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1. INTRODUCTION

The nature of a Riemannian manifold mostly depends on the curvature tensor R of
the manifold and further it is known that the sectional curvature of a manifold deter-
mines curvature tensor completely. A Riemannian manifold with constant sectional
curvature ¢ is known as real space form and its curvature tensor is given by

RX,Y)Z =c{g(Y,Z2)X —g(X,2)Y}. (1)

A Sasakian manifold (M, ¢,&,n,g) is said to be a Sasakian space form if all the
¢-sectional curvatures K (X A ¢X) are equal to a constant ¢, where K(X A ¢X)
denotes the sectional curvature of the section spanned by the unit vector field X,
orthogonal to £ and ¢X. In such a case, Riemannian curvature tensor of M is given
by

RXYIZ = g 2)X — g(X, )V} + © (X, 02)0Y — (Y, 62)6X
+ 29(X,¢Y)pZ} + C; ! {n(XM(2)Y = n(Y)n(Z2)X + g(X, Z)n(Y)¢

— 9, Z)n(X)¢}. (2)

In 2004, P. Alegre, D. E. Blair and A. Carriazo [1] introduced the concept of
generalized Sasakian space forms. The generalized Sasakian space form is defined
as follows:
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A generalized Sasakian space form is an almost contact metric manifold (M, ¢, &, 7, g)

whose curvature tensor is given by
RX,Y)Z = f{g(Y,2)X —g(X, 2)Y} + fo{g(X, ¢Z)9Y —g(Y,0Z)pX
+ 29(X,9Y)oZ} + fs{n(X)n(2)Y = n(Y)n(Z2)X +g(X, Z)n(Y)¢
= g(Y, Z)n(X)¢}, (3)

where f1, fo, f3 are differentiable functions on M and X, Y, Z are vector fields on
M. Sasakian-space-forms appear as natural examples of generalized Sasakian space
forms, with constant functions f; = %, 9 = % and f3 = %, where ¢ denotes
constant ¢-sectional curvature. The generalized Sasakian space forms have been
extensively studied by [2, 3, 4, 7, 18, 20].

A Riemannian manifold is called locally symmetric if its curvature tensor R is
parallel, that is VR = 0, where V denotes the Levi-Civita connection. As a proper
generalization of locally symmetric manifold, the notion of semi-symmetric manifold

was defined by
(R(X,Y) - R)(U V)W =0. (4)

In this paper, we study some results of C-Bochner curvature tensor and 7-
curvature tensor in generalized Sasakian space forms.

2. PRELIMINARIES

In this section, we give some general definitions and basic formulas which we will
use later:
A (2n + 1)-dimensional Riemannian manifold M is said to be an almost contact
metric manifold if there exist a (1,1) tensor field ¢, a vector field £ and a 1-form 7
such that

90X, 0Y) = g(X,Y)—-n(X)n(Y), 9(X,& =n(X), (6)
9(¢X,Y) = —g(X,9Y). (7)

An almost contact metric manifold is called contact metric manifold if
dn(X,Y) = (X,Y) = g(X, ¢Y), (8)

where @ is called the fundamental two-form of the manifold. If £ is a Killing vector
field, then the contact metric manifold is called a K-contact manifold. It is well
known that a contact metric manifold is K-contact if and only if

Vx§ = —0X, (9)
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for any vector field X on M. An almost contact metric manifold is Sasakian if it is
normal and it satisfies the condition,

(Vx@)Y =g(X,Y)§ —n(Y)X, (10)

for any vector fields X and Y.
From equation (3), we have

RX,Y)S = (fi— f){n(Y)X —n(X)Y}, (11)
R(X, 8¢ = (fi = fs){X —n(X)¢} (12)
R X)Y = (fi = fs){g(X,Y)§ —n(Y)X}, (13)
R(X,0Y = (fi—f){n(V)X —g(X,Y)E} (14)

Again from (3) and by taking an account of S(X,Y) = Zgiqﬂ) g(R(e;, X)Y,€;), we
get

