A STUDY ON CURVATURE TENSOR OF A GENERALIZED SASAKIAN SPACE FORM

C.S. Bagewadi and G. Ingalahalli

ABSTRACT. In this paper we study some results of C-Bochner curvature tensor and τ -curvature tensor of a generalized Sasakian space form.

2000 Mathematics Subject Classification: 53C15, 53C25, 53D15.

Keywords: Generalized Sasakian space form, curvature tensor, Ricci tensor, Ricci operator, scalar curvature.

1. Introduction

The nature of a Riemannian manifold mostly depends on the curvature tensor R of the manifold and further it is known that the sectional curvature of a manifold determines curvature tensor completely. A Riemannian manifold with constant sectional curvature c is known as real space form and its curvature tensor is given by

$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\}.$$
 (1)

A Sasakian manifold (M, ϕ, ξ, η, g) is said to be a Sasakian space form if all the ϕ -sectional curvatures $K(X \wedge \phi X)$ are equal to a constant c, where $K(X \wedge \phi X)$ denotes the sectional curvature of the section spanned by the unit vector field X, orthogonal to ξ and ϕX . In such a case, Riemannian curvature tensor of M is given by

$$R(X,Y)Z = \frac{c+3}{4} \{g(Y,Z)X - g(X,Z)Y\} + \frac{c-1}{4} \{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} + \frac{c-1}{4} \{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}.$$
(2)

In 2004, P. Alegre, D. E. Blair and A. Carriazo [1] introduced the concept of generalized Sasakian space forms. The generalized Sasakian space form is defined as follows:

A generalized Sasakian space form is an almost contact metric manifold (M, ϕ, ξ, η, g) whose curvature tensor is given by

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} + f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\},$$
(3)

where f_1 , f_2 , f_3 are differentiable functions on M and X, Y, Z are vector fields on M. Sasakian-space-forms appear as natural examples of generalized Sasakian space forms, with constant functions $f_1 = \frac{c+3}{4}$, $f_2 = \frac{c-1}{4}$ and $f_3 = \frac{c-1}{4}$, where c denotes constant ϕ -sectional curvature. The generalized Sasakian space forms have been extensively studied by [2, 3, 4, 7, 18, 20].

A Riemannian manifold is called locally symmetric if its curvature tensor R is parallel, that is $\nabla R = 0$, where ∇ denotes the Levi-Civita connection. As a proper generalization of locally symmetric manifold, the notion of semi-symmetric manifold was defined by

$$(R(X,Y) \cdot R)(U,V)W = 0. \tag{4}$$

In this paper, we study some results of C-Bochner curvature tensor and τ -curvature tensor in generalized Sasakian space forms.

2. Preliminaries

In this section, we give some general definitions and basic formulas which we will use later:

A (2n+1)-dimensional Riemannian manifold M is said to be an almost contact metric manifold if there exist a (1,1) tensor field ϕ , a vector field ξ and a 1-form η such that

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi \cdot \xi = 0, \quad \eta(\phi X) = 0,$$
 (5)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X), \tag{6}$$

$$g(\phi X, Y) = -g(X, \phi Y). \tag{7}$$

An almost contact metric manifold is called contact metric manifold if

$$d\eta(X,Y) = \Phi(X,Y) = g(X,\phi Y),\tag{8}$$

where Φ is called the fundamental two-form of the manifold. If ξ is a Killing vector field, then the contact metric manifold is called a K-contact manifold. It is well known that a contact metric manifold is K-contact if and only if

$$\nabla_X \xi = -\phi X,\tag{9}$$

for any vector field X on M. An almost contact metric manifold is Sasakian if it is normal and it satisfies the condition,

$$(\nabla_X \phi) Y = g(X, Y) \xi - \eta(Y) X, \tag{10}$$

for any vector fields X and Y.

