SMARANDACHE $\Pi_{1} \Pi_{2}$ CURVES OF BIHARMONIC NEW TYPE CONSTANT Π_{2}-SLOPE CURVES ACCORDING TO TYPE-2 BISHOP FRAME IN THE SOL SPACE $\mathfrak{S O} \mathfrak{L}^{3}$

T. Körpinar, E. Turhan

Abstract. In this paper, we study Smarandache $\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}$ curves of biharmonic new type constant Π_{2} - slope curves according to type-2 Bishop frame in the $\mathfrak{S O} \mathfrak{L}^{3}$.

2000 Mathematics Subject Classification: 53C41.
Keywords: Type-2 Bishop frame, Sol Space, Smarandache curve.

1. Introduction

Let γ be a unit speed regular curve in $\mathfrak{S O}^{3}$ and $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be its Frenet-Serret frame. Let us express a relatively parallel adapted frame:

$$
\begin{align*}
\nabla_{\mathbf{T}} \boldsymbol{\Pi}_{1} & =-\epsilon_{1} \mathbf{B} \\
\nabla_{\mathbf{T}} \boldsymbol{\Pi}_{2} & =-\epsilon_{2} \mathbf{B} \tag{1.1}\\
\nabla_{\mathbf{T}} \mathbf{B} & =\epsilon_{1} \boldsymbol{\Pi}_{1}+\epsilon_{2} \boldsymbol{\Pi}_{2}
\end{align*}
$$

where

$$
\begin{aligned}
g_{\mathfrak{E D L ^ { 3 }}}(\mathbf{B}, \mathbf{B}) & =1, g_{\mathfrak{S D R}^{3}}\left(\boldsymbol{\Pi}_{1}, \boldsymbol{\Pi}_{1}\right)=1, g_{\mathfrak{S O R}^{3}}\left(\boldsymbol{\Pi}_{2}, \boldsymbol{\Pi}_{2}\right)=1, \\
g_{\mathfrak{V a L}^{3}}\left(\mathbf{B}, \boldsymbol{\Pi}_{1}\right) & =g_{\mathfrak{S a L}^{3}}\left(\mathbf{B}, \boldsymbol{\Pi}_{2}\right)=g_{\mathfrak{S a L}^{3}}\left(\boldsymbol{\Pi}_{1}, \boldsymbol{\Pi}_{2}\right)=0 .
\end{aligned}
$$

We shall call this frame as Type-2 Bishop Frame. In order to investigate this new frame's relation with Frenet-Serret frame, first we write

$$
\tau=\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}
$$

T. Körpınar, E. Turhan - Smarandache $\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}$ curves of biharmonic ...

The relation matrix between Frenet-Serret and type-2 Bishop frames can be expressed

$$
\begin{aligned}
& \mathbf{T}=\sin \mathfrak{A}(s) \boldsymbol{\Pi}_{1}-\cos \mathfrak{A}(s) \boldsymbol{\Pi}_{2}, \\
& \mathbf{N}=\cos \mathfrak{A}(s) \boldsymbol{\Pi}_{1}+\sin \mathfrak{A}(s) \boldsymbol{\Pi}_{2}, \\
& \mathbf{B}=\mathbf{B} .
\end{aligned}
$$

So by Frenet-Serret frame, we may express

$$
\begin{aligned}
\epsilon_{1} & =-\tau \cos \mathfrak{A}(s), \\
\epsilon_{2} & =-\tau \sin \mathfrak{A}(s) .
\end{aligned}
$$

The frame $\left\{\boldsymbol{\Pi}_{1}, \boldsymbol{\Pi}_{2}, \mathbf{B}\right\}$ is properly oriented, and τ and $\mathfrak{A}(s)=\int_{0}^{s} \kappa(s) d s$ are polar coordinates for the curve γ. We shall call the set $\left\{\boldsymbol{\Pi}_{1}, \boldsymbol{\Pi}_{2}, \mathbf{B}, \epsilon_{1}, \epsilon_{2}\right\}$ as type- 2 Bishop invariants of the curve $\gamma,[22]$.

With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, we can write

$$
\begin{aligned}
\boldsymbol{\Pi}_{1} & =\pi_{1}^{1} \mathbf{e}_{1}+\pi_{1}^{2} \mathbf{e}_{2}+\pi_{1}^{3} \mathbf{e}_{3}, \\
\boldsymbol{\Pi}_{2} & =\pi_{2}^{1} \mathbf{e}_{1}+\pi_{2}^{2} \mathbf{e}_{2}+\pi_{2}^{3} \mathbf{e}_{3} \\
\mathbf{B} & =B^{1} \mathbf{e}_{1}+B^{2} \mathbf{e}_{2}+B^{3} \mathbf{e}_{3},
\end{aligned}
$$