S(X,Y) = [2nfi+3f2— f3]9(X,Y) +[=3f2 — (2n — 1) fs]n(X)n(Y). (15)
From (15), we have

QX = [2nfi+3f2— f3]X + [-3fo — (2n — 1) fa]n(X)¢, (16)
r = 2n(2n+1)f1 +6nfa —4nfs. (17)

where @ is the Ricci operator and r is the scalar curvature of M(fi, f2, f3).
Putting Y = £ in (15), we get

S(X,8) = 2n(fi — f3)n(X). (18)

3. FLAT C-BOCHNER CURVATURE TENSOR IN GENERALIZED SASAKIAN SPACE
FORMS

In 1969, Matsumoto and Chuman [13] introduced the notion of C-Bochner curvature
tensor in a Sasakian manifold and studied its several properties. Later the properties
of C-Bochner curvature tensor is extensively studied by many authors like H. Endo
[9], M.M. Tripathi [12], C.S. Bagewadi [10], U.C. De [8], A. A. Shaikh [19], etc.
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The C-Bochner curvature tensor B [12] is given by

B(X,Y)Z = R(X,Y)Z+5——[g(X,2)QY = S(Y,2)X — (Y, Z)QX + 5(X, 2)Y
9(¢X, 2)QeY — S(¢Y, 2)pX — g(¢Y, Z)Q9pX + S(¢X, Z)pY
25(¢X,Y)9Z +29(0 X, Y)Q9Z +n(Y)n(Z2)QX —n(Y)S(X, Z)¢

HX)S(Y, 26 = n(X)(2)QY] — o= 2L [gl0X, 2)6Y — g(oY, Z2)6X

m(Y)g(X, Z)¢ —=n(Y)n(Z)X + n(X)n(2)Y

+ o+ o+

_l’_

29(6X,Y)6Z) + 5
D
C2n+4

+4
—4

= n(X)g(Y, Z)¢] [9(X, 2)Y —g(Y, Z)X]. (19)

where D = g;‘fr’; and R, S, @ and r are the Riemannian curvature tensor, the Ricci

tensor, the Ricci operator and the scalar curvature of the manifold respectively.

Theorem 1. If C-Bochner curvature tensor is zero in generalized Sasakian space
form then it is an n-Einstein manifold and the scalar curvature v is given by

R (C RV A A (20

Proof. We assume that B(X,Y)Z = 0. Then from (19), we have

R(X7 Y7 Z7 W) _2’1’L + 4[9(X7 Z)S(K W) - S(K Z)Q(Xv W) - g(Y, Z)S(X’ W)
S(X, 2)g(Y, W) +g(¢X, Z)S(¢Y, W) = S(¢Y, Z)g(¢ X, W)

— 9(¢Y, Z)S(6X, W) + S(oX, Z)g(oY, W) +25(6X,Y)g(¢Z, W)
29(¢X,Y)S(0Z, W) +n(Y)n(Z)S(X, W) —n(Y)n(W)S(X, Z)
n(X)n(W)S(Y, Z2) = n(X)n(2)S(Y, W)

r 4+ 2n(2n + 3)
5 3) 3 1 190X 2)0(0Y, 2) = g(6Y, 2)g(0X, W)
r+2n

— n(Y)n(Z)g(X, W) +n(X)n(Z2)g(Y, W) — n(X)n(W)g(Y, Z)]

r+2n —4(2n + 2)
@n12)2n 14 WDV W) =Y, D)g(X, W)L (21)

_l’_

+ o+ o+

+

Putting X = W = ¢;, where {¢; : i =1,2,...,(2n+ 1)} is a local orthonormal basis
of vector fields in generalized Sasakian space form M (f1, fo, f3) and by virtue of
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S(X,Y) =S g(R(ei, X,Y), e1), we get
SY,Z) = [2nfi+3f— filg(Y,Z)
b A f ) G ) a0 (Z). (@)

Therefore, the manifold is n-Einstein.
On contracting (22), we obtain (20). This completes the proof of the theorem.