From equation (3), we have

$$R(X,Y)\xi = (f_1 - f_3)\{\eta(Y)X - \eta(X)Y\}, \tag{11}$$

$$R(X,\xi)\xi = (f_1 - f_3)\{X - \eta(X)\xi\}, \tag{12}$$

$$R(\xi, X)Y = (f_1 - f_3)\{g(X, Y)\xi - \eta(Y)X\}, \tag{13}$$

$$R(X,\xi)Y = (f_1 - f_3)\{\eta(Y)X - g(X,Y)\xi\}. \tag{14}$$

Again from (3) and by taking an account of $S(X,Y) = \sum_{i=1}^{(2n+1)} g(R(e_i,X)Y,e_i)$, we get

$$S(X,Y) = [2nf_1 + 3f_2 - f_3]g(X,Y) + [-3f_2 - (2n-1)f_3]\eta(X)\eta(Y).$$
 (15)

From (15), we have

$$QX = [2nf_1 + 3f_2 - f_3]X + [-3f_2 - (2n-1)f_3]\eta(X)\xi, \tag{16}$$

$$r = 2n(2n+1)f_1 + 6nf_2 - 4nf_3. (17)$$

where Q is the Ricci operator and r is the scalar curvature of $M(f_1, f_2, f_3)$. Putting $Y = \xi$ in (15), we get

$$S(X,\xi) = 2n(f_1 - f_3)\eta(X).$$
 (18)

3. Flat C-Bochner curvature tensor in generalized Sasakian space forms

In 1969, Matsumoto and Chuman [13] introduced the notion of C-Bochner curvature tensor in a Sasakian manifold and studied its several properties. Later the properties of C-Bochner curvature tensor is extensively studied by many authors like H. Endo [9], M.M. Tripathi [12], C.S. Bagewadi [10], U.C. De [8], A. A. Shaikh [19], etc.

The C-Bochner curvature tensor B [12] is given by

$$B(X,Y)Z = R(X,Y)Z + \frac{1}{2n+4} [g(X,Z)QY - S(Y,Z)X - g(Y,Z)QX + S(X,Z)Y + g(\phi X, Z)Q\phi Y - S(\phi Y, Z)\phi X - g(\phi Y, Z)Q\phi X + S(\phi X, Z)\phi Y + 2S(\phi X, Y)\phi Z + 2g(\phi X, Y)Q\phi Z + \eta(Y)\eta(Z)QX - \eta(Y)S(X, Z)\xi + \eta(X)S(Y,Z)\xi - \eta(X)\eta(Z)QY] - \frac{D+2n}{2n+4} [g(\phi X, Z)\phi Y - g(\phi Y, Z)\phi X + 2g(\phi X, Y)\phi Z] + \frac{D}{2n+4} [\eta(Y)g(X,Z)\xi - \eta(Y)\eta(Z)X + \eta(X)\eta(Z)Y - \eta(X)g(Y,Z)\xi] - \frac{D-4}{2n+4} [g(X,Z)Y - g(Y,Z)X].$$
(19)

where $D = \frac{r+2n}{2n+2}$ and R, S, Q and r are the Riemannian curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature of the manifold respectively.

Theorem 1. If C-Bochner curvature tensor is zero in generalized Sasakian space form then it is an η -Einstein manifold and the scalar curvature r is given by

$$r = 2n(2nf_1 + 3f_2 - f_3) + \frac{2n}{3}(f_1 - f_3) + \frac{4n}{3}.$$
 (20)

Proof. We assume that B(X,Y)Z=0. Then from (19), we have

$$R(X,Y,Z,W) = -\frac{1}{2n+4} [g(X,Z)S(Y,W) - S(Y,Z)g(X,W) - g(Y,Z)S(X,W) + S(X,Z)g(Y,W) + g(\phi X,Z)S(\phi Y,W) - S(\phi Y,Z)g(\phi X,W) - g(\phi Y,Z)S(\phi X,W) + S(\phi X,Z)g(\phi Y,W) + 2S(\phi X,Y)g(\phi Z,W) + 2g(\phi X,Y)S(\phi Z,W) + \eta(Y)\eta(Z)S(X,W) - \eta(Y)\eta(W)S(X,Z) + \eta(X)\eta(W)S(Y,Z) - \eta(X)\eta(Z)S(Y,W)] + \frac{r+2n(2n+3)}{(2n+2)(2n+4)} [g(\phi X,Z)g(\phi Y,Z) - g(\phi Y,Z)g(\phi X,W) + 2g(\phi X,Y)g(\phi Z,W)] - \frac{r+2n}{(2n+2)(2n+4)} [g(X,Z)\eta(Y)\eta(W) - \eta(Y)\eta(Z)g(X,W) + \eta(X)\eta(Z)g(Y,W) - \eta(X)\eta(W)g(Y,Z)] + \frac{r+2n-4(2n+2)}{(2n+2)(2n+4)} [g(X,Z)g(Y,W) - g(Y,Z)g(X,W)].$$
 (21)

