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CONSTANT Π2−SLOPE CURVES ACCORDING TO TYPE-2
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Abstract. In this paper, we study Smarandache Π1Π2 curves of biharmonic
new type constant Π2− slope curves according to type-2 Bishop frame in the SOL3.
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1. Introduction

Let γ be a unit speed regular curve in SOL3 and {T,N,B} be its Frenet–Serret
frame. Let us express a relatively parallel adapted frame:

∇TΠ1 = −ε1B,
∇TΠ2 = −ε2B, (1.1)

∇TB = ε1Π1 + ε2Π2,

where

gSOL3 (B,B) = 1, gSOL3 (Π1,Π1) = 1, gSOL3 (Π2,Π2) = 1,

gSOL3 (B,Π1) = gSOL3 (B,Π2) = gSOL3 (Π1,Π2) = 0.

We shall call this frame as Type-2 Bishop Frame. In order to investigate this
new frame’s relation with Frenet–Serret frame, first we write

τ =
√
ε21 + ε22.
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The relation matrix between Frenet–Serret and type-2 Bishop frames can be
expressed

T = sinA (s) Π1 − cosA (s) Π2,

N = cosA (s) Π1 + sinA (s) Π2,

B= B.

So by Frenet–Serret frame, we may express

ε1 = −τ cosA (s) ,

ε2 = −τ sinA (s) .

The frame {Π1,Π2,B} is properly oriented, and τ and A (s) =
∫ s
0 κ(s)ds are

polar coordinates for the curve γ. We shall call the set {Π1,Π2,B,ε1, ε2} as type-2
Bishop invariants of the curve γ, [22].

With respect to the orthonormal basis {e1, e2, e3}, we can write

Π1 = π11e1 + π21e2 + π31e3,

Π2 = π12e1 + π22e2 + π32e3.

B = B1e1 +B2e2 +B3e3,

Theorem 1. Let γ : I −→ SOL3 be a unit speed non-geodesic biharmonic new type
constant Π2−slope curves according to type-2 Bishop frame in the SOL3. Then,
the parametric equations of γ are

x (s) =

∫
e−

1
κ
cos[κs] cosE+ 1

κ
sin[κs] sinE−R3 [sin [κs] cosE cos [R1s+R2]

− cos [κs] sinE cos [R1s+R2]]ds, (1.2)

y (s) =

∫
e

1
κ
cos[κs] cosE− 1

κ
sin[κs] sinE+R3 [sin [κs] cosE sin [R1s+R2]

− cos [κs] sinE sin [R1s+R2]]ds,

z (s) =
1

κ
cos [κs] cosE−1

κ
sin [κs] sinE+R3,

where R1,R2,R3 are constants of integration.
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2. Smarandache Π1Π2 Curves of Biharmonic Constant Π2-Slope Curves
according to New Type-2 Bishop Frame in Sol Space

Let γ : I −→ SOL3 be a unit speed curve with constant curvatures in the Sol Space
SOL3 and {Π1,Π2,B} be its moving type-2 Bishop frame. Smarandache Π1Π2

curves are defined by

γΠ1Π2
=

1√
ε21 + ε22

(Π1 + Π2) . (2.1)

Theorem 2. Let γ : I −→ SOL3 be a unit speed non-geodesic biharmonic constant
Π2−slope curves according to type-2 Bishop frame in the SOL3. Then, the equation
of Smarandache Π1Π2 curves of biharmonic constant Π2−slope curves is given by

γΠ1Π2
(s) =

1√
ε21 + ε22

[sinE cos [R1s+R2] + cosE cos [R1s+R2]]e1

+
1√

ε21 + ε22
[sinE sin [R1s+R2] + cosE sin [R1s+R2]]e2

+
1√

ε21 + ε22
[cosE− sinE]e3, (2.2)

where R1,R2 are constants of integration.

Proof. We suppose that γ is a unit speed non-geodesic biharmonic new type-2 con-
stant Π2−slope curve. Then,

Π2 = sinE cos [R1s+R2] e1 + sinE sin [R1s+R2] e2 + cosEe3, (2.3)

where R1,R2 ∈ R.
Then by type-2 Bishop formulas (2.1) and (1.1), we have

Π1 = cosE cos [R1s+R2] e1 + cosE sin [R1s+R2] e2 − sinEe3. (2.4)

Substituting (2.3) and (2.4) in (2.1) we have (2.2), which completes the proof.

In terms of Eqs. (2.1) and (2.2), we may give:

Theorem 3. Let γ : I −→ SOL3 be a unit speed non-geodesic biharmonic constant
Π2−slope curve according to type-2 Bishop frame in the SOL3. Then, the parametric
equations of Smarandache Π1Π2 curve of biharmonic constant Π2−slope curve are
given by

xΠ1Π2 (s) =
e
− 1√

ε21+ε22

[cosE−sinE]√
ε21 + ε22

[sinE cos [R1s+R2] + cosE cos [R1s+R2]],
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yΠ1Π2 (s) =
e

1√
ε21+ε22

[cosE−sinE]√
ε21 + ε22

[sinE sin [R1s+R2] + cosE sin [R1s+R2]],

zΠ1Π2 (s) =
1√

ε21 + ε22
[cosE− sinE],

where R1,R2 are constants of integration.

Proof. Omitted.
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