4. GENERALIZED SASAKIAN SPACE FORM SATISFYING R(X,Y)-B =0

Theorem 2. If in a generalized Sasakian space form of dimension (2n + 1), the
relation R(X,Y) - B = 0 holds with the condition f1 # fs, then the manifold is an
n-FEinstein and the scalar curvature is r is given by

2n(4n +3) n(8n +11)

(fi—f3)— 3

Proof. Let M(f1, f2, f3) be a (2n+ 1)—d1mens1onal generalized Sasakian space form.
From equation (19), we obtain

=2n(2nf1 +3f2 — f3) + (23)

B YIZ) = n(ROGY)Z) + 5
+ (X, 20+ n(V)(Z)S(X,€) = n(V)S(X, 2) + n(X)S (Y, 7)

— DS, 6]+ 59X, 2)n(¥) — oY, Zn(X),

Putting X = ¢ in (24) and by virtue of (3), (15) and (13), we get

2n(f1 — fg) _ 4
2n +4 2n +4

n(BEY)Z)= |(fi—f3) -

On taking Z = ¢ in (24) and by virtue of (11) and (15), we get

9(Y,Z) —n(Y)n(Z)]. (25)

n(B(X,Y)§) = 0. (26)
Now, we define

(R(X,Y) B)U,V)Z = R(X,Y)B(U,V)Z— B(R(X,Y)U,V)Z
B(U,R(X,Y)V)Z — B(U,V)R(X,Y)Z.  (27)
We assume that R(X,Y) - B =0. Then we have
R(X,Y)B(U,V)Z — B(R(X,Y)U,V)Z
~B(U,R(X,Y)V)Z — B(U,V)R(X,Y)Z = 0, (28)
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which implies that
(fi = BB UV, 2,Y) =Y )n(BU,V)Z) - g(U,Y)n(B(§,V)2)
+n(U)n(B(Y,V)Z) = g(Y,V)n(B(U,§)Z) +n(V)n(B(U,Y)Z)
—9(Y, Z)n(B(U,V)¢) +n(Z)n(B(U, V)Y )] =0, (29)

where B (U,V,Z,Y) = g(B(U,V)Z,Y).
The above equation (29) states that either

fi—f3=0
[B/(Ua V7 Z7Y) - W(Y)W(B(Uy V) )

9(U
+n(U)n(B(Y,V)Z) — (Y, V)n(B(U, )Z)
—9(Y, Z)n(B(U,V)§) +n(Z)n(BU,V)Y)] = (30)
If f1 # f3 then equation (30) must be true. Now, we proceed under the assumption

that fi # fs3. Putting U =Y = e; in (30), where {e; : i = 1,2,...,(2n+ 1)} is a
local orthonormal basis of vector fields, we have

(2n+1) / (2n+1) (2n+1)
Y BlewViZe)= > nlen(Ble,V)Z) = Y gleen(B(E,V)2)
=1 =1 =1
(2n+1) (2n+1) (2n+1)
+ Z B(en,V)Z) = Y glen, VIn(B(ei,&)2)+ > n(V)n(Blei, e)Z)
=1 =1
(2n+1 (2n+1)
- Z gles, Zn(Ble, V)E) + > n(Z)n(B(ei, Ves) = 0. (31)
i=1

By using (24), (25) and (26) in (31), we have
S(\V.z) = [(QTlfl +3f2— f3) + é%n(fl fs) = } 9(\V. 2Z)
b s+ i+ 20— - T v, e

And by contracting (32), we have (23). This completes the proof of the theorem.
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5. GENERALIZED SASAKIAN SPACE FORM SATISFYING R(§,X) -7 =10

M.M. Tripathi and et. al. ([15, 16]) introduced the 7-tensor which in particular cases
reduces to known curvatures like conformal, concircular and projective curvature
tensors and some recently introduced curvature tensors like M-projective curvature
tensor, Wj-curvature tensor (i = 0,...,9) and W;‘—curvature tensor (7 =0,1). M.M.
Tripathi and et. al. studied 7-curvature tensor in K-contact, Sasakian and Semi-
Riemannian manifolds. H.G. Nagaraja et. al. [17] studied the 7-curvature tensor
in (k, u)-contact manifolds. In this section, we study the generalized Sasakian space
form satisfying R(¢, X) - 7 = 0, where 7 is a 7-curvature tensor and is given by
T(X,Y)Z = aoR(X,)Y)Z+a1S(Y,Z2)X + a2S(X,2)Y +a3S(X,Y)Z