Putting $X = W = e_i$, where $\{e_i : i = 1, 2, ..., (2n+1)\}$ is a local orthonormal basis of vector fields in generalized Sasakian space form $M(f_1, f_2, f_3)$ and by virtue of

$$S(X,Y) = \sum_{i=1}^{(2n+1)} g(R(e_i, X, Y), e_i), \text{ we get}$$

$$S(Y,Z) = [2nf_1 + 3f_2 - f_3]g(Y,Z)$$

$$+ \left[-(2nf_1 + f_2 - f_3) + \frac{2n}{3}(f_1 - f_3) + \frac{4n}{3} \right] \eta(Y)\eta(Z). \tag{22}$$

Therefore, the manifold is η -Einstein.

On contracting (22), we obtain (20). This completes the proof of the theorem.

4. Generalized Sasakian space form satisfying $R(X,Y) \cdot B = 0$

Theorem 2. If in a generalized Sasakian space form of dimension (2n + 1), the relation $R(X,Y) \cdot B = 0$ holds with the condition $f_1 \neq f_3$, then the manifold is an η -Einstein and the scalar curvature is r is given by

$$r = 2n(2nf_1 + 3f_2 - f_3) + \frac{2n(4n+3)}{3}(f_1 - f_3) - \frac{n(8n+11)}{3}.$$
 (23)

Proof. Let $M(f_1, f_2, f_3)$ be a (2n+1)-dimensional generalized Sasakian space form. From equation (19), we obtain

$$\eta(B(X,Y)Z) = \eta(R(X,Y)Z) + \frac{1}{2n+4} [g(X,Z)S(Y,\xi) - S(Y,Z)\eta(X) - g(Y,Z)S(X,\xi)
+ S(X,Z)\eta(Y) + \eta(Y)\eta(Z)S(X,\xi) - \eta(Y)S(X,Z) + \eta(X)S(Y,Z)
- \eta(X)\eta(Z)S(Y,\xi)] + \frac{4}{2n+4} [g(X,Z)\eta(Y) - g(Y,Z)\eta(X)].$$
(24)

Putting $X = \xi$ in (24) and by virtue of (3), (15) and (13), we get

$$\eta(B(\xi, Y)Z) = \left[(f_1 - f_3) - \frac{2n(f_1 - f_3)}{2n + 4} - \frac{4}{2n + 4} \right] [g(Y, Z) - \eta(Y)\eta(Z)]. \tag{25}$$

On taking $Z = \xi$ in (24) and by virtue of (11) and (15), we get

$$\eta(B(X,Y)\xi) = 0. (26)$$

Now, we define

$$(R(X,Y) \cdot B)(U,V)Z = R(X,Y)B(U,V)Z - B(R(X,Y)U,V)Z - B(U,R(X,Y)V)Z - B(U,V)R(X,Y)Z.$$
(27)

We assume that $R(X,Y) \cdot B = 0$. Then we have

$$R(X,Y)B(U,V)Z - B(R(X,Y)U,V)Z - B(U,R(X,Y)V)Z - B(U,V)R(X,Y)Z = 0,$$
(28)

which implies that

$$(f_{1} - f_{3})[B'(U, V, Z, Y) - \eta(Y)\eta(B(U, V)Z) - g(U, Y)\eta(B(\xi, V)Z) + \eta(U)\eta(B(Y, V)Z) - g(Y, V)\eta(B(U, \xi)Z) + \eta(V)\eta(B(U, Y)Z) - g(Y, Z)\eta(B(U, V)\xi) + \eta(Z)\eta(B(U, V)Y)] = 0,$$
(29)

where B'(U, V, Z, Y) = g(B(U, V)Z, Y).

