] such that functions are p-valent. Hence the p-valence of functions in the class $T_{p, q, s}\left[a_{1} ; b_{1}\right]$ follows from (13).
Theorem 2. If $f(z) \in T_{p, q, s}^{\alpha}\left[a_{1} ; b_{1}\right]$, then

$$
\begin{equation*}
\mathcal{F}_{c, p}(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \in T_{p, q, s}^{\alpha}\left[a_{1} ; b_{1}\right] \text {, for } c>-p . \tag{18}
\end{equation*}
$$

Proof. From (18), we have

$$
\begin{equation*}
z\left(H_{p, q, s}\left[a_{1} ; b_{1}\right] \mathcal{F}_{c, p}(z)\right)^{\prime}=(c+p) H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)-c H_{p, q, s}\left[a_{1} ; b_{1}\right] \mathcal{F}_{c, p}(z), \tag{19}
\end{equation*}
$$

Define a regular function $w(z)$ in U such htat $w(0)=0, w(z) \neq-1$ by

$$
\begin{equation*}
\frac{\left(H_{p, q, s}\left[a_{1} ; b_{1}\right] \mathcal{F}_{c, p}(z)\right)^{\prime}}{p z^{p-1}}=\frac{1+(2 \alpha-1) w(z)}{1+w(z)} \tag{20}
\end{equation*}
$$

From (19) and (20) we have

$$
\begin{equation*}
(c+p) H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)-c H_{p, q, s}\left[a_{1} ; b_{1}\right] \mathcal{F}_{c, p}(z)=p z^{p} \frac{1+(2 \alpha-1) w(z)}{1+w(z)} \tag{21}
\end{equation*}
$$

Differentiating (21) with respect to z, and using (20) we obtain

$$
\begin{equation*}
\frac{\left(H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}}{p z^{p-1}}=\frac{1+(2 \alpha-1) w(z)}{1+w(z)}-\frac{2(1-\alpha)}{c+p} \frac{z w^{\prime}(z)}{(1+w(z))^{2}} . \tag{22}
\end{equation*}
$$

The remaining part of the proof of Theorem 2 is similar to that of Theorem 1.
Remark 3. Taking $q=2, s=1, a_{1}=n+p(n>-p)$ and $a_{2}=b_{1}=1$ in Theorem 2 we obtain the result obtained by Goel and Sohi [8, Theorem 2].
Theorem 3. If $f(z) \in A(p)$ and satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\alpha-\frac{(1-\alpha)}{2(p+c)} \quad(c>-p) . \tag{23}
\end{equation*}
$$

Then the function

$$
\mathcal{F}_{c, p}(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \in T_{p, q, s}^{\alpha}\left[a_{1} ; b_{1}\right] .
$$

The proof of Theorem 3 is similar to that of Theorem 2 and so we omit it.

Remark 4.

(i) Taking $q=2, s=1, a_{1}=n+p(n>-p)$ and $a_{2}=b_{1}=1$ in Theorem 3 we obtain the result obtained by Goel and Sohi [8, Theorem 3];
(ii) Taking $q=2, s=1, a_{1}=a_{2}=b_{1}=1, \alpha=0$ and $c=1$ in Theorem 3 we obtain the result obtained by Goel and Sohi [8, Corollary 3(a)];
(iii) Taking $q=2, s=1, a_{1}=a_{2}=b_{1}=1, \alpha=\frac{1}{2 p+3}$ and $c=1$ in Theorem 3 we obtain the result obtained by Goel and Sohi [8, Corollary 3(b)];
(iv) Taking $p=1$ in (ii) and (iii), we get the extensions of an ealier result due to Libera [11] viz; $\operatorname{Re}\left\{f^{\prime}(z)\right\}>0$ implies $\operatorname{Re}\left\{\left(\mathcal{F}_{c}(z)\right)^{\prime}\right\}>0$.
Theorem 4. Let $f(z)$ be defined by

$$
\begin{equation*}
\mathcal{F}_{c, p}(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \quad(c>-p) . \tag{24}
\end{equation*}
$$

If $\mathcal{F}_{c, p}(z) \in T_{p, q, s}^{\alpha}\left[a_{1} ; b_{1}\right]$, then $f(z) \in T_{p, q, s}^{\alpha}\left[a_{1} ; b_{1}\right]$ in $|z|<\frac{c+p}{1+\sqrt{(c+p)^{2}+1}}$.
Proof. Since $\mathcal{F}_{c, p}(z) \in T_{p, q, s}\left[a_{1} ; b_{1}\right]$ we can write

$$
\begin{equation*}
z\left(H_{p, q, s}\left[a_{1} ; b_{1}\right] \mathcal{F}_{c, p}(z)\right)^{\prime}=p z^{p}[\alpha+(1-\alpha) u(z)] \tag{25}
\end{equation*}
$$

where $u(z) \in P$, the class of functions with positive real part in U and normalized by $u(0)=1$. We can re-write (25) as

$$
\begin{equation*}
a_{1} H_{p, q, s}\left[a_{1}+1 ; b_{1}\right] \mathcal{F}_{c, p}(z)-\left(a_{1}-p\right) H_{p, q, s}\left[a_{1} ; b_{1}\right] \mathcal{F}_{c, p}(z)=p z^{p}[\alpha+(1-\alpha) u(z)] . \tag{26}
\end{equation*}
$$