Theorem 1. Let $\gamma: I \longrightarrow \mathfrak{S O} \mathfrak{L}^{3}$ be a unit speed non-geodesic biharmonic new type constant $\boldsymbol{\Pi}_{2}$-slope curves according to type-2 Bishop frame in the $\mathfrak{S O} \mathfrak{L}^{3}$. Then, the parametric equations of γ are

$$
\begin{align*}
\boldsymbol{x}(s)= & \int e^{-\frac{1}{\kappa} \cos [\kappa s] \cos \mathfrak{E}+\frac{1}{\kappa} \sin [\kappa s] \sin \mathfrak{E}-\mathcal{R}_{3}}\left[\sin [\kappa s] \cos \mathfrak{E} \cos \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]\right. \\
& \left.-\cos [\kappa s] \sin \mathfrak{E} \cos \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]\right] d s, \tag{1.2}\\
\boldsymbol{y}(s)= & \int e^{\frac{1}{\kappa} \cos [\kappa s] \cos \mathfrak{E}-\frac{1}{\kappa} \sin [\kappa s] \sin \mathfrak{E}+\mathcal{R}_{3}}\left[\sin [\kappa s] \cos \mathfrak{E} \sin \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]\right. \\
& \left.-\cos [\kappa s] \sin \mathfrak{E} \sin \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]\right] d s, \\
\boldsymbol{z}(s)= & \frac{1}{\kappa} \cos [\kappa s] \cos \mathfrak{E}-\frac{1}{\kappa} \sin [\kappa s] \sin \mathfrak{E}+\mathcal{R}_{3},
\end{align*}
$$

where $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}$ are constants of integration.
T. Körpınar, E. Turhan - Smarandache $\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}$ curves of biharmonic \ldots

2. Smarandache $\Pi_{1} \Pi_{2}$ Curves of Biharmonic Constant Π_{2}-Slope Curves according to New Type-2 Bishop Frame in Sol Space

Let $\gamma: I \longrightarrow \mathfrak{S O} \mathfrak{L}^{3}$ be a unit speed curve with constant curvatures in the Sol Space $\mathfrak{S O} \mathfrak{L}^{3}$ and $\left\{\boldsymbol{\Pi}_{1}, \boldsymbol{\Pi}_{2}, \mathbf{B}\right\}$ be its moving type-2 Bishop frame. Smarandache $\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}$ curves are defined by

$$
\begin{equation*}
\gamma_{\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}}=\frac{1}{\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}\left(\boldsymbol{\Pi}_{1}+\boldsymbol{\Pi}_{2}\right) . \tag{2.1}
\end{equation*}
$$

Theorem 2. Let $\gamma: I \longrightarrow \mathfrak{S O L} \mathfrak{L}^{3}$ be a unit speed non-geodesic biharmonic constant Π_{2}-slope curves according to type-2 Bishop frame in the $\mathfrak{S O I}^{3}$. Then, the equation of Smarandache $\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}$ curves of biharmonic constant $\boldsymbol{\Pi}_{2}$-slope curves is given by

$$
\begin{align*}
\gamma_{\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}}(s)= & \frac{1}{\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}\left[\sin \mathfrak{E} \cos \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]+\cos \mathfrak{E} \cos \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]\right] \mathbf{e}_{1} \\
& +\frac{1}{\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}\left[\sin \mathfrak{E} \sin \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]+\cos \mathfrak{E} \sin \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]\right] \mathbf{e}_{2} \\
& +\frac{1}{\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}[\cos \mathfrak{E}-\sin \mathfrak{E}] \mathbf{e}_{3}, \tag{2.2}
\end{align*}
$$

where $\mathcal{R}_{1}, \mathcal{R}_{2}$ are constants of integration.
Proof. We suppose that γ is a unit speed non-geodesic biharmonic new type-2 constant $\boldsymbol{\Pi}_{2}$-slope curve. Then,

$$
\begin{equation*}
\boldsymbol{\Pi}_{2}=\sin \mathfrak{E} \cos \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right] \mathbf{e}_{1}+\sin \mathfrak{E} \sin \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right] \mathbf{e}_{2}+\cos \mathfrak{E} \mathbf{e}_{3}, \tag{2.3}
\end{equation*}
$$

where $\mathcal{R}_{1}, \mathcal{R}_{2} \in \mathbb{R}$.
Then by type-2 Bishop formulas (2.1) and (1.1), we have

$$
\begin{equation*}
\boldsymbol{\Pi}_{1}=\cos \mathfrak{E} \cos \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right] \mathbf{e}_{1}+\cos \mathfrak{E} \sin \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right] \mathbf{e}_{2}-\sin \mathfrak{E} \mathbf{e}_{3} . \tag{2.4}
\end{equation*}
$$

Substituting (2.3) and (2.4) in (2.1) we have (2.2), which completes the proof.
In terms of Eqs. (2.1) and (2.2), we may give:
Theorem 3. Let $\gamma: I \longrightarrow \mathfrak{S D I}^{3}$ be a unit speed non-geodesic biharmonic constant $\boldsymbol{\Pi}_{2}$-slope curve according to type-2 Bishop frame in the $\mathfrak{S D} \mathfrak{L}^{3}$. Then, the parametric equations of Smarandache $\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}$ curve of biharmonic constant $\boldsymbol{\Pi}_{2}$-slope curve are given by

$$
x_{\Pi_{1} \Pi_{2}}(s)=\frac{e^{-\frac{1}{\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}[\cos \mathfrak{E}-\sin \mathfrak{E}]}}{\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}\left[\sin \mathfrak{E} \cos \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]+\cos \mathfrak{E} \cos \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]\right],
$$