The above equation (29) states that either

$$f_1 - f_3 = 0$$

or

$$[B'(U, V, Z, Y) - \eta(Y)\eta(B(U, V)Z) - g(U, Y)\eta(B(\xi, V)Z) + \eta(U)\eta(B(Y, V)Z) - g(Y, V)\eta(B(U, \xi)Z) + \eta(V)\eta(B(U, Y)Z) - g(Y, Z)\eta(B(U, V)\xi) + \eta(Z)\eta(B(U, V)Y)] = 0.$$
(30)

If $f_1 \neq f_3$ then equation (30) must be true. Now, we proceed under the assumption that $f_1 \neq f_3$. Putting $U = Y = e_i$ in (30), where $\{e_i : i = 1, 2, ..., (2n+1)\}$ is a local orthonormal basis of vector fields, we have

$$\sum_{i=1}^{(2n+1)} B'(e_i, V, Z, e_i) - \sum_{i=1}^{(2n+1)} \eta(e_i) \eta(B(e_i, V)Z) - \sum_{i=1}^{(2n+1)} g(e_i, e_i) \eta(B(\xi, V)Z)
+ \sum_{i=1}^{(2n+1)} \eta(e_i) \eta(B(e_i, V)Z) - \sum_{i=1}^{(2n+1)} g(e_i, V) \eta(B(e_i, \xi)Z) + \sum_{i=1}^{(2n+1)} \eta(V) \eta(B(e_i, e_i)Z)
- \sum_{i=1}^{(2n+1)} g(e_i, Z) \eta(B(e_i, V)\xi) + \sum_{i=1}^{(2n+1)} \eta(Z) \eta(B(e_i, V)e_i) = 0.$$
(31)

By using (24), (25) and (26) in (31), we have

$$S(V,Z) = \left[(2nf_1 + 3f_2 - f_3) + \frac{4n}{3} (f_1 - f_3) - \frac{4n}{3} \right] g(V,Z)$$

$$+ \left[-(2nf_1 + 3f_2 - f_3) + \frac{2n}{3} (f_1 - f_3) - \frac{7n}{3} \right] \eta(V) \eta(Z).$$
 (32)

And by contracting (32), we have (23). This completes the proof of the theorem.

5. Generalized Sasakian space form satisfying $R(\xi,X)\cdot \tau=0$

M.M. Tripathi and et. al. ([15, 16]) introduced the τ -tensor which in particular cases reduces to known curvatures like conformal, concircular and projective curvature tensors and some recently introduced curvature tensors like M-projective curvature tensor, W_i -curvature tensor (i = 0, ..., 9) and W_j^* -curvature tensor (j = 0, 1). M.M. Tripathi and et. al. studied τ -curvature tensor in K-contact, Sasakian and Semi-Riemannian manifolds. H.G. Nagaraja et. al. [17] studied the τ -curvature tensor in (k, μ) -contact manifolds. In this section, we study the generalized Sasakian space form satisfying $R(\xi, X) \cdot \tau = 0$, where τ is a τ -curvature tensor and is given by

$$\tau(X,Y)Z = a_0 R(X,Y)Z + a_1 S(Y,Z)X + a_2 S(X,Z)Y + a_3 S(X,Y)Z
+ a_4 g(Y,Z)QX + a_5 g(X,Z)QY + a_6 g(X,Y)QZ
+ a_7 [g(Y,Z)X - g(X,Z)Y],$$
(33)

where a_0, \ldots, a_7 are some smooth functions on M.

By taking an innerproduct with respect to ξ in (33), we have

$$\eta(\tau(X,Y)Z) = a_0(f_1 - f_3)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] + a_1S(Y,Z)\eta(X)
+ a_2S(X,Z)\eta(Y) + a_3S(X,Y)\eta(Z) + 2n(f_1 - f_3)a_4g(Y,Z)\eta(X)
+ 2n(f_1 - f_3)a_5g(X,Z)\eta(Y) + 2n(f_1 - f_3)a_6g(X,Y)\eta(Z)
+ a_7[g(Y,Z)X - g(X,Z)Y],$$
(34)

Theorem 3. If in a generalized Sasakian space form of dimension (2n + 1), the relation $R(\xi, X) \cdot \tau = 0$ holds with the condition $f_1 \neq f_3$, then the manifold is an η -Einstein provided $a_0 + a_5 + a_6 \neq 0$.