+ ag(Y, 2)QX + asg(X, Z)QY + asg(X.Y)QZ

+ ar[g(Y, 2)X — g(X, Z2)Y], (33)
where aq, ..., a7 are some smooth functions on M.
By taking an innerproduct with respect to £ in (33), we have

n(r(X,Y)Z) = ao(fi — f3)lg(Y, Z)n(X) — g(X, Z)n(Y)] + a1 S(Y, Z)n(X)
+ @S(X, Z)n(Y) 4+ a3S(X,Y)n(Z) + 2n(f1 — f3)aag(Y, Z)n(X)
+ 2n(f1 = f3)asg(X, Z)n(Y) + 2n(f1 — f3)acg(X,Y)n(Z)
+ arlg(Y, 2)X — g(X, 2)Y], (34)
Theorem 3. If in a generalized Sasakian space form of dimension (2n + 1), the

relation R(§,X) -7 = 0 holds with the condition fi # fs, then the manifold is an
n-Einstein provided ag + a5 + ag # 0.

Proof. We assume R(&, X) -7 = 0, then we have
R X)T(Y,Z2)W —1(R(, X)Y, Z)W
—7(Y,R(&,X)Z)W —7(Y, Z)R(§, X)W = 0. (35)
By using (13) in (35), we obtain
(fl - fB)[g(Xv T(Y7 Z)W)§ - U(T(K Z)W)X - g(X7 Y)T(§7 Z)W
+n(Y)7(X, Z2)W — g(X, Z)r (Y, )W +n(Z)7(Y, X)W — g(X, W)7(Y, Z)¢
(W) (Y, Z)X] = 0. (36)
By taking an innerproduct with respect to £ in (36), we have
(f1 = )X, 7 (Y, Z)W) = (7 (Y, Z)W)n(X) — g(X,Y)n(7(§, Z)W)
+n(Y)n(r(X, 2)W) — g(X, Z)n(r(Y, W) +n(Z)n(r(Y, X)W)
—g(X, W)n(r(Y, 2)§) + n(W)n(r(Y, 2)X)] = 0, (37)
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from (37), either (fi — f3) =0 or

9(X,7(Y, 2)W) = n(r (Y, Z)W)n(X) = g(X, Y)n(7 (£, Z2)W)
+n(Y)n(r(X, 2)W) = g(X, Z)n(r (Y, )W) + n(Z)n(7(Y, X)W)
—g(X, W)n(r ( 2)8) +n(W)n(r (Y, Z2)X)] = 0. (38)

If f1 # f3 then equation (38) must be true. Now, we proceed under the assumption
that fi # f3. By using (33), (34) in (38) and on simplification, we get

aog(X, R(Y, Z)W) + asg(Z, W)S(X,Y) + asg(Y,W)S(Z, X)
+aeg(Y, Z)S(W, X) + (f1 — f3)ao[g(X, Z)g(Y, W) — g(X,Y)g(Z,W)]

=2n(f1 — f3)a2g(X, Y)n(Z)n(W) — 2n(f1 — f3)azg(X, Y )n(Z)n(W)

=2n(f1 — f3)asg(X,Y)g(Z, W) + a2 S(X, W)n(Y)n(Z) + azS(X, Z)n(Y )n(W)
—2n(f1 fd)alg(Xv Zn(Y )In(W) —2n(f1 — f3)azg(X, Z)n(Y )n(W)

=2n(f1 — f3)asg(X, Z)g(Y, W) + a1 S(X, W)n(Y)n(Z) + azS(Y, X)n(W)n(Z)
=2n(f1 = f3)arg(X, W)n(Y)n(Z) — 2n(f1 — f3)a29(X, W)n(Y)n(Z)

+a15(Z, X)n(Y)n(W) — 2n(f1 f3)asg(Y, Z)g(X, W)

+a2S(Y, X)n(Z)n(W) = (39)

Putting X =Y = ¢;, in (39), where {¢; : i = 1,2,...,(2n+1)} is a local orthonormal
basis of vector fields and on simplification, we have

S(ZW) = {Qn(fl — f3)(ao + a5 +ag) + 2n(2n + 1)(f1 — f3) — rlaq (Z.W)
7 N (ap + as + ag) ’
e o

This completes the proof of the above theorem.