Differentiating (26) with respect to z, and using (19) we obtain

$$
\begin{equation*}
\left(\frac{\left(H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}}{p z^{p-1}}-\alpha\right)(1-\alpha)^{-1}=u(z)+\frac{1}{c+p} z u^{\prime}(z) . \tag{27}
\end{equation*}
$$

Using the well-known estimate (see [13]) $\left|z u^{\prime}(z)\right| \leq \frac{2 r}{1-r^{2}} \operatorname{Re} u(z),|z|=r$, (27) yields

$$
\begin{equation*}
\operatorname{Re}\left\{\left(\frac{\left(H_{p, q, s}\left[a_{1} ; b_{1}\right] f(z)\right)^{\prime}}{p z^{p-1}}-\alpha\right)(1-\alpha)^{-1}\right\} \geq\left(1-\frac{1}{c+p} \frac{2 r}{1-r^{2}}\right) \operatorname{Re} u(z) \tag{28}
\end{equation*}
$$

R. M. El-Ashwah, M. K. Aouf, A. M. Abd-Eltawab - On certain classes ...

The right-hand side of (28) is positive if $r<\frac{c+p}{1+\sqrt{(c+p)^{2}+1}}$. The result is sharp for the function $f(z)$ defined by

$$
f(z)=\frac{1}{(c+p) z^{c-1}}\left(z^{c} \mathcal{F}_{c, p}(z)\right)^{\prime}
$$

where $\mathcal{F}_{c, p}(z)$ is given by $\left(H_{p, q, s}\left[a_{1} ; b_{1}\right] \mathcal{F}_{c, p}(z)\right)^{\prime}=p z^{p-1} \frac{1+(2 \alpha-1) z}{1+z}$.

Remark 5.

(i) Taking $q=2, s=1, a_{1}=n+p(n>-p)$ and $a_{2}=b_{1}=1$ in Theorem 4 we obtain the result obtained by Goel and Sohi [8, Theorem 4] ;
(ii) Taking $q=2, s=1, a_{1}=a_{2}=b_{1}=1$ and $\alpha=0$ in Theorem 4 we obtain the result obtained by Goel and Sohi [8, Corollary 4(a)] ;
(iii) By taking $c=1$ in (ii), we obtain the result obtained by Goel [7].

References

[1] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
[2] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), 737-745.
[3] N. E. Cho, O. H. Kwon and H. M. Srivastava, Inclusion and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470-483.
[4] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432-445.
[5] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
[6] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (2003), no 1, 7-18.
[7] R. M. Goel, On radii of starlikeness, convexity, close-to-convexity for p-valent functions, Arch. Rat. Mech. Anal., 44 (1972), 320-328.
[8] R. M. Goel and N. S. Sohi, New criteria for p-valence, Indian J. Pure Appl. Math., 11 (1980), 1356-1360.
[9] Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat., 10 (1978), 83-89 (in Russian).
R. M. El-Ashwah, M. K. Aouf, A. M. Abd-Eltawab - On certain classes ...
[10] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc., 3 (1971), no 2, 469-474.
[11] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc, 16 (1965), 755-758.
[12] J.-L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Natur. Geom., 21 (2002), 81-90.
[13] Z. Nehari, Conformal Mapping, McGraw-Hill Book Company, New York, Toronto and London, 1952.
[14] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
[15] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon., 44 (1996), 31-38.
[16] H. M. Srivastava, M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients I and II, J. Math. Anal. Appl., 171 (1992) 1.13; ibid., 19 (1995), 673-688.
[17] T. Umezawa, Multivalent close-to-convex functions, Proc. Amer. Math. Soc., 8 (1957), 869-74.
R. M. El-Ashwah

Department of Mathematics, Faculty of Science, University of Damietta, New Damietta 34517, Egypt
email:r_elashwah@yahoo.com
M. K. Aouf

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt
email: mkaouf127@yahoo.com
Ahmed M. Abd-Eltawab
Department of Mathematics, Faculty of Science, University of Fayoum,
Fayoum 63514, Egypt
email: ams03@fayoum.edu.eg