Proof. We assume $R(\xi, X) \cdot \tau = 0$, then we have

$$R(\xi, X)\tau(Y, Z)W - \tau(R(\xi, X)Y, Z)W$$

-\tau(Y, R(\xi, X)Z)W - \tau(Y, Z)R(\xi, X)W = 0. (35)

By using (13) in (35), we obtain

$$(f_{1} - f_{3})[g(X, \tau(Y, Z)W)\xi - \eta(\tau(Y, Z)W)X - g(X, Y)\tau(\xi, Z)W + \eta(Y)\tau(X, Z)W - g(X, Z)\tau(Y, \xi)W + \eta(Z)\tau(Y, X)W - g(X, W)\tau(Y, Z)\xi + \eta(W)\tau(Y, Z)X] = 0.$$
(36)

By taking an innerproduct with respect to ξ in (36), we have

$$(f_{1} - f_{3})[g(X, \tau(Y, Z)W) - \eta(\tau(Y, Z)W)\eta(X) - g(X, Y)\eta(\tau(\xi, Z)W) + \eta(Y)\eta(\tau(X, Z)W) - g(X, Z)\eta(\tau(Y, \xi)W) + \eta(Z)\eta(\tau(Y, X)W) - g(X, W)\eta(\tau(Y, Z)\xi) + \eta(W)\eta(\tau(Y, Z)X)] = 0,$$
(37)

from (37), either $(f_1 - f_3) = 0$ or

$$[g(X, \tau(Y, Z)W) - \eta(\tau(Y, Z)W)\eta(X) - g(X, Y)\eta(\tau(\xi, Z)W) + \eta(Y)\eta(\tau(X, Z)W) - g(X, Z)\eta(\tau(Y, \xi)W) + \eta(Z)\eta(\tau(Y, X)W) - g(X, W)\eta(\tau(Y, Z)\xi) + \eta(W)\eta(\tau(Y, Z)X)] = 0.$$
(38)

If $f_1 \neq f_3$ then equation (38) must be true. Now, we proceed under the assumption that $f_1 \neq f_3$. By using (33), (34) in (38) and on simplification, we get

$$a_{0}g(X,R(Y,Z)W) + a_{4}g(Z,W)S(X,Y) + a_{5}g(Y,W)S(Z,X) + a_{6}g(Y,Z)S(W,X) + (f_{1} - f_{3})a_{0}[g(X,Z)g(Y,W) - g(X,Y)g(Z,W)] -2n(f_{1} - f_{3})a_{2}g(X,Y)\eta(Z)\eta(W) - 2n(f_{1} - f_{3})a_{3}g(X,Y)\eta(Z)\eta(W) -2n(f_{1} - f_{3})a_{4}g(X,Y)g(Z,W) + a_{2}S(X,W)\eta(Y)\eta(Z) + a_{3}S(X,Z)\eta(Y)\eta(W) -2n(f_{1} - f_{3})a_{1}g(X,Z)\eta(Y)\eta(W) - 2n(f_{1} - f_{3})a_{3}g(X,Z)\eta(Y)\eta(W) -2n(f_{1} - f_{3})a_{5}g(X,Z)g(Y,W) + a_{1}S(X,W)\eta(Y)\eta(Z) + a_{3}S(Y,X)\eta(W)\eta(Z) -2n(f_{1} - f_{3})a_{1}g(X,W)\eta(Y)\eta(Z) - 2n(f_{1} - f_{3})a_{2}g(X,W)\eta(Y)\eta(Z) +a_{1}S(Z,X)\eta(Y)\eta(W) - 2n(f_{1} - f_{3})a_{6}g(Y,Z)g(X,W) +a_{2}S(Y,X)\eta(Z)\eta(W) = 0.$$
 (39)

Putting $X = Y = e_i$, in (39), where $\{e_i : i = 1, 2, ..., (2n+1)\}$ is a local orthonormal basis of vector fields and on simplification, we have

$$S(Z,W) = \left[\frac{2n(f_1 - f_3)(a_0 + a_5 + a_6) + [2n(2n+1)(f_1 - f_3) - r]a_4}{(a_0 + a_5 + a_6)} \right] g(Z,W) + \left[\frac{[2n(2n+1)(f_1 - f_3) - r](a_2 + a_3)}{(a_0 + a_5 + a_6)} \right] \eta(Z)\eta(W).$$
(40)

This completes the proof of the above theorem.

6. Generalized Sasakian space form satisfying $\tau(\xi, X) \cdot S = 0$

Theorem 4. If in a generalized Sasakian space form of dimension (2n + 1), the relation $\tau(\xi, X) \cdot S = 0$ holds, then the manifold is an η -Einstein provided $[(f_1 - f_3)[2n(a_1 + a_2) - a_0] + a_5(2nf_1 + 3f_2 - f_3) - a_7r] \neq 0$.