T. Körpınar, E. Turhan - Smarandache $\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}$ curves of biharmonic ...

$$
\begin{aligned}
y_{\Pi_{1} \Pi_{2}}(s) & =\frac{e^{\frac{1}{\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}[\cos \mathfrak{E}-\sin \mathfrak{E}]}}{\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}\left[\sin \mathfrak{E} \sin \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]+\cos \mathfrak{E} \sin \left[\mathcal{R}_{1} s+\mathcal{R}_{2}\right]\right], \\
z_{\Pi_{1} \Pi_{2}}(s) & =\frac{1}{\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}[\cos \mathfrak{E}-\sin \mathfrak{E}],
\end{aligned}
$$

where $\mathcal{R}_{1}, \mathcal{R}_{2}$ are constants of integration.
Proof. Omitted.
Acknowledgements. The authors would like to express their sincere gratitude to the referees for the valuable suggestions to improve the paper.

References

[1] L. R. Bishop: There is More Than One Way to Frame a Curve, Amer. Math. Monthly 82 (3) (1975) 246-251.
[2] D. E. Blair: Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag 509, Berlin-New York, 1976.
[3] R. Caddeo and S. Montaldo: Biharmonic submanifolds of \mathbb{S}^{3}, Internat. J. Math. 12(8) (2001), 867-876.
[4] R. Caddeo, S. Montaldo and P. Piu: Biharmonic curves on a surface, Rend. Mat., to appear.
[5] B. Y. Chen: Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169-188.
[6] I. Dimitric: Submanifolds of \mathbb{E}^{m} with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1992), 53-65.
[7] J. Eells and L. Lemaire: A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68.
[8] J. Eells and J. H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[9] T. Hasanis and T. Vlachos: Hypersurfaces in \mathbb{E}^{4} with harmonic mean curvature vector field, Math. Nachr. 172 (1995), 145-169.
[10] G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986), 130-144.
[11] G. Y. Jiang: 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7(4) (1986), 389-402.
[12] T. Körpınar and E. Turhan: On Biharmonic Constant $\Pi_{2}-$ Slope Curves according to New Type-2 Bishop Frame in Sol Space $\mathfrak{S O L}^{3}$, (submitted).
T. Körpınar, E. Turhan - Smarandache $\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}$ curves of biharmonic ...
[13] T. Körpınar and E. Turhan: Integral Equations of Biharmonic Constant Π_{1}-Slope Curves according to New Type-2 Bishop Frame in Sol Space $\mathfrak{S O L}^{3}$, Bol. Soc. Paran. Mat., 312 (2013), 205-212.
[14] T. Körpinar, E. Turhan: Inextensible flows of S-s surfaces of biharmonic S -curves according to Sabban frame in Heisenberg Group Heis ${ }^{3}$, Lat. Am. J. Phys. Educ. 6 (2) (2012), 250-255.
[15] T. Körpınar, E. Turhan, V. Asil: Involute Curves Of Timelike Biharmonic Reeb Curves $(L C S)_{3}$ - Manifolds, Electronic Journal of Theoretical Physics, 9 (26) (2012), 183-190.
[16] S. Rahmani: Metriqus de Lorentz sur les groupes de Lie unimodulaires de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
[17] I. Sato, On a structure similar to the almost contact structure, Tensor, (N.S.), 30 (1976), 219-224.
[18] T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku Math. J., 29 (1977), 91113.
[19] E. Turhan and T. Körpınar: On Characterization Canal Surfaces around Timelike Horizontal Biharmonic Curves in Lorentzian Heisenberg Group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences 66a (2011), 441-449.
[20] E. Turhan, T. Körpınar, On Smarandache ts Curves of Biharmonic S- Curves According to Sabban Frame in Heisenberg Group Heis ${ }^{3}$, Advanced Modeling and Optimization, 14 (2) (2012), 344-349.
[21] E. Turhan, T. Körpınar, Position Vector Of Spacelike Biharmonic Curves In The Lorentzian Heisenberg Group Heis ${ }^{3}$, An. Şt. Univ. Ovidius Constanta, 19 (1) (2011) 285-296.
[22] S. Yılmaz and M. Turgut: A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., 371 (2010), 764-776.

Talat Körpinar
Muş Alpaslan University, Department of Mathematics
49250, Muş, Turkey
e-mails: talatkorpinar@gmail.com, t.korpinar@alparslan.edu.tr
Essin Turhan
Frrat University, Department of Mathematics
23119, Elazığ, Turkey
e-mail: essin.turhan@gmail.com