6. GENERALIZED SASAKIAN SPACE FORM SATISFYING 7(§,X) -5 =0

Theorem 4. If in a generalized Sasakian space form of dimension (2n + 1), the
relation 7(§,X) - S = 0 holds, then the manifold is an n-FEinstein provided

[(f1 = f3)[2n(a1 + a2) — ao] + a5(2nf1 + 3f2 — f3) — azr] # 0.

Proof. In a generalized Sasakian space form the following condition satisfies:
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that is
S(r(&, X)Y, 2) + S(Y,7(€, X)Z) = 0. (42)
By using (33) in (42) and by virtue of (15), (16) and (18), we obtain

(f1 = fs)ao2n(f1 — f3)9(X,Y)n(Z) — S(X, Z)n(Y)]

+2na1(f1 — f3)n(Z2)S(X,Y) + 2naaz(f1 — fs)n(Y)S(X, Z)

+2naz(f1 — f3)n(X)S(Y, Z) + 4n’as(f1 — f3)*9(X,Y)n(Z)

+as2nfi + 3f2 — f3]n(Y)S(X, Z) + as[-3f2 — (2n — 1) f3]n(Y)n(X)S(€, Z)
+ag2nfi + 3f2 — f3]n(X)S(Y, Z) + ag[-3f2 — (2n — 1) fa]n(Y)n(X)S(€, Z)
+arr[2n(fi — f3)n(Z2)g(X,Y) —n(Y)S(X, Z)| + ao(f1 — f3)[2n(f1 — f3)n(Y)g(X, 2)
—n(Z)S(X,Y)] + 2na1(f1 — f3)n(Y)S(X, Z) + 2naz(f1 — f3)n(Z)S(Y, X)
+2nas(fi — fs)n(X)S(Y, Z) + 4n*as(f1 — f3)*9(X, Z)n(Y)

+as(2nf1 +3f2 — f3)n(2)S(X,Y) + a5[-3f2 — (2n — 1) f3]n(Z)n(X)S(§,Y)
+ag2nf1 + 3f2 — f3]n(X)S(Y, Z) + ag[-3f2 — (2n — 1) f3]n(Z)n(X)S(£,Y)
+arr2n(fi — fs)n(Y)g(X, Z) —n(2)S(X,Y)] = 0. (43)

Putting Z = £ in (43), we have

—12n(f1 — f3)[(f1 — f3)(ao + 2nas) + a7r)]]
[(f1 — f3)[2n(a1 + a2) — ao] + a5(2nf1 + 3 f2 — f3) — arr]
2n(f1 - f3)[2n(f1 — fg)[al + as + 2a3 + a4 + a5 + 2a6] + a5[—3f2 — (2n — 1)f3]]
[(f1 — f3)[2n(a1 + a2) — ao] + as5(2nfi + 3f2 — f3) — azr]
xn(X)n(Y). (44)

This completes the proof of the theorem.

S(X,Y) =

9(X,Y)

7. C-BOCHNER RECURRENT IN GENERALIZED SASAKIAN SPACE FORM

A generalized Sasakian space form is said to be C-Bochner recurrent in generalized
Sasakian space form if it satisfies

(VwB)(X,Y)Z = AW)B(X,Y)Z, (45)

where A is a non-zero 1-form and B is a C-Bochner curvature tensor. We define a
function f2 = g(B, B) on M, where the metric g is extended to the inner product
between the tensor fields. Then, we know that

FYf) = FPA(Y). (46)
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This implies that
Yf=[fAY), (f #0). (47)
From above equation, we have
X(Yf)=Y(Xf) = H{XAY) - YAX) - A(X,Y])}. (48)