Proof. In a generalized Sasakian space form the following condition satisfies:

$$(\tau(\xi, X) \cdot S)(Y, Z) = 0, \tag{41}$$

that is

$$S(\tau(\xi, X)Y, Z) + S(Y, \tau(\xi, X)Z) = 0. \tag{42}$$

By using (33) in (42) and by virtue of (15), (16) and (18), we obtain

$$(f_{1} - f_{3})a_{0}[2n(f_{1} - f_{3})g(X,Y)\eta(Z) - S(X,Z)\eta(Y)]$$

$$+2na_{1}(f_{1} - f_{3})\eta(Z)S(X,Y) + 2na_{2}(f_{1} - f_{3})\eta(Y)S(X,Z)$$

$$+2na_{3}(f_{1} - f_{3})\eta(X)S(Y,Z) + 4n^{2}a_{4}(f_{1} - f_{3})^{2}g(X,Y)\eta(Z)$$

$$+a_{5}[2nf_{1} + 3f_{2} - f_{3}]\eta(Y)S(X,Z) + a_{5}[-3f_{2} - (2n - 1)f_{3}]\eta(Y)\eta(X)S(\xi,Z)$$

$$+a_{6}[2nf_{1} + 3f_{2} - f_{3}]\eta(X)S(Y,Z) + a_{6}[-3f_{2} - (2n - 1)f_{3}]\eta(Y)\eta(X)S(\xi,Z)$$

$$+a_{7}r[2n(f_{1} - f_{3})\eta(Z)g(X,Y) - \eta(Y)S(X,Z)] + a_{0}(f_{1} - f_{3})[2n(f_{1} - f_{3})\eta(Y)g(X,Z)$$

$$-\eta(Z)S(X,Y)] + 2na_{1}(f_{1} - f_{3})\eta(Y)S(X,Z) + 2na_{2}(f_{1} - f_{3})\eta(Z)S(Y,X)$$

$$+2na_{3}(f_{1} - f_{3})\eta(X)S(Y,Z) + 4n^{2}a_{4}(f_{1} - f_{3})^{2}g(X,Z)\eta(Y)$$

$$+a_{5}(2nf_{1} + 3f_{2} - f_{3})\eta(Z)S(X,Y) + a_{5}[-3f_{2} - (2n - 1)f_{3}]\eta(Z)\eta(X)S(\xi,Y)$$

$$+a_{6}[2nf_{1} + 3f_{2} - f_{3}]\eta(X)S(Y,Z) + a_{6}[-3f_{2} - (2n - 1)f_{3}]\eta(Z)\eta(X)S(\xi,Y)$$

$$+a_{7}r[2n(f_{1} - f_{3})\eta(Y)g(X,Z) - \eta(Z)S(X,Y)] = 0. \tag{43}$$

Putting $Z = \xi$ in (43), we have

$$S(X,Y) = \frac{-[2n(f_1 - f_3)[(f_1 - f_3)(a_0 + 2na_4) + a_7r)]]}{[(f_1 - f_3)[2n(a_1 + a_2) - a_0] + a_5(2nf_1 + 3f_2 - f_3) - a_7r]}g(X,Y)$$

$$-\frac{2n(f_1 - f_3)[2n(f_1 - f_3)[a_1 + a_2 + 2a_3 + a_4 + a_5 + 2a_6] + a_5[-3f_2 - (2n - 1)f_3]]}{[(f_1 - f_3)[2n(a_1 + a_2) - a_0] + a_5(2nf_1 + 3f_2 - f_3) - a_7r]}$$

$$\times \eta(X)\eta(Y). \tag{44}$$

This completes the proof of the theorem.

7. C-BOCHNER RECURRENT IN GENERALIZED SASAKIAN SPACE FORM

A generalized Sasakian space form is said to be C-Bochner recurrent in generalized Sasakian space form if it satisfies

$$(\nabla_W B)(X, Y)Z = A(W)B(X, Y)Z, \tag{45}$$

where A is a non-zero 1-form and B is a C-Bochner curvature tensor. We define a function $f^2 = g(B, B)$ on M, where the metric g is extended to the inner product between the tensor fields. Then, we know that

$$f(Yf) = f^2 A(Y). (46)$$

This implies that

$$Yf = fA(Y), (f \neq 0). (47)$$

From above equation, we have

$$X(Yf) - Y(Xf) = f\{XA(Y) - YA(X) - A([X,Y])\}. \tag{48}$$

Since the left hand side of the above equation is identically zero and $f \neq 0$, then we have

$$dA(X,Y) = 0, (49)$$

that is 1-form A is closed.

Now, from $(\nabla_V B)(X,Y)Z = A(V)B(X,Y)Z$, we have

$$(\nabla_U \nabla_V B)(X, Y)Z = \{UA(V) + A(U)A(V)\}B(X, Y)Z. \tag{50}$$

By the above equation, we have

$$(R(X,Y) \cdot B)(U,V)Z = [2dA(X,Y)]B(U,V)Z. \tag{51}$$

By using (49) in (51), we have

$$(R(X,Y) \cdot B)(U,V)Z = 0. \tag{52}$$

Hence by virtue of Theorem 4, we can state the following:

Theorem 5. If C-Bochner curvature tensor is recurrent in generalized Sasakian space form then it is an η -Einstein manifold.

Corollary 6. In a C-Bochner recurrent generalized Sasakian space form the 1-form, A is closed.

8. RICCI SEMI-SYMMETRIC GENERALIZED SASAKIAN SPACE FORM

A generalized Sasakian space form is said to be Ricci semi-symmetric if it satisfies

$$(R(X,Y)\cdot S)(U,V) = 0, (53)$$

that is

$$S(R(X,Y)U,V) + S(U,R(X,Y)V) = 0. (54)$$

Putting $Y = V = \xi$ in the above equation, we have

$$S(R(X,\xi)U,\xi) + S(U,R(X,\xi)\xi) = 0.$$
(55)

By using (12) and (14) in (55), we have

$$(f_1 - f_3)\{\eta(U)S(X,\xi) - g(X,U)S(\xi,\xi)\} + (f_1 - f_3)[S(X,U) - \eta(X)S(U,\xi)] = 0.$$
(56)

Again by using (15) in (56), we have

$$S(X,U) = 2n(f_1 - f_3)g(X,U). (57)$$

Hence, we state the following:

Theorem 7. A Ricci semi-symmetric generalized Sasakian space form is an Einstein manifold.

Corollary 8. A Ricci semi-symmetric generalized Sasakian space form is an Einstein manifold with $f_1 \neq f_3$. Otherwise, that is if $f_1 = f_3$ then it is Ricci flat |S(X,U) = 0|.

9. Generalized Sasakian space form satisfying $S(\xi, X) \cdot R = 0$

Theorem 9. If in a generalized Sasakian space form of dimension (2n + 1), the relation $S(X,Y) \cdot R = 0$ holds, then the manifold is an η -Einstein manifold.

Proof. Using the following equations

$$S((X,\xi) \cdot R)(U,V)W = ((X \wedge_S \xi) \cdot R)(U,V)W,$$

$$= (X \wedge_S \xi)R(U,V)W + R((X \wedge_S \xi)U,V)W$$

$$+R(U,(X \wedge_S \xi)V)W + R(U,V)(X \wedge_S \xi)W,$$
(58)

where the endomorphism $X \wedge_S Y$ is defined by

$$(X \wedge_S Y)Z = S(Y, Z)X - S(X, Z)Y, \tag{59}$$

we have

$$S((X,\xi) \cdot R)(U,V)W = S(\xi, R(U,V)W)X - S(X, R(U,V)W)\xi + S(\xi, U)R(X,V)W - S(X,U)R(\xi,V)W + S(\xi,V)R(U,X)W - S(X,V)R(U,\xi)W + S(\xi,W)R(U,V)X - S(X,W)R(U,V)\xi.$$
(60)

By using the condition $S(\xi, X) \cdot R = 0$, we get

$$S(\xi, R(U, V)W)X - S(X, R(U, V)W)\xi + S(\xi, U)R(X, V)W$$

$$-S(X, U)R(\xi, V)W + S(\xi, V)R(U, X)W - S(X, V)R(U, \xi)W$$

$$+S(\xi, W)R(U, V)X - S(X, W)R(U, V)\xi = 0.$$
(61)

By taking an inner product with respect to ξ in the above equation and by virtue of (18), we have

$$2n(f_1 - f_3)\eta(R(U, V)W)\eta(X) - S(X, R(U, V)W) + 2n(f_1 - f_3)\eta(U)\eta(R(X, V)W) - S(X, U)\eta(R(\xi, V)W) + 2n(f_1 - f_3)\eta(V)R(U, X)W - S(X, V)\eta(R(U, \xi)W) + 2n(f_1 - f_3)\eta(W)\eta(R(U, V)X) - S(X, W)\eta(R(U, V)\xi) = 0,$$
(62)

putting $U = W = \xi$ and by virtue of (12), (13) and (14), we have

$$S(X,V) = -2n(f_1 - f_3)g(X,V) + 4n(f_1 - f_3)\eta(X)\eta(V).$$
 (63)

This completes the proof.