Since the left hand side of the above equation is identically zero and f # 0, then we
have

dA(X,Y) =0, (49)

that is 1-form A is closed.
Now, from (VyB)(X,Y)Z = A(V)B(X,Y)Z, we have

(VuVvB)(X,Y)Z ={UA(V)+ A(U)A(V)}B(X,Y)Z. (50)
By the above equation, we have
(R(X,Y)-B)(U,V)Z = [2dA(X,Y)|B(U,V)Z. (51)
By using (49) in (51), we have
(R(X,Y)-B)(U,V)Z =0. (52)
Hence by virtue of Theorem 4, we can state the following:

Theorem 5. If C-Bochner curvature tensor is recurrent in generalized Sasakian
space form then it is an n-Einstein manifold.

Corollary 6. In a C-Bochner recurrent generalized Sasakian space form the 1-form,
A is closed.

8. RICCI SEMI-SYMMETRIC GENERALIZED SASAKIAN SPACE FORM

A generalized Sasakian space form is said to be Ricci semi-symmetric if it satisfies
that is

S(R(X,Y)U,V) + S(U,R(X,Y)V) = 0. (54)
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Putting Y =V = £ in the above equation, we have
S(R(X,§U, &) + S(U, R(X,£)E) = 0. (55)
By using (12) and (14) in (55), we have

(i = fa){n(U)S(X,§) — g(X,U)S(£,€)}

+(f1 = f)ISX,U) = n(X)SU,€)] = 0. (56)
Again by using (15) in (56), we have
S(X,U) :2n(f1—f3)g(X,U). (57)

Hence, we state the following;:

Theorem 7. A Ricci semi-symmetric generalized Sasakian space form is an Finstein
manifold.

Corollary 8. A Ricci semi-symmetric generalized Sasakian space form is an Fin-
stein manifold with f1 # fs. Otherwise, that is if fi = f3 then it is Ricci flat
[S(X,U) =0].

9. GENERALIZED SASAKIAN SPACE FORM SATISFYING S(£,X)-R =0

Theorem 9. If in a generalized Sasakian space form of dimension (2n + 1), the
relation S(X,Y) - R = 0 holds, then the manifold is an n-FEinstein manifold.

Proof. Using the following equations

S(X, ) - RU VW = (X As§) - R)(U, V)W, (58)
= (X As&RU V)W + R((X As U, V)W
+R(U, (X As V)W + R(U,V)(X As W,

where the endomorphism X AgY is defined by
(X As Y)Z = S(Y, Z)X — S(X, 2)Y, (59)
we have

S((X,& -R(UVW = SERUVIW)X —S(X,RU,VW){E+ S(EU)R(X, V)W
—S(X,U)R(E, V)W + S V)RU, X)W — S(X,V)R(U, &)W
+S(EW)R(U, V)X — S(X,W)R(U,V)E. (60)
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By using the condition S(&, X) - R = 0, we get

S(&, R(U, VW)X — S(X, R(U, V)W)E + S(¢&, U)R(X, V)W
—S(X,U)R(E V)W + S(€, V)R(U, X)W — S(X,V)R(U, &)W
+S(6,W)R(U, V)X — S(X,W)R(U, V)¢ = 0. (61)

By taking an inner product with respect to £ in the above equation and by virtue
of (18), we have

2n(fr = f3)n(R(U, V)W)n(X) = S(X, R(U, V)W) + 2n(f1 — f3)n(U)n(R(X, V)W)

—S(X, U)n(R(E, V)W) + 2n(fr — f3)n(V)R(U, X)W = S(X, V)n(R(U, )W)

+2n(f1 = f3)n(W)n(R(U, V) X) = S(X, W)n(R(U,V)§) = 0, (62)

putting U = W = £ and by virtue of (12), (13) and (14), we have

S(X,V) = =2n(fi— f3)9(X, V) +4n(f1 — f3)n(X)n(V). (63)

This completes the proof.