References

- [1] P. Alegre, D.E. Blair and A. Carriazo, Generalized Sasakian-space-form, Israel J.Math., 141, (2004), 157-183.
- [2] P. Alegre and A. Carriazo, *Structures on Generalized Sasakian-space-form*, Diff. Geo. and its Application., 26 (6), (2008), 656-666.
- [3] A. Carriazo, D.E. Blair and P. Alegre, *On generalized Sasakian-space-form*, Proceedings of the Ninth International Workshop on Diff. Geom., 9, (2005), 31-39.
- [4] A. Carriazo, V. Martin-Molina and M. Mani Tripathi, Generalized (k, μ) -space forms, arXiv:0812.2605v1 [math.DG] 14 Dec 2008.
- [5] A. Carriazo and V. Martin-Molina , Generalized (k, μ) -space forms and D_a -homothethic deformations, Balkan Journal of Geometry and its Applications, 16 (1), (2011), 37-47.
- [6] D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Mathematics, Springer-Verlag, Berlin, 509, (1976).
- [7] U.C. De and A. Sarkar, Some Results on Generalized Sasakian-space-forms, Thai Journal of Mathematics, 8 (1), (2010), 1-10.
- [8] U.C. De and A. A. Shaikh, Sasakian manifolds with C-Bochner curvature tensor, Indian J. of Math., 41 (2), (1999), 131-137.

- [9] H. Endo, On certain tensor fields on contact metric manifolds II, Publ. Math. Debrecen, 44, (1994), 157-166.
- [10] G. Ingalahalli and C.S. Bagewadi, A study on Conservative C-Bochner curvature tensor in K-contact and Kenmotsu manifolds admitting semi-symmetric metric connection, ISRN Geometry, 2012, (2012), 14 pages.
- [11] U.K. Kim, Conformally flat Generalized Sasakian-space-forms and locally symmetric Generalized Sasakian-space-form, Note di Matematica, 26 (1), (2006), 55-67.
- [12] J.S. Kim, M.M. Tripathi and J. Choi, On C-Bochner curvature tensor of a contact metric manifold, Bull. Korean Math. Soc., 42(4) (2005), 713-724.
- [13] M. Matsumoto and G. Chuman, On C-Bochner curvature tensor, TRU Math., 5, (1969), 21-30.
- [14] M. Belkhelfa, R. Deszcz and L. Verstraelen, Symmetry Properties of Sasakian-space-form, Soochow Journal of Mathematics, 31 (4), (2005), 19-36.
- [15] M. Mani Tripathi and P. Gupta, On τ -curvature tensor in K-contact and Sasakian manifolds, International Electronic Journal of Geometry, 4, (2011), 32-47.
- [16] M. Mani Tripathi and P. Gupta, τ -curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud., 4 (1), (2011), 117-129.
- [17] H.G. Nagaraja and G. Somashekhara, τ -curvature tensor in (k, μ) -contact manifolds, Proceedings of the Estonian Academy of Sciences, 61 (1), (2012), 20-28.
- [18] P. Alegre and A. Carriiazo, Generalized Sasakian-space-forms and Conformal Changes of the Metric, Differential Geometry and its Applications, 26, (2008), 656-666.
- [19] A. A. Shaikh and K. Kanti Baishya, $On(k, \mu)$ -contact metric manifolds, Differential Geometry-Dynamical Systems, 8, (2006), 253-261.
- [20] S. Yadav, D.L. Suthar and A.K. Srivastava, *Some Results on* $M(f_1, f_2, f_3)_{(2n+1)}$ -Manifolds, International Journal of Pure and Applied Mathematics, 70 (3), (2011), 415-423.

C.S.Bagewadi and Gurupadavva Ingalahalli Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta - 577 451, Shimoga, Karnataka, INDIA. email: prof_bagewadi@yahoo.co.in, qurupadavva@qmail.com