REFERENCES

[1] P. Alegre, D.E. Blair and A. Carriazo, Generalized Sasakian-space-form, Israel
J.Math., 141, (2004), 157-183.

[2] P. Alegre and A. Carriazo, Structures on Generalized Sasakian-space-form, Diff.
Geo. and its Application., 26 (6), (2008), 656-666.

[3] A. Carriazo, D.E. Blair and P. Alegre, On generalized Sasakian-space-form, Pro-
ceedings of the Ninth International Workshop on Diff. Geom., 9, (2005), 31-39.

[4] A. Carriazo, V. Martin-Molina and M. Mani Tripathi, Generalized (k, p1)-space
forms, arXiv:0812.2605v1 [math.DG] 14 Dec 2008.

[5] A. Carriazo and V. Martin-Molina , Generalized (k,p)-space forms and Dg-
homothethic deformaitons, Balkan Journal of Geometry and its Applications, 16 (1),
(2011), 37-47.

[6] D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Math-
ematics, Springer-Verlag, Berlin, 509, (1976).

[7] U.C. De and A. Sarkar, Some Results on Generalized Sasakian-space-forms,
Thai Journal of Mathematics, 8 (1), (2010), 1-10.

[8] U.C. De and A. A. Shaikh, Sasakian manifolds with C-Bochner curvature tensor,
Indian J. of Math., 41 (2), (1999), 131-137.

92



C.S. Bagewadi and G. Ingalahalli — A Study on Curvature Tensor ...

[9] H. Endo, On certain tensor fields on contact metric manifolds II, Publ. Math.
Debrecen, 44, (1994), 157-166.

[10] G. Ingalahalli and C.S. Bagewadi, A study on Conservative C-Bochner curva-
ture tensor in K-contact and Kenmotsu manifolds admitting semi-symmetric metric
connection, ISRN Geometry, 2012, (2012), 14 pages.

[11] U.K. Kim, Conformally flat Generalized Sasakian-space-forms and locally sym-
metric Generalized Sasakian-space-form, Note di Matematica, 26 (1), (2006), 55-67.

[12] J.S. Kim, M.M. Tripathi and J. Choi, On C-Bochner curvature tensor of a
contact metric manifold, Bull. Korean Math. Soc., 42(4) (2005), 713-724.

[13] M. Matsumoto and G. Chuman, On C-Bochner curvature tensor, TRU Math.,
5, (1969), 21-30.

[14] M. Belkhelfa, R. Deszcz and L. Verstraelen, Symmetry Properties of Sasakian-
space-form, Soochow Journal of Mathematics, 31 (4), (2005), 19-36.

[15] M. Mani Tripathi and P. Gupta, On T-curvature tensor in K-contact and
Sasakian manifolds, International Electronic Journal of Geometry, 4, (2011), 32-47.

[16] M. Mani Tripathi and P. Gupta, 7-curvature tensor on a semi-Riemannian
manifold, J. Adv. Math. Stud., 4 (1), (2011), 117-129.

[17] H.G. Nagaraja and G. Somashekhara, 7-curvature tensor in (k, u)-contact man-
ifolds, Proceedings of the Estonian Academy of Sciences, 61 (1), (2012), 20-28.

[18] P. Alegre and A. Carriiazo, Generalized Sasakian-space-forms and Conformal
Changes of the Metric, Differential Geometry and its Applications, 26, (2008), 656-
666.

[19] A. A. Shaikh and K. Kanti Baishya, On (k, u)-contact metric manifolds, Dif-
ferential Geometry-Dynamical Systems, 8, (2006), 253-261.

[20] S.  Yadav, D.L. Suthar and A.K. Srivastava, Some Results on
M(f1, fa, fg)(2n+1)—Manifolds, International Journal of Pure and Applied Mathemat-
ics, 70 (3), (2011), 415-423.

C.S.Bagewadi and Gurupadavva Ingalahalli

Department of P.G. Studies and Research in Mathematics,
Kuvempu University,

Shankaraghatta - 577 451, Shimoga, Karnataka, INDIA.
email: prof_bagewadi@yahoo.co.in, gurupadavva@gmail.com

